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Abstract. Most previous logical accounts of goal change do not deal with pri-
oritized goals and do not handle subgoals and their dynamics properly. Many
are restricted to achievement goals. In this paper, we develop a logical account
of goal change that addresses these deficiencies. In our account, we do not drop
lower priority goals permanently when they become inconsistent with other goals
and the agent’s knowledge; rather, we make such goals inactive. We ensure that
the agent’s chosen goals/intentions are consistent with each other and the agent’s
knowledge. When the world changes, the agent recomputes her chosen goals and
some inactive goals may become active again. This ensures that our agent max-
imizes her utility. We also propose an approach for handling subgoals and their
dynamics. We prove that the proposed account has some intuitively desirable
properties.

1 Introduction

There has been much work on modeling agent’s mental states, beliefs, goals, and in-
tentions, and how they interact and lead to rational decisions about action. As well,
there has been a lot of work on modeling belief change. But motivational attitudes
and their dynamics have received much less attention. Most formal models of goals
and goal change [1–7] assume that all goals are equally important and many only deal
with achievement goals (one exception to this is the model of prioritized goals in [7]).
Moreover, most of these frameworks do not guarantee that an agent’s goals will prop-
erly evolve when an action is performed or an event occurs, e.g. when the agent’s be-
liefs/knowledge changes or a goal is adopted or dropped. Also, they do not model the
dependencies between goals and the subgoals and plans adopted to achieve these goals.
For instance, subgoals and plans adopted to bring about a goal should be dropped when
the parent goal becomes impossible, is achieved, or is dropped. Dealing with these is-
sues is important for developing effective models of rational agency. It is also important
for work on BDI agent programming languages, where handling declarative goals is an
active research topic [8, 9].

In this paper, we present a formal model of prioritized goals and their dynamics that
addresses some of these issues. Specifically, we propose a framework, where an agent
can have multiple goals at different priority levels, possibly inconsistent with each other.
We define intentions as the maximal set of highest priority goals that is consistent given
the agent’s knowledge. Our formalization of goals and goal dynamics ensures that the



agent strives to maximize her utility. Our model supports the specification of general
temporally extended goals, not just achievement goals, and handles subgoals and their
dynamics.

We start with a (possibly inconsistent) initial set ofprioritized goalsor desires that
are totally ordered according to priority, and specify how these goals evolve when ac-
tions/events occur and the agent’s knowledge changes. We define the agent’schosen
goalsor intentions in terms of this goal hierarchy. Our agents maximize their utility;
they will abandon a chosen goalφ if an opportunity to commit to a higher priority but
inconsistent withφ goal arises. To this end, we keep all prioritized goals in the goal base
unless they are explicitly dropped. At every step, we compute an optimal set of chosen
goals given the hierarchy of prioritized goals, preferring higher priority goals, such that
chosen goals are consistent with each other and with the agent’s knowledge. Thus at any
given time, some goals in the hierarchy are active, i.e. chosen, while others are inactive.
Some of these inactive goals may later become active, e.g. if a higher priority active
goal that is inconsistent with the inactive goal becomes impossible. We also show how
the dependencies between goals and subgoals can be modeled. Finally, we prove some
interesting properties about the dynamics of chosen goals.

As mentioned above, our formalization of prioritized goals ensures that the agent
always tries to maximize her utility, and as such a limitation of our framework is that
it displays an idealized form of rationality. In Section 5, we discuss how this relates
to Bratman’s theory of practical reasoning [10]. We use an action theory based on the
situation calculus [11] along with our formalization of paths in the situation calculus as
our base formalism.

The paper is organized as follows: in the next section, we outline our base frame-
work. In Section 3, we formalizepathsin the situation calculus to support modeling
goals. In Section 4, we present our model of prioritized goals. In section 5, we present
our formalization of goal dynamics and discuss some of its properties. In Section 6,
we discuss what it means for an agent to have a subgoal and how subgoals change as
a result of changes to their parent goals. Then in the last section, we summarize our
results, discuss previous work in this area, and point to possible future work.

2 Action and Knowledge

Our base framework for modeling goal change is the situation calculus [11] as formal-
ized in [12]. In the situation calculus, a possible state of the domain is represented by
a situation. There is a set of initial situations corresponding to the ways the agents be-
lieve the domain might be initially, i.e. situations in which no actions have yet occurred.
Init(s) means thats is an initial situation. The actual initial state is represented by a spe-
cial constantS0. There is a distinguished binary function symboldo wheredo(a, s)
denotes the successor situation tos resulting from performing the actiona. Thus the sit-
uations can be viewed as a set of trees, where the root of each tree is an initial situation
and the arcs represent actions. Relations (and functions) whose truth values vary from
situation to situation, are called relational (functional, resp.) fluents, and are denoted by
predicate (function, resp.) symbols taking a situation term as their last argument. There
is a special predicate Poss(a, s) used to state that actiona is executable in situations.



Our framework uses a theoryDbasic that includes the following set of axioms:1 (1)
action precondition axioms, one per actiona characterizing Poss(a, s), (2) successor
state axioms (SSA), one per fluent, that succinctly encode both effect and frame axioms
and specify exactly when the fluent changes [12], (3) initial state axioms describing
what is true initially including the mental states of the agents, (4) unique name axioms
for actions, and (5) domain-independent foundational axioms describing the structure
of situations [14].

Following [15, 16], we model knowledge using a possible worlds account adapted
to the situation calculus.K(s′, s) is used to denote that in situations, the agent thinks
that she could be in situations′. Using K, the knowledge of an agent is defined as:2

Know(Φ, s)
def
= ∀s′. K(s′, s) ⊃ Φ(s′), i.e. the agent knowsΦ in s if Φ holds in all of her

K-accessible situations ins. K is constrained to be reflexive, transitive, and Euclidean
in the initial situation to capture the fact that agents’ knowledge is true, and that agents
have positive and negative introspection. As shown in [16], these constraints then con-
tinue to hold after any sequence of actions since they are preserved by the successor
state axiom forK. We also assume that all actions are public, i.e. whenever an action
(including exogenous events) occurs, the agent learns that it has happened. Note that,
we work with knowledge rather than belief. Although much of our formalization should
extend to the latter, we leave this for future work.

3 Paths in the Situation Calculus

To support modeling temporally extended goals, we introduce a new sort ofpaths, with
(possibly sub/super-scripted) variablesp ranging over paths. A path is essentially an
infinite sequence of situations, where each successor situation along the path can be
reached by performing someexecutableaction in the preceding situation. We introduce
a predicate OnPath(p, s), meaning that the situations is on the pathp. Also, Starts(p, s)
means thats is the starting situation of pathp. A path p starts with the situations iff s
is the earliest situation onp:3

Axiom 1 Starts(p, s) ≡ OnPath(p, s) ∧ ∀s′. OnPath(p, s′) ⊃ s≤ s′.

In the standard situation calculus, paths are implicitly there, and a path can be
viewed as a pair (s, F) consisting of a situations representing the starting situation
of the path, and a functionF from situations to actions (calledAction Selection Func-
tions(ASF) or strategies in [5]), such that from starting situations, F defines an infinite

1 We will be quantifying over formulae, and thus we assumeDbasic includes axioms for encoding
of formulae as first order terms, as in [13]. We will also be using lists of integers, and assume
thatDbasic includes axiomatizations of integers and lists.

2 A state formulaΦ(s) takes a single situation as argument and is evaluated with respect to that
situation.Φ may contain a placeholder constantnow that stands for the situation in which
Φ must hold.Φ(s) is the formula that results from replacingnow by s. Where the intended
meaning is clear, we sometimes suppress the placeholder.

3 In the following, s < s′ means thats′ can be reached froms by performing a sequence of
executable actions.s≤ s′ is an abbreviation fors< s′ ∨ s = s′.



sequence of situations by specifying an action for every situation starting froms. Thus,
one way of axiomatizing paths is by making them correspond to such pairs (s, F):

Axiom 2

∀p. Starts(p, s) ⊃ (∃F. Executable(F, s) ∧ ∀s′. OnPath(p, s′) ≡ OnPathASF(F, s, s′)),

∀F, s. Executable(F, s) ⊃ ∃p. Starts(p, s) ∧ ∀s′. OnPathASF(F, s, s′) ≡ OnPath(p, s′).

This says that for every path there is an executable ASF that produces exactly the se-
quence of situations on the path from its starting situation. Also, for every executable
ASF and situation, there is a path that corresponds to the sequence of situations pro-
duced by the ASF starting from that situation.

OnPathASF(F, s, s′) def
= s≤ s′ ∧ ∀a, s∗. s< do(a, s∗) ≤ s′ ⊃ F(s∗) = a,

Executable(F, s)
def
= ∀s′. OnPathASF(F, s, s′) ⊃ Poss(F(s′), s′).

Here, OnPathASF(F, s, s′) [6] means that the situation sequence defined by (s, F) in-
cludes the situations′. Also, the situation sequence encoded by a strategyF and a start-
ing situations is executable iff for all situationss′ in this sequence, the action selected
by F in s′ is executable ins′.

In our framework, we will use both state and path formulae. A state formula is a
formula that has a free situation variable in it, whereas a path formula is one that has
a free path variable. State formulae are used in the context of knowledge while path
formulae are used in that of goals. We useΦ(s), Ψ (s), · · · andφ(p), ψ(p), · · · possibly
with decorations to represent state and path formulae, respectively. Note that, by incor-
porating infinite paths in our framework, we can evaluate goals over these and handle
arbitrary temporally extended goals; thus, unlike some other situation calculus based
accounts where goal formulae are evaluated w.r.t. finite paths (e.g. [7]), we can handle
for example unbounded maintenance goals.

We next define some useful constructs. A state formulaΦ eventually holdsover the
pathp if Φ holds in some situation that is onp, i.e.^Φ(p)

def
= ∃s′. OnPath(p, s′)∧Φ(s′).

Other Temporal Logic operators can be defined similarly, e.g. alwaysΦ: �Φ(p).
An agentknowsin s thatφ has becomeinevitableif φ holds over all paths that start

with a K-accessible situation ins, i.e. KInevitable(φ, s)
def
= ∀p. Starts(p, s′) ∧ K(s′, s) ⊃

φ(p). An agent knows ins thatφ is impossible if she knows that¬φ is inevitable ins,
i.e. KImpossible(φ, s)

def
= KInevitable(¬φ, s).

Thirdly, we define what it means for a pathp′ to be a suffix of another pathp w.r.t.
a situations:

Suffix(p′, p, s) def
= OnPath(p, s) ∧ Starts(p′, s)

∧ ∀s′. s′ ≥ s⊃ OnPath(p, s′) ≡ OnPath(p′, s′).

Finally, SameHistory(s1, s2) means that the situationss1 ands2 share the same his-
tory of actions, but perhaps starting from different initial situations:

Axiom 3 SameHistory(s1, s2) ≡ Init(s1) ∧ Init(s2)

∨ (∃a, s′1, s′2. s1 = do(a, s′1) ∧ s2 = do(a, s′2) ∧ SameHistory(s′1, s
′
2)).



4 Prioritized Goals

Most work on formalizing goals only deals with static goal semantics and not their dy-
namics. There are two main categories of motivational attitudes, namely goal [1, 17]
(AKA choice [2], wish [10] or preference), and intention. While goals are sometimes
allowed to be inconsistent [10], intentions are mostly required to be consistent. Another
difference is that agents are committed to their intentions, but not necessarily to their
goals [10]. Intention is sometimes primitive [17, 3] and sometimes a defined concept,
specified in terms of goals [1, 2, 4]. In this section, we formalize goals or desires with
different priorities, which we callprioritized goals(p-goals, henceforth). These p-goals
are not required to be mutually consistent and need not be actively pursued by the agent.
Using this, we define the consistent set ofchosen goalsor intentions (c-goals, hence-
forth) that the agent is committed to. In the next section, we formalize goal dynamics
by providing a SSA for p-goals. The agent’s c-goals are automatically updated when
her p-goals change. We deal with subgoals and their dynamics in Section 6.

Not all of the agent’s goals are equally important to her. Thus, it is useful to sup-
port a priority ordering over goals. This information can be used to decide which of the
agent’s c-goals should no longer be actively pursued in case they become mutually in-
consistent. Following [6], we specify each p-goal by its own accessibility relation/fluent
G. A pathp is G-accessible at priority leveln in situations (denoted byG(p,n, s)) if all
the goals of the agent at leveln are satisfied over this path and if it starts with a situation
that has the same history (in terms of the actions performed so far) ass. The latter re-
quirement ensures that the agent’s p-goal-accessible paths reflect the actions that have
been performed so far. A smallern represents higher priority, and the highest priority
level is 0. Thus in this framework, we assume that the set of p-goals are totally ordered
according to priority. We say that an agent has the p-goal thatφ at leveln in situations
iff φ holds over all paths that areG-accessible atn in s:

PGoal(φ, n, s)
def
= ∀p. G(p,n, s) ⊃ φ(p).

To be able to refer to all the p-goals of the agent at some given priority level, we
also defineonly p-goals.

OPGoal(φ, n, s)
def
= PGoal(φ, n, s)

∧ ∀p, s′. Starts(p, s′) ∧ SameHist(s′, s) ∧ φ(p) ⊃ G(p,n, s).

An agent has theonly p-goalthatφ at leveln in situations iff φ is a p-goal atn in s,
and any path over whichφ holds and that starts with a situation that has the same action
history as ins is G-accessible atn in s.

A domain theory for our frameworkD includes the axioms of a theoryDbasic as
in the previous section, the axiomatization of paths i.e. axioms 1-3, domain dependent
initial goal axioms (see below), the domain independent axioms 4-7 and the definitions
that appear in this section and the next. The modeler must provide initial goal axioms
of the following form:

INITIAL GOAL AXIOMS (a) Init(s) ⊃ ((G(p,0, s) ≡ Starts(p, s′) ∧ Init(s′) ∧ φ0(p))

∧ (G(p,1, s) ≡ Starts(p, s′) ∧ Init(s′) ∧ φ1(p)) ∧ · · ·



∧ (G(p, k− 1, s) ≡ Starts(p, s′) ∧ Init(s′) ∧ φk−1(p))),

(b) ∀n, p, s. Init(s) ∧ n ≥ k ⊃ (G(p,n, s) ≡ Starts(p, s′) ∧ Init(s′)),

(c) Init(s) ⊃ NPGoals(s) = k.

The p-goalsφ0, φ1, · · · , φk−1 (from highest to lowest priority) of the agent in the initial
situations are specified by the Initial Goal Axiom (a); each of them defines a set of initial
goal paths for a given priority level, and must be consistent. We assume that the agent
has a finite numberk of initial p-goals. Forn ≥ k, we makeG(p,n, s) true for every path
p that starts with an initial situation in (b). Thus at levelsn ≥ k, the agent has the trivial
p-goal that she be in an initial situation. We also have a distinguished functional fluent
NPGoals(s) that represents the number of prioritized goals that the agent has (i.e. the
location of the first empty slot after the last p-goal). InitiallyNPGoalsis set tok in (c).
Later, we will specify the dynamics of p-goals by giving SSAs forG andNPGoals.

We use the following as a running example. We have an agent who initially has
the following three p-goals:φ0 = �BeRich,φ1 = ^GetPhD, andφ2 = �BeHappy at
level 0,1, and 2, respectively (see second column of Table 1). Assume that while all

G-Level S0, S′1 S1 S2 S3

4 TRUE TRUE �BeRich∧ �WorkHard∧ �BeEnergetic TRUE
3 TRUE �BeRich∧ �WorkHard �BeRich∧ �WorkHard TRUE
2 �BeHappy �BeHappy �BeHappy �BeHappy
1 ^GetPhD ^GetPhD ^GetPhD ^GetPhD
0 �BeRich �BeRich �BeRich �BeRich

Table 1.Example of an Agent’s PGoals and their Dynamics

of her p-goals are individually achievable initially, her p-goal^GetPhD is inconsis-
tent with her highest priority p-goal�BeRich as well as with her p-goal�BeHappy,
while the latter are consistent with each other. It is straightforward to specify a domain
action theory such that it entails this. Also assume that, after the actiongoBankrupt
happens inS0, the p-goal�BeRich becomes impossible. Thus in our example, we have
OPGoal(φi(p) ∧ Starts(p, s) ∧ Init(s), i,S0), for i = 0,1,2. Also, for anyn ≥ 3, we have
OPGoal(Starts(p, s) ∧ Init(s),n,S0).

Using p-goals, we next define c-goals. While p-goals or desires are allowed to be
known to be impossible to achieve, an agent’s c-goals or intentions must be realistic. Not
all of theG-accessible paths are realistic in the sense that they start with a knowledge
accessible situation. To filter these out, we definerealisticp-goal accessible paths:

GR(p,n, s)
def
= G(p,n, s) ∧ Starts(p, s′) ∧ K(s′, s),

i.e., a pathp is GR-accessible at leveln in situations if it is G-accessible atn in s, and
if p starts with a situation that isK-accessible ins. ThusGR prunes out the paths from
G that are known to be impossible. We will define c-goals in terms of realistic p-goals,
so this ensures that agents’ c-goals are realistic.

The idea of how we compute c-goal-accessible paths is as follows: the set ofGR-
accessibility relations represents a set of prioritized temporal propositions that are can-



didates for the agent’s c-goals. GivenGR, in each situation we want to compute the
agent’s c-goals such that it is themaximal consistentset of higher priority realistic p-
goals. We do this iteratively starting with the set of all possible paths (i.e. paths that
starts with aK-accessible situation). At each iteration we compute the intersection of
this set with the next highest priority set ofGR-accessible paths. If the intersection is
not empty, we thus obtain a new chosen set of paths at leveli. We call a p-goal chosen
by this process anactivep-goal. If on the other hand, the intersection is empty, then it
must be the case that the p-goal represented by this level is either in conflict with an-
other active higher priority p-goal/a combination of two or more active higher priority
p-goals, or known to be impossible. In that case, that p-goal is ignored (i.e. marked as
inactive), and the chosen set of paths at leveli is the same as at leveli − 1. We repeat
this until we reachi = NPGoals. Axiom 4 computes this intersection:4

Axiom 4 G∩(p,n, s) ≡ if (n = 0) then Starts(p, s′) ∧ K(s′, s)

else if∃p′.(GR(p′,n− 1, s) ∧G∩(p′,n− 1, s))

then (GR(p,n− 1, s) ∧G∩(p,n− 1, s))

elseG∩(p,n− 1, s).

C-goal accessible paths are the result of this intersection after all priority levels have
been considered:

GC(p, s)
def
= G∩(p,NPGoals(s), s).

We define an agent’s c-goals in terms of theGC-accessible paths:

CGoal(φ, s)
def
= ∀p. GC(p, s) ⊃ φ(p),

i.e., the agent has the c-goal thatφ if φ holds over all of herGC-accessible paths.
We also define what it means for an agent to have a c-goal at some leveln:

CGoal(φ, n, s)
def
= ∀p. G∩(p,n + 1, s) ⊃ φ(p),

i.e. an agent has the c-goal at leveln that φ if φ holds over all paths that are in the
prioritized intersection of the set ofGR-accessible paths up to leveln.

In our example, the agent’s p-goals are�BeRich,^GetPhD, and�BeHappy in order
of priority. TheG∩-accessible paths at level 1 inS0 are the ones that start with aK-
accessible situation and where�BeRich holds. TheG∩-accessible paths at level 2 in
S0 are the same as at level 1, since there are noK-accessible paths over which both
^GetPhD and�BeRich hold. Finally, theG∩-accessible paths at level 3 inS0 and hence
theGC-accessible paths are those that start with aK-accessible situation and over which
�BeRich∧�BeHappy holds. Also, it can be shown that initially our example agent has
the c-goals that�BeRich and�BeHappy, but not̂ GetPhD.

Note that by our definition of c-goals, the agent can have a c-goal thatφ in situation
s for various reasons: 1)φ is known to be inevitable ins; 2) φ is an active p-goal at
some leveln in s; 3) φ is a consequence of two or more active p-goals at different levels
in s. To be able to refer to c-goals for which the agent has a primitive motivation, i.e. c-
goals that result from a single active p-goal at some priority leveln, in contrast to those

4 if φ then δ1 elseδ2 is an abbreviation for (φ ⊃ δ1) ∧ (¬φ ⊃ δ2).



that hold as a consequence of two or more active p-goals at different priority levels, we
defineprimaryc-goals:

PrimCGoal(φ, s)
def
= ∃n. PGoal(φ, n, s) ∧ ∃p. GC(p, s) ∧G(p,n, s).

That is, an agent has the primary c-goal thatφ in situations, if φ is a p-goal at some
leveln in s, and if there is aGC-accessible pathp in s that is alsoG-accessible atn in s.
Thus if an agent has a primary c-goal thatφ, then she also has the c-goal thatφ, but not
necessarily vice-versa. It can be shown that initially our example agent has the primary
c-goals that�BeRich and�BeHappy, but not their conjunction.

5 Goal Dynamics

An agent’s goals change when her knowledge changes as a result of the occurrence of an
action (including exogenous events), or when she adopts or drops a goal. We formalize
this by specifying how p-goals change. C-goals are then calculated using (realistic) p-
goals in every new situation as explained above.

We introduce two actions for adopting and dropping a p-goal,adopt(φ) anddrop(φ),
and a third for adopting a subgoalψ w.r.t. a supergoalφ, adopt(ψ, φ). The action pre-
condition axioms for these are as follows:

Axiom 5 Poss(adopt(φ), s) ≡ ¬∃n. PGoal(φ, n, s),

Poss(adopt(ψ, φ), s) ≡ ¬∃n. PGoal(ψ, n, s) ∧ ∃n′. PGoal(φ,n′, s),

Poss(drop(φ), s) ≡ ∃n. PGoal(φ, n, s).

That is, an agent can adopt the p-goal thatφ, if she does not already haveφ as her p-goal
at some level. An agent can adopt a subgoalψ w.r.t. the parent goal thatφ if she does
not already have the p-goal thatψ at some level, and if at some level she currently has
the parent goal thatφ. Thedrop(φ) action is possible ins if φ is a p-goal at some level
n in s.

In the following, we specify the dynamics of p-goals by giving the SSA forG and
then discuss each case one at a time:

Axiom 6 (SSA for G) G(p,n,do(a, s)) ≡
∀φ, ψ. (a , adopt(φ) ∧ a , adopt(ψ, φ) ∧ a , drop(φ) ∧ Progressed(p,n,a, s))

∨ ∃φ. (a = adopt(φ) ∧ Adopted(p,n,a, s, φ))

∨ ∃φ, ψ. (a = adopt(ψ, φ) ∧ SubGoalAdopted(p,n,a, s, ψ, φ)

∨ ∃φ. (a = drop(φ) ∧ Dropped(p,n,a, s, φ)).

The overall idea of the SSA forG is as follows. First of all, to handle the occurrence
of a non-adopt/drop (i.e. regular) actiona, we progress allG-accessible paths to reflect
the fact that this action has just happened; this is done using the Progressed(p,n,a, s)
construct, which replaces eachG-accessible pathp′ with starting situations′, by its
suffix p provided that it starts withdo(a, s′):

Progressed(p,n,a, s)
def
= ∃p′. G(p′,n, s) ∧ Starts(p′, s′) ∧ Suffix(p, p′,do(a, s′)).



Any path over which the next action performed is nota is eliminated from the respective
G accessibility level.

Secondly, to handle adoption of a p-goalφ, we add a new proposition containing
the p-goal to the agent’s goal hierarchy. We assume that the newly adopted p-goalφ has
the lowest priority. Thus in addition to progressing theG-accessible paths at all levels
as above, we eliminate the paths over whichφ does not hold from theNPGoals(s)-th
G-accessibility level, and the agent acquires the p-goal thatφ at levelNPGoals(s).

Adopted(p,n,a, s, φ)
def
= if (n = NPGoals(s)) then (Progressed(p,n,a, s) ∧ φ(p))

elseProgressed(p,n,a, s).

The third case of subgoal adoption is discussed in the next section.
Finally, to handle dropping of a p-goalφ, we replace the propositions that imply the

dropped goal in the agent’s goal hierarchy by the “trivial” proposition that the history
of actions in the current situation has occurred. Thus in addition to progressing allG-
accessible paths as above, we add back all paths that share the same history withdo(a, s)
to the existingG-accessibility levels where the agent has the p-goal thatφ, and thus these
G-accessibility levels now amounts to the “trivial” p-goal that CorrectHist(s, path).5

Dropped(p,n,a, s, φ)
def
= if PGoal(φ, n, s) then Starts(p, s′) ∧ SameHistory(s′,do(a, s))

elseProgressed(p,n,a, s).

The SSA forNPGoals(s) is as follows:

Axiom 7 (SSA for NPGoals) NPGoals(do(a, s)) = k ≡
a , adopt(φ) ∧ a , adopt(ψ, φ) ∧ NPGoals(s) = k∨
a = adopt(φ) ∧ NPGoals(s) + 1 = k∨
a = adopt(ψ, φ) ∧ AdjustSubGoalAdopt(φ, s) = k.

That is, when the agent adopts a p-goal, her currentNPGoalsis incremented by one. We
discuss the adjustment ofNPGoalsrequired for subgoal adoption in the next section.
Finally, NPGoalsis not affected by any other action.

Returning to our example, recall that our agent has the c-goals/active p-goals inS0

that�BeRich and�BeHappy, but not̂ GetPhD, since the latter is inconsistent with
her higher priority p-goal�BeRich. On the other hand, inS′1 = do(goBankrupt,S0),
the agent has the c-goal that^GetPhD, but not�BeRich nor�BeHappy;�BeRich is
excluded from the set of c-goals since it has become impossible to achieve (i.e. unre-
alistic). Also, since her higher priority p-goal̂GetPhD is inconsistent with her p-goal
�BeHappy, the agent will make�BeHappy inactive.

Note that, while it might be reasonable to drop a p-goal (e.g.^GetPhD) that is in
conflict with another higher priority active p-goal (e.g.�BeRich), in our framework we
keep such p-goals around. The reason for this is that although�BeRich is currently
inconsistent witĥ GetPhD, the agent might later learn that�BeRich has become im-
possible to bring about (e.g. aftergoBankruptoccurs), and then might want to pursue

5 CorrectHist(s, path) is defined as Starts(path, s′) ∧ SameHistory(s′, s); herepath is a place-
holder that stands for a path ands represents the current situation.



^GetPhD. Thus, it is useful to keep these inactive p-goals since this allows the agent to
maximize her utility (that of her chosen goals) by taking advantage of such opportuni-
ties. As mentioned earlier, c-goals are our analogue to intentions. Recall that Bratman’s
model of intentions limits the agent’s practical reasoning – agents do not always opti-
mize their utility and don’t always reconsider all available options in order to allocate
their reasoning effort wisely. In contrast to this, our c-goals are defined in terms of the
p-goals, and at every step, we ensure that the agent’s c-goals maximizes her utility so
that it is the set of highest priority goals that is consistent given the agent’s knowledge.
Thus, our notion of c-goals is not as persistent as Bratman’s notion of intention [10].
For instance as mentioned above, after the actiongoBankrupthappens inS0, the agent
will lose the c-goal that�BeHappy, although she did not drop it and it did not become
impossible or achieved. In this sense, our model is that of an idealized agent. There
is a tradeoff between optimizing the agent’s chosen set of prioritized goals and being
committed to chosen goals. In our framework, chosen goals behave like intentions with
an automatic filter-override mechanism [10] that forces the agent to drop her chosen
goals when opportunities to commit to other higher priority goals arise. In the future, it
would be interesting to develop a logical model that captures the pragmatics of intention
reconsideration by supporting control over it.

We now show that our formalization of prioritized goals has some desirable prop-
erties. Some of these (e.g. Proposition 3a) are analogues of the AGM postulates; others
(e.g. adopting logically equivalent goals has the same result, etc.) were left out for space
reasons. First we show that c-goals are consistent:

Proposition 1 (Consistency)D |= ∀s. ¬CGoal(False, s).

Thus, the agent cannot have bothφ and¬φ c-goals in a situationsand there is a path that
is GC-accessible ins. Even if all of the agent’s p-goals become known to be impossible,
the set ofGC-accessible paths will be precisely the ones that starts with aK-accessible
situation, and thus the agent will only choose the propositions that are known to be
inevitable.

We also have the property of realism [1], i.e. if an agent knows that something has
become inevitable, then she has this as a c-goal:

Proposition 2 (Realism) D |= KInevitable(φ, s) ⊃ CGoal(φ, s).

Note that this is not necessarily true for p-goals and primary c-goals – an agent may
know that something has become inevitable and not have it as her p-goal/primary c-
goal, which is intuitive. In fact, this is the reason why we define p-goals in terms of
G-accessible paths rather thanGR. A consequence of Proposition 1 and 2 is that an
agent does not have a c-goal that is known to be impossible, i.e.D |= CGoal(φ, s) ⊃
¬KImpossible(φ, s).

We next discuss some properties of the framework w.r.t. goal change. Proposition
3 says that (a) an agent acquires the p-goal at some leveln thatφ after she adopts it,
and (b) an agent acquires the primary c-goal (and c-goal) thatφ after she adopts it ins,
provided that she does not have the c-goal that¬φ in s.

Proposition 3 (Adoption) (a) D |= ∃n. PGoal(φ, n,do(adopt(φ), s)),

(b) D |= ¬CGoal(¬φ, s) ⊃ PrimCGoal(φ, do(adopt(φ), s)).



We can also show that after dropping the p-goal thatφ in s, an agent does not have
the p-goal (and thus the primary c-goal) thatφ.

Proposition 4 (Drop) D |= ¬∃n. PGoal(φ, n,do(drop(φ), s)).

Note that, this does not hold for CGoal, asφ could still be a consequence of two or more
of her remaining primary c-goals.

The next few properties concern the persistence of these motivational attitudes. In
the following, we prove a persistence property for achievement p-goals:

Proposition 5 (Persistence of Achievement PGoals)

D |= PGoal(̂ Φ,n, s) ∧ Know(¬Φ(now), s) ∧ ∀ψ. a , drop(ψ) ⊃ PGoal(̂ Φ,n,do(a, s)).

This says that if an agent has a p-goal that^Φ in s, then she will retain this p-goal
after some actiona has been performed ins, provided that she knows thatΦ has not yet
been achieved, anda is not the action of dropping a p-goal. Note that, we do not need
to ensure that̂ Φ is still known to be possible or consistent with higher priority active
p-goals, since the SSA forG does not automatically drop such incompatible p-goals
from the goal hierarchy.

For achievement chosen goals we have the following:

Proposition 6 (Persistence of Achievement Chosen Goals)

D |= OPGoal(̂ Φ ∧ CorrectHist(s),n, s) ∧ CGoal(̂ Φ, s)

∧ Know(¬Φ(now), s) ∧ ∀ψ. a , drop(ψ) ∧ ¬CGoal(¬^Φ,n− 1,do(a, s))

⊃ CGoal(̂ Φ,n,do(a, s)).

Thus, in situations, if an agent has the only p-goal at leveln that^Φ and the correct
history of actions inshas been performed, and if̂Φ is also a c-goal ins (and thus she
has the primary c-goal that̂Φ), then she will retain the c-goal that̂Φ at leveln after
some actiona has been performed ins, provided that:

– she knows thatΦ has not yet been achieved,
– thata is not the action of dropping a p-goal,
– and that at leveln − 1 the agent does not have the c-goal that¬^Φ, i.e. ^Φ is

consistent with higher priority c-goals.

Note that this property also follows if we replace the consequent with CGoal(^Φ,do(a, s))
or PrimCGoal(̂ Φ,do(a, s)), and thus it deals with the persistence of (primary) c-goals.
Note however that, it does not hold if we replace the OPGoal in the antecedent with
PGoal; the reason for this is that the agent might have a p-goal at leveln in s thatφ and
the c-goal ins thatφ, but not haveφ as a primary c-goal ins, e.g.n might be an inactive
level because another p-goal atn has become impossible, andφ could be a c-goal ins
because it is a consequence of two other primary c-goals. Thus even if¬φ is not a c-goal
aftera has been performed ins, there is no guarantee that the leveln will be active in
do(a, s) or that all the active p-goals that contributed toφ in sare still active.

We believe that the dropping of an unrelated p-goal will not affect persistence, and
hence it should be possible to strengthen Proposition 5 and 6. Also, in the future we
would like to generalize these two propositions to deal with arbitrary temporally ex-
tended goals.



6 Handling Subgoals

In this section, we deal with the dynamics of subgoals. As mentioned earlier, a sub-
goal must be dropped when the parent goal is dropped or becomes impossible. When
adopting a subgoalψ with respect to a supergoalφ, in addition to recording the newly
adopted goalψ, we need to model the fact thatψ is a subgoal ofφ. This information can
later be used to drop the subgoal when the parent goal is dropped. One way of modeling
this is to ensure that the adoption of a subgoalψ w.r.t. a parent goalφ adds new p-goals
that containboth this subgoal and this parent goal i.e.ψ ∧ φ at a lower priority than
the parent goalφ. This ensures that when the parent goal is dropped, the subgoal is also
dropped. To see this, recall that to handle the dropping of a goalφ, we drop the p-goals
at allG-accessibility levels that implyφ. Thus, if we drop the parent goalφ, it will also
drop all of its subgoals includingψ, since theG-accessibility levels where the parent
goalφ holds include theG-accessibility levels where the subgoalψ holds. Note that, if
there are more than one level where the supergoalφ is a p-goal, then we copy all these
levels, i.e. for each leveln whereφ is a p-goal, we add a (lower priority) level to the
goal hierarchy. As we will see, this ensures that the sub-subgoals and sub-sub-subgoals
etc. are also properly dropped when the supergoal is dropped. Also, this means that
dropping a subgoal does not necessarily drop the supergoal.

Before going over the formal details, let us mention some useful bookkeeping tools
that we will use: Length(l) returns the number of elements in listl; Nth(l, i) returns the
i-th element in listl, and -1 ifi > Length(l); Sort(l) returns a sorted version of listl. The
part of the SSA forG that handles subgoal adoption is defined as follows:

SubGoalAdopted(p,n,a, s, ψ, φ)
def
= (n < NPGoals(s) ∧ Progressed(p,n,a, s))) ∨

(NPGoals(s) ≤ n < NPGoals(s) + Length(AddList(φ, s))

∧ ∃i,m. (n = NPGoals(s) + i ∧m = Nth(AddList(φ, s), i)

∧ Progressed(p,m,a, s) ∧ ψ(p))) ∨
(n ≥ NPGoals(s) + Length(AddList(φ, s)) ∧ Progressed(p,n,a, s)).

That is, if the action involves the adoption of a subgoalψ w.r.t. a supergoalφ, we adjust
G to incorporate (possibly several) new p-goals. We will discuss each case in turn. First,
note that the existing p-goals are just carried over by progressing them; this is handled
by the first disjunct.

Secondly, we adjustG starting at levelNPGoals(s). We add a number of new levels
that include the conjunction of the only p-goal and the subgoal at a lower priority for
all the current only p-goals that imply the parent goalφ. For example, say at leveli
we have an OPGoal thatφi and it implies the parent goal thatφ; then we add at a
lower priority the conjoined goal of the progressed version ofφi and the subgoalψ.
Our formalization of this uses the abbreviation AddList(φ, s) which is a sorted list of
levels such that the parent goal is implied by the only p-goal at this level. AddList is
defined as: AddList(φ, s)

def
= Sort([n | PGoal(φ, n, s)]). The length of this list indicates

the number of lower priority goals that needs to be added. As discussed above, this
ensures that the agent will drop the subgoal when the parent goal is dropped (but not
necessarily vice-versa). Note that if this process adds two or more new p-goals to the



agent’s goal hierarchy, we maintain the original ordering; e.g. suppose that the agent
adoptedψ w.r.t. φ, that there are twoG-accessibility levelsm andn such that the agent
has the only p-goal thatφm atmandφn atn, thatφm impliesφ andφn impliesφ, and that
n > m. In that case, the SSA forG will add the p-goalφm ∧ φ at levelNPGoals(s) and
the p-goalφn ∧ φ at levelNPGoals(s) + 1.

Finally, all the remaining levels involving trivially true goals are just carried over
by progressing them.

The part of the SSA forNPGoalsthat handles subgoal adoption is defined as fol-
lows:

AdjustSubGoalAdopt(φ, s)
def
= NPGoals(s) + Length(AddList(φ, s)).

That is, when the agent adopts a subgoal w.r.t. a parent goal, her currentNPGoalsis
incremented by the number of new p-goals adopted in this process.

Let us go back to our example. Suppose that the agent knows that one way of always
being rich is to always work hard, which in turns can be fulfilled by always being ener-
getic. Assume that with this in mind, our agent adopts the subgoal that�WorkHard
w.r.t. the p-goal that�BeRich, and then adopts the sub-subgoal that�BeEnergetic
w.r.t. the subgoal that�WorkHard starting inS0. Then the agent’s goal hierarchy in
S1 = do(adopt(�WorkHard,�BeRich),S0) should include the p-goal that�WorkHard
and inS2 = do(adopt(�BeEnergetic, �WorkHard),S1) should also include the p-goal
that�BeEnergetic. According to the SSA forG, our agent’s goal hierarchy inS1 and
in S2 will be as in Table 1.6 In S0, the supergoal�BeRich holds at level 0 and thus
AddList(�BeRich,S0) = [0]. Similarly in S1, the supergoal�WorkHard holds at level
3 and thus AddList(�WorkHard,S1) = [3]. Now, suppose that inS2 the agent wants to
drop the p-goal that�WorkHard. Then inS3 = do(drop(�WorkHard),S2), she should
no longer have�BeEnergetic as a p-goal, but should retain the supergoal that�BeRich.
After the agent drops the p-goal that�WorkHard, by the SSA forG we can see that all
theG-accessible levels where�WorkHard holds will be replaced by the only p-goal that
CorrectHist(S2, path) (seeS3 in Table 1). This shows that dropping�WorkHard results
in the dropping of all of its subgoals (in this case�BeEnergetic), but that its parent goal
�BeRich is retained.

We define the SubGoal relation as follows:

SubGoal(ψ, φ, s)
def
= ∃n. PGoal(φ,n, s) ∧ ¬PGoal(ψ, n, s)

∧ ∀n. PGoal(ψ, n, s) ⊃ PGoal(φ, n, s).

This says thatψ is a subgoal ofφ in situations iff there exists anG-accessibility level
n in s such thatφ is a p-goal atn while ψ is not, and for allG-accessibility levels ins
whereψ is a p-goal,φ is also a p-goal. Note that, while our formalization of subgoal
dynamics allows a subgoal to have multiple parents, in this definition we assume that
a subgoal can’t have more than one parent. In the future, we will work on relaxing this
constraint.

We now discuss some properties concerning the dynamics of subgoals and the de-
pendencies between a subgoal and its parent goal. Proposition 7 states that (a) an agent

6 For simplicity in Table 1, we only show the agent’s relevant p-goals rather than its only p-goals
(which in addition reflect the actions that have been performed so far, i.e. CorrectHist(s)).



acquires the p-goal thatψ after she adopts it as a subgoal of another goalφ in s, provided
that she has the p-goal at some level ins thatφ, and (b) she also acquires the primary
c-goal thatψ after she adopts it as a subgoal ofφ in s, provided that she has the primary
c-goal ins thatφ, and that she does not have the c-goal that¬ψ in s.

Proposition 7 (Subgoal Adoption)

(a) D |= ∃m. PGoal(φ,m, s) ⊃ ∃n. PGoal(ψ,n,do(adopt(ψ, φ), s)),

(b) D |= PrimCGoal(φ, s) ∧ ¬CGoal(¬ψ, s) ⊃ PrimCGoal(ψ, do(adopt(ψ, φ), s)).

The next property says that after dropping the p-goal thatφ in s, an agent does not
have the p-goal (and thus the primary c-goal) thatψ, provided thatψ is a subgoal ofφ
in s.

Proposition 8 (Supergoal Drop)

D |= SubGoal(ψ, φ, s) ⊃ ¬∃n. PGoal(ψ, n,do(drop(φ), s)).

As with Proposition 4, this does not hold if we replace PGoal in the consequence with
CGoal sinceψ could be a consequence of a combination of other active p-goals.

The next two properties say that dropping a subgoal does not effect the parent goal.

Proposition 9 (Subgoal Drop)

(a) D |= SubGoal(ψ, φ, s) ⊃ ∃n. PGoal(φ, n,do(drop(ψ), s)),

(b) D |= SubGoal(ψ, φ, s) ∧ PrimCGoal(φ, s) ⊃ PrimCGoal(φ, do(drop(ψ), s)).

That is, (a) an agent retains the p-goal thatφ after she drops a subgoalψ of φ, and (b)
she also retains the primary c-goal thatφ after she drops a subgoalψ of φ in s, provided
that she has the primary c-goal thatφ in s.

Finally, it can be shown that the SubGoal relation is transitive, i.e. ifψ1 is a subgoal
of φ in s, and ifψ2 is a subgoal ofψ1 in s, thenψ2 must also be a subgoal ofφ in s.

7 Discussion and Future Work

In this paper, we presented a formalization of prioritized goals, subgoals, and their
dynamics. Our formalization ensures that an agent’s chosen goals are always consistent
and that goals and subgoals properly evolve as a result of actions and as a result of
adopting and dropping goals. Although we made some simplifying assumptions, in
this paper we have focused on developing an expressive framework that captures an
idealized form of rationality without worrying about tractability. In would be desirable
to study restricted fragments of the logic where reasoning is tractable. Also, before
defining more limited forms of rationality, one should have a clear specification of what
ideal rationality really is so that one understands what compromises are being done.

While in our account chosen goals are closed under logical consequence, primary
c-goals are not. To this end, our formalization of primary c-goals is related to the non-
normal modal formalizations of intentions found in the literature [3], and as such it does
not suffer from the side-effect problem [1]. For instance, in our framework an agent can
have the primary c-goal to get her teeth fixed and know that this always involves pain,
but not have the primary c-goal to have pain.



Also, since we are using the situation calculus, we can easily represent procedural
goals/plans, e.g. the goal to doa1 and thena2 can be written as: PGoal(Starts(p, s1) ∧
OnPath(p, s) ∧ s = do(a2,do(a1, s1)),0,S0). Golog [12] can be used to represent com-
plex plans/programs. So we can model the adoption of plans as subgoals.

Recently, there have been a few proposals that deal with goal change. Shapiroet
al. [18] present a situation calculus based framework where an agent adopts a goal
when she is requested to do so, and remains committed to this goal unless the requester
cancels this request; a goal is retained even if the agent learns that it has become im-
possible, and in this case the agent’s goals become inconsistent. Shapiro and Brewka
[7] modify this framework to ensure that goals are dropped when they are believed to
be impossible or when they are achieved. Their account is similar to ours in the sense
that they also assume a priority ordering over the set of (in their case, requested) goals,
and in every situation they compute chosen goals by computing a maximal consistent
goal set that is also compatible with the agent’s beliefs. However, their model has some
unintuitive properties: the agent’s chosen set of goals indo(a, s) may be quite different
from her goals ins, althougha did not make any of her goals ins impossible or incon-
sistent with higher priority goals, because inconsistencies between goals at the same
priority level are resolved differently (this can happen because goals are only partially
ordered). Note that, while one might argue that a partial order over goals might be more
general, allowing this means that additional control information is required to obtain
a single goal state after the agent’s goals change. Also, we provide a more expressive
formalization of prioritized goals – we model goals using infinite paths, and thus can
model many types of goals that they cannot. Finally they model prioritized goals by
treating the agent’s p-goals as an arbitrary set of temporal formulas, and then defining
the set of c-goals as a subset of the p-goals. But our possible world semantics has some
advantages over this: it clearly defines when goals are consistent with each other and
with what is known. One can easily specify how goals change when an actiona occurs,
e.g. the goal to doa next and then dob becomes the goal to dob next, the goal that
^Φ ∨ ^Ψ becomes the goal that̂Ψ if a makes achievingΦ impossible, etc.

There has been much work on agent programming languages with declarative goals
where the dynamics of goals and intentions and the dependencies between goals and
sub-goals are modeled (e.g. [19], [9] and the references therein). However, most of
these are not based on a formal theory of agency, and to the best of our knowledge,
none maintains the consistency of (chosen) goals (e.g. when adopting a plan to achieve
a goal, these frameworks do not ensure that this plan is consistent with the agent’s
other concurrent goals/plans). Also, most of these do not deal with temporally extended
goals, and as a result they often need to accommodate inconsistent goal-bases to al-
low the agent to achieve conflicting states at different time points (e.g. the default logic
based framework in [20]); chosen goals are required to be consistent. In [6], the au-
thors present a situation calculus based agent programming language where the agent
executes a program while maximizing the achievement of a set of prioritized goals.
However, they do not formalize goal dynamics.

One limitation of our account is that we assume that the agent’s p-goals are totally
ordered in terms of priority. Also, newly adopted p-goals are assigned the lowest pri-
ority. A consequence of this is that an agent’s c-goals depend on the adoption order of



her p-goals. For instance, given a fixed starting situation, an agent can end up with two
different sets of c-goals by adoptingφ followed byψ, and by adoptingψ followed by
φ. This has very different results whenφ andψ conflict with each other. We would like
to address this by incorporating the priority of the p-goal as an argument to theadopt
action, and handling this in the framework. Finally, one can argue that our agent spends
too much resources trying to optimize her c-goals at every step. It would be interesting
to develop an account where the agent is strongly committed to her chosen goals, and
where the filter override mechanism is only triggered under specific conditions.
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