New solvers for asymmetric systems in GreatSPN
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1 Introduction

The Well-formed Net (WN) formalism and its stochas-
tic extension (SWN) [3] takes advantage from the system
symmetries to cope with state space explosion problem, and
hence provide efficient solution techniques for both qualita-
tive and quantitative analyzes.

Based on these symmetries, a quotient graph, called
Symbolic Reachability Graph (SRG) [3], is automatically
constructed from an (S)WN. Each node of the SRG, called
Symbolic Marking (SM), represents a set of ordinary mark-
ings. In case of highly symmetric systems, the expected
size of the SRG is exponentially reduced with respect to
the one of the ordinary Reachability Graph (RG). How-
ever, it is less effective, in case of partially symmetric sys-
tems, i.e., systems with mostly symmetric behavior and oc-
casional locally asymmetric behavior. In fact, in the SRG
approach asymmetries are always taken into account, even
if the asymmetric behavior of the system is local.

To cope with this limitation, Haddad & all [6] have
proposed a more compact structure, called Extended SRG
(ESRG). The idea is to group into Extended SMs (ESM)
sets of (partially) similar SMs. In this representation, and in
case of locally symmetric behavior, the set of SMs captured
in an ESM are kept implicit and represented by a unique
symbolic Symmetric Representation (SR).

Unfortunately, the derivation of a CTMC from the ESRG
is not straightforward: in the general case, the SMs aggre-
gation suggested in the ESRG approach does not satisfy
the (strong or exact) lumpability condition as on the SRG.
Hence, the ESRG structure have to be refined according to
the desired lumpability condition. In [5] an efficient refine-
ment algorithm is proposed. It is based on the Paige and
Tarjan partition refinement algorithm and exploits the infor-
mation contained in the ESRG.

Another approach, called Dynamic SRG (DSRG), was
proposed in [1]. It relies on a separate representation of
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the system asymmetries in a so called control automaton.
The DSRG is then obtained by synchronizing the transitions
of a (symmetric) SWN with the corresponding control au-
tomaton. It is worth noting that DSRG satisfies the exact
lumpability condition by construction, so that it does not
need further refinement.

In this paper we will present the ESRG/DSRG frame-
work to model and solve (asymmetric) SWN models. This
framework combines several tools: GreatSPN [4] for the
model design, WNESRG to build the ESRG of the designed
model, ESRG2MC to refine the ESRG and generate the cor-
responding MC, WNDSRG to build the DSRG and the cor-
responding MC. MCSolver is used to solve the MC and
compute the steady state marking probability. The follow-
ing section is dedicated to the detailed presentation of this
new framework.

2 Framework architecture

The architecture of the framework is depicted in Fig. 1
where the framework components are presented by rectan-
gles, the component invocations are shown as solid arrows,
and models/data exchanges are represented by dotted ar-
TOWS.

GreatSPN 1is used as graphical interface and solution
manager. It allows the design of the SWN model and ac-
tivates the solution process. The solution manager executes
in the correct order the framework components, and man-
ages the models/data exchanges between them. The solu-
tion process comprises three steps:

1. WNESRG/WNDSRG computes the ESRG/DSRG from an
SWN model. For the DSRG, we have to highlight that the
asymmetries of the model are encoded in an external file
produced directly by the user with a text editor (see Fig.1),
since at the moment in GreatSPN we cannot directly repre-
sent the control automaton.

2. ESRG2MC refines the ESRG with respect to the exact or
strong lumpability condition and generates the correspond-
ing CTMC (called RESRG in Fig.1).

3. M CSolver solves the MC, from the refined ESRG or



[ g [SRUgNSf

SWN model

(”e‘ def) Solution Manager

|

|
| |
| |
I |
l I
] SWN mcdel ]
| 1 (.net,.def) |
: 1 Strong/Exact :
I ! I
1 : Resu |l$|
| |
I ! I
I ! I
I ! I
I ! I
I ! I
I ! |
| 1
| 1
|
|
|

Figure 1. ESRG/DSRG Framework architec-
ture.

from the DSRG, by computing the steady state marking
probabilities. The current version of MC Solver allows
also to compute some performance indices: for example,
the throughput of the transitions, the mean number of (col-
ored) tokens in places.

3 An application example

As an application example, we used our tool to compute
ESRG and DSRG on a well-known model of the literature:
a critical section access algorithm with priorities [2].

Table 1 summarizes the obtained results for the different
approaches: SRG, ESRG, RESRG and DSRG.!

The columns labeled by Prio (the number of different
priorities levels), GC' (the allowed number of concurrent
access requests), represent the parameters of the model.
Columns labeled St. represent the number of constructed
states for each structure. Peak is the total number of inter-
mediate states stored to obtain the final structure (only for
ESRG and RESRGs).

We observe here that the final number of states in the
RESRG(strong) is less than the one of the RESRG(exact).
This is counterbalanced by the type of performance indices
that could be computed on the RESRG(exact), and not pos-
sible on the RESRG(strong).

Also, the number of states in the DSRG is comprised
between the final number of states and the peak of the
RESRG(exact) structure. Hence, the DSRG offers an al-
ternative solution to tackle the peak problem of the ESRG-
based structures.

Experiments are performed on a PC/Linux machine with 3.2 GHz and
4 Gb of RAM.

SRG ESRG RESRG RESRG DSRG
(Strong) (Exact)
St. St. Peak St. Peak St. Peak St.
37 10 15 10 12 14 16 14
45 14 16 14 18 21 27 23
271 14 140 14 23 22 31 22
441 20 170 20 67 40 94 49
573 32 175 32 153 78 228 169
4681 20 2240 20 47 34 61 34
10337 29 4368 29 278 76 347 103
19409 47 5768 47 2515 295 3030 1189
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Table 1. Comparing ESRG vs. DSRG

4 Conclusion

In this paper, we presented two new solvers to deal with
asymmetric SWN models, the ESRG and DSRG solvers.
Actually, these tools are available in a beta version in:
http://www.di.unito.it/~greatspn.

Currently, we are working to improve this version. In
particular, to extend the GreatSPN frontend so that the con-
trol automaton will be automatically generated from a par-
tially symmetric SWN model, and to extend M CSolver to
compute more complex user defined performance indices.
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