Two Notions of Sub-behaviour for Session-based Client/Server Systems

Franco Barbanera1 and Ugo de’Liguoro2

1Dipartimento di Matematica e Informatica, Università di Catania
2Dipartimento di Informatica, Università di Torino

PPDP’10 - July 27 2010, Hagenberg
Overview

Session

A session is a logic unit, collecting and structuring messages exchanged among a determined set of agents, sharing a private channel to prevent interference by third parties.

- **Session types** have been introduced to formalise *two-sided* sessions in type systems for the π-calculus.

We set up a behavioural semantic investigation of session types using the notion of **contract**.

- **Contracts** are a process algebraic formalism to describe the behaviour of services in a client/server scenario.
Session Types (Honda, Vasconcelos, Kubo)

Session types $=\,$ regular trees of ordinary types of (polyadic) π-calculus

If $\Gamma \vdash P$ is derivable and

$$\Gamma(x) = \mu X. \ ?(\text{Int}).&\langle \ell_0 : ![\text{Bool}]\text{end},
\ell_1 : \oplus \langle \ell_2 : \text{end},
\ell_3 : X \rangle \rangle$$

then channel x is used in P to carry the following “session”:

1. input an integer
2. on receiving the message ℓ_0 send a boolean then stop
3. on receiving ℓ_1 either issue ℓ_2 then stop, or issue ℓ_3 and start over the whole session
Session Types (Honda, Vasconcelos, Kubo)

The syntax:

\[T ::= \textbf{Int} \mid \textbf{Bool} \mid \ldots \mid S \quad \text{ground/session type} \]

\[S ::= \text{end} \quad \text{ended session} \]

\[\quad \mid ?(T)S \quad \text{input of type } T, \text{ then } S \]

\[\quad \mid ![T]S \quad \text{output of type } T, \text{ then } S \]

\[\quad \mid \&\langle \ell_i : S_i \mid i \in I \rangle \quad \text{branching (} I \text{ finite)} \]

\[\quad \mid \oplus\langle \ell_i : S_i \mid i \in I \rangle \quad \text{selection (} I \text{ finite)} \]

\[\quad \mid X \quad \text{variable} \]

\[\quad \mid \mu X. S \quad \text{recursion (} S \text{ not a variable)} \]

If \(T \) is restricted to ground types, these are first order session types; they are higher-order otherwise.
Session Types (Honda, Vasconcelos, Kubo)

The “duality” relation over session types:

\[
\begin{align*}
\text{end} & = \text{end} \\
?(T)S & = ![T]\overline{S} \\
\&\langle \ell_i : S_i \mid i \in I \rangle & = \oplus\langle \ell_i : \overline{S}_i \mid i \in I \rangle \\
\oplus\langle \ell_i : S_i \mid i \in I \rangle & = \&\langle \ell_i : \overline{S}_i \mid i \in I \rangle \\
\overline{X} & = X \\
\mu X. S & = \mu X. \overline{S}
\end{align*}
\]

The following rule is at the hearth of error freeness property within a typeable session:

\[
\Delta, x : S \vdash P \quad \Delta, x : \overline{S} \vdash Q \\
\hline
\Delta \vdash (\nu x)(P \mid Q)
\]
Subtyping Session Types (Gay-Hole)

Subtyping intuition

\(A <: B \) if and only if any channel that satisfies the stricter “protocol” \(A \) also satisfies the protocol \(B \)

The \(A <: B \) relation has been axiomatized by Gay and Hole.

They proved it *operationally* sound by showing that the *narrowing* rule:

\[
\frac{\Delta, x : B \vdash P \quad A <: B}{\Delta, x : A \vdash P}
\]

doesn’t break subject reduction.

Note that subsumption rule is just the dual of *subsumption* rule of the \(\lambda \)-calculus with subtyping.
Coinductive Axiomatization of FO-Subtyping

A coinductive reformulation: let $\Gamma = \{A_1 <: B_1, \ldots, A_k <: B_k\}$, then we derive judgements of the form $\Gamma \vdash A <: B$ by the rules:

- $\Gamma \vdash \mu X.A <: A\{\mu X.A/X\}$
- $\Gamma \vdash A\{\mu X.A/X\} <: \mu X.A$

- $\Gamma, \land_{i \in I} \langle \ell_i : A_i \rangle <: \land_{j \in J} \langle \ell_j : B_j \rangle \vdash A_i <: B_i \quad \forall i \in I \quad I \subseteq J$

- $\Gamma \vdash \land_{i \in I} \langle \ell_i : A_i \rangle$ $<$: $\land_{j \in J} \langle \ell_j : B_j \rangle$

- $\Gamma, \lor_{i \in I} \langle \ell_i : A_i \rangle <: \lor_{j \in J} \langle \ell_j : B_j \rangle \vdash A_j <: B_j \quad \forall j \in J \quad I \supseteq J$

- $\Gamma \vdash \lor_{i \in I} \langle \ell_i : A_i \rangle$ $<$: $\lor_{j \in J} \langle \ell_j : B_j \rangle$
Behavioural semantics of session types

Problem
Is there a semantic characterization of session subtyping?

Answer: behavioural semantics

- provide a formal definition of protocols as *behaviours*
- give a concept of *sub-behaviour*
- interpret session types as behaviours

We understand behaviours as a suitable kind of processes, for which we choose *contracts*
Contracts (Castagna, Laneve, Padovani)

- Contracts are abstract specifications of web-services (and of client queries).
- Central is the compliance relation among a client query and a server contract:
 \[\rho \text{ complies with } \tau \quad (\rho \dashv \tau, \ \rho \text{ is a client for } \sigma) \]
 \[\uparrow \]
 every request from \(\rho \) is satisfied by \(\sigma \)
- Compliance induces a subcontract relation:
 \(\sigma \) is a subcontract of \(\tau \) (\(\sigma \preceq \tau \)) \iff every client of \(\sigma \) is such of \(\tau \).
Contracts (Castagna, Laneve, Padovani)

Web contracts are parallel-free CCS terms (without τ) generated by the grammar:

$$\sigma ::= 1 \mid \alpha.\sigma \mid \sigma + \sigma \mid \sigma \oplus \sigma \mid x \mid \text{rec } x.\sigma$$

where $\alpha \in \mathcal{N} \cup \overline{\mathcal{N}}$.

Semantics is defined by the LTS:

- $\alpha.\sigma \xrightarrow{\alpha} \sigma$
- $\sigma \xrightarrow{\alpha} \sigma' \Rightarrow \sigma + \rho \xrightarrow{\alpha} \sigma', \rho + \sigma \xrightarrow{\alpha} \sigma'$
- $\sigma \oplus \rho \xrightarrow{} \sigma, \sigma \oplus \rho \xrightarrow{} \tau$
- $\text{rec } x.\sigma \xrightarrow{} \sigma\{\text{rec } x.\sigma/x\}$
The contract of a ballot service might be:

\[\text{rec } x. \text{Login.}(\text{Wrong}.x \oplus \text{Ok.}(\text{VoteA.}(V_{a1} + V_{a2}) + \text{VoteB.}(V_{b1} + V_{b2}))) \]
The contract of a ballot service might be:

```
rec x. Login.(Wrong.x ⊕ Ok.(VoteA.(Va1+Va2)+VoteB.(Vb1+Vb2)))
```

meaning:

- wait for a Login action
Example

The contract of a ballot service might be:

\[\text{rec } x. \text{Login.} (\text{Wrong.} x \oplus \text{Ok.} (\text{VoteA.} (V_{a1} + V_{a2}) + \text{VoteB.} (V_{b1} + V_{b2}))) \]

meaning:

- wait for a Login action
- acknowledge the (in)correctness of login
The contract of a ballot service might be:

\[
\text{rec } x. \text{Login.} (\overline{\text{Wrong}}. x \oplus \overline{\text{Ok}}. (\text{VoteA.}(Va1 + Va2) + \text{VoteB.}(Vb1 + Vb2)))
\]

meaning:

- wait for a Login action
- acknowledge the (in)correctness of login
- in the negative restart
Example

The contract of a ballot service might be:

```
rec x. Login.(Wrong.x ⊕ Ok.(VoteA.(Va1+Va2)+VoteB.(Vb1+Vb2)))
```

meaning:

- wait for a Login action
- acknowledge the (in)correctness of login
- in the negative restart
- in the positive prompt for voting either A or B
The contract of a ballot service might be:

\[
\text{rec } x. \text{Login.} (\overline{\text{Wrong.} x} \oplus \overline{\text{Ok.} (\text{VoteA.} (\text{Va1 + Va2}) + \text{VoteB.} (\text{Vb1 + Vb2}))})
\]

meaning:

- wait for a Login action
- acknowledge the (in)correctness of login
- in the negative restart
- in the positive prompt for voting either A or B
- then offer the possibility for voting for a ticket
The contract of a ballot service might be:

\[\text{rec } x. \text{Login.} (\overline{\text{Wrong}}. x \oplus \overline{\text{Ok}}. (\text{VoteA.}(\text{Va1} + \text{Va2}) + \text{VoteB.}(\text{Vb1} + \text{Vb2}))) \]

meaning:

- wait for a Login action
- acknowledge the (in)correctness of login
- in the negative restart
- in the positive prompt for voting either A or B
- then offer the possibility for voting for a ticket
Session Behaviours as Contracts interpreting Session Types

Consider the mapping from (first order) session types to contracts:

\[
\begin{align*}
[X] & = x \\
[end] & = 1 \\
[\mu X. A] & = \text{rec } x. [A] \\
[?\langle\gamma\rangle A] & = \gamma.[A] \\
[!\langle\gamma\rangle A] & = \overline{\gamma}.[A]
\end{align*}
\]

\[
\begin{align*}
[\&\langle\ell_i : B_i \mid i \in I\rangle] & = \sum_{i \in I} \ell_i.[B_i] \\
[\oplus\langle\ell_i : B_i \mid i \in I\rangle] & = \bigoplus_{i \in I} \ell_i.[B_i]
\end{align*}
\]

The image of the \([\cdot]\) map is a subset of the set of contracts.
Session Behaviours: the grammar

\[S \ (\textit{Session Behaviours}) \text{ are the closed expressions among those defined by the grammar:} \]

\[
\begin{align*}
\sigma & ::= 1 \\
& \mid a_1.\sigma_1 + \cdots + a_n.\sigma_n \quad \text{external choice, } a_i \text{ distinct} \\
& \mid \bar{a}_1.\sigma_1 \oplus \cdots \oplus \bar{a}_n.\sigma_n \quad \text{internal choice, } \bar{a}_i \text{ distinct} \\
& \mid x \quad \text{variable} \\
& \mid \text{rec } x.\sigma \quad \text{recursion, } \sigma \text{ not a variable}
\end{align*}
\]

\textit{Contracts} describe the overall behaviour of a (client)server.
\textit{Session Behaviors} describe the possible interactions of a process over a channel.
Compliance and Orthogonality

Extend the reduction relation to pairs of session-behaviours $\rho || \sigma$:

\[
\begin{align*}
\rho \overset{\alpha}{\longrightarrow} \rho' & \quad \sigma \overset{\alpha}{\longrightarrow} \sigma' \\
\rho || \sigma \quad \rightarrow & \quad \rho' || \sigma' \\
\rho \rightarrow \rho' & \\
\rho || \sigma \quad \rightarrow & \quad \rho' || \sigma
\end{align*}
\]

Compliance: the client ρ complies with the server σ, $\rho \vdash \sigma$ if

\[
\forall \rho', \sigma', \quad \rho || \sigma \quad \overset{*}{\longrightarrow} \quad \rho' || \sigma' \quad \not\rightarrow \quad \Rightarrow \quad \rho' = 1
\]

i.e. any request of the client is eventually satisfied by the server.

Orthogonality:

\[
\rho \perp \sigma \quad \Leftrightarrow \quad \rho \vdash \sigma \quad \& \quad \sigma \vdash \rho
\]
Examples

\(\bar{a} \oplus \bar{b} \vdash a + b + c \) because:

\[
\bar{a} \oplus \bar{b} \parallel a + b + c \quad \rightarrow \quad \bar{a} \parallel a + b + c \quad \rightarrow \quad 1 \parallel 1
\]

\[
\bar{b} \parallel a + b + c \quad \rightarrow \quad 1 \parallel 1
\]

and also \(a + b + c \vdash \bar{a} \oplus \bar{b} \) hence \(\bar{a} \oplus \bar{b} \perp a + b + c \).

But \(\bar{a} \oplus \bar{b} \oplus \bar{c} \not\vdash a + b \) (and \(a + b \not\vdash \bar{a} \oplus \bar{b} \oplus \bar{c} \)) since:

\[
\bar{a} \oplus \bar{b} \oplus \bar{c} \parallel a + b \quad \rightarrow \quad \bar{c} \parallel a + b \not\rightarrow
\]

Note that \(\text{rec } x.a.x \vdash \text{rec } x.\bar{a}.x \) (without reaching \(1 \parallel \cdots \)) since:

\[
\text{rec } x.a.x \parallel \text{rec } x.\bar{a}.x \quad \xrightarrow{2} \quad a.\text{rec } x.a.x \parallel \bar{a}.\text{rec } x.\bar{a}.x
\]

\[
\rightarrow \quad \text{rec } x.a.x \parallel \text{rec } x.\bar{a}.x \quad \rightarrow \quad \cdots
\]
For $\sigma, \rho \in S$, let

$$\text{Client}(\sigma) = \{\rho \in S \mid \rho \vdash \sigma\}, \quad \text{Server}(\rho) = \{\sigma \in S \mid \rho \vdash \sigma\}$$

Then define the relations:

1. $\sigma \preceq_s \sigma'$ if and only if $\text{Client}(\sigma) \subseteq \text{Client}(\sigma')$;
2. $\rho \preceq_c \rho'$ if and only if $\text{Server}(\rho) \subseteq \text{Server}(\rho')$.

In words: $\sigma \preceq_s \sigma'$ if the server σ' has a larger set of clients than σ, and similarly for $\rho \preceq_c \rho'$.

Note. Our \preceq_s is essentially the subcontract relation by Castagna et alii.
Duality in S

Let us extend the $\bar{\cdot}$ operation to all (also open) behaviours:

- $\bar{1} = 1$
- $\bar{a.\sigma} = \bar{a}.\bar{\sigma}$ and $\bar{a.\sigma} = a.\bar{\sigma}$
- $\bar{\sigma + \tau} = \bar{\sigma} \oplus \bar{\tau}$
- $\bar{\sigma \oplus \tau} = \bar{\sigma} + \bar{\tau}$
- $\bar{x} = x$
- $\bar{\text{rec } x.\sigma} = \text{rec } x.\bar{\sigma}$

If $\sigma \in S$ then $\bar{\sigma} \in S$, and $\bar{\bar{\sigma}} = \sigma$. Moreover:

$$\sigma = \llbracket A \rrbracket \text{ if and only if } \bar{\sigma} = \llbracket A \rrbracket$$
Duality in S

A relation exists between the syntactic operator $\bar{\cdot}$ and the server/client preorders:

Proposition. Let $\tau \in S$:

1. $\bar{\tau}$ is the minimum server among those of τ:
 $$\forall \sigma \in \text{Server}(\tau). \quad \bar{\tau} \preceq_s \sigma$$

2. τ is the minimum client among those of τ:
 $$\forall \rho \in \text{Client}(\tau). \quad \tau \preceq_c \rho$$

This does not hold outside of S:

- $\bar{a} \oplus \bar{a.b} \not\preceq a + a.b$
- the minimum of $\text{Client}(a + a.b)$ is actually \bar{a}
- $a + a.b \not\preceq \bar{a} \oplus \bar{a.b}$
- the minimum of $\text{Server}(a + a.b)$ is $\bar{a.b}$
- $\text{Server}(a\bar{b} + a\bar{c}) = \emptyset$
Let $A^\bot = \{ \sigma \in S \mid \exists \tau \in A. \sigma \perp \tau \}$ and $\sigma^\bot = \{ \sigma \}^\bot$:

$$\sigma \leq: \tau \iff A \tau \iff \sigma^\bot \subseteq \tau^\bot$$

Theorem

Behavioural subtyping is the intersection of both client and server-subbehaviour relations:

$$\leq: = \leq_c \cap \leq_s$$

It follows that or any $\sigma, \tau \in S$, $\overline{\sigma}$ is minimal in σ^\bot w.r.t. $\leq:$. and

$$\sigma \leq: \tau \text{ if and only if } \overline{\tau} \leq: \overline{\sigma}$$

matching with the fact that $A <: B \iff \overline{B} <: \overline{A}$.
Higher-Order Behaviours add input/output of behaviors to prefixes:

$$\sigma, \tau ::= \ldots | ?\sigma^p.\tau \mid !\sigma^p.\tau$$

where $p \in \{s, c\}$.

The higher-order LTS:

$$\begin{align*}
?\rho^p.\sigma & \xrightarrow{?\rho^p} \sigma \\
\sigma & \xrightarrow{?\rho_2^p} \sigma' \\
?\rho_1^p.\tau & \xrightarrow{!\rho_1^p} \tau' \\
\sigma \parallel \tau & \xrightarrow{\rho_1 \preceq_p \rho_2} \sigma' \parallel \tau' \\
!\rho^p.\sigma & \xrightarrow{!\rho^p} \sigma \\
\sigma & \xrightarrow{!\rho_1^p} \sigma' \\
!\rho_2^p.\tau & \xrightarrow{?\rho_2^p} \tau' \\
\sigma \parallel \tau & \xrightarrow{\rho_1 \preceq_p \rho_2} \sigma' \parallel \tau'
\end{align*}$$

Note the use of \preceq_s, \preceq_c in the LTS rules.

The syntactical duality extends as:

$$\begin{align*}
?\sigma^p.\tau = !\sigma^p.\tau, \\
!\sigma^p.\tau = ?\sigma^p.\tau
\end{align*}$$
Interpreting Higher-Order Sessions

Higher-order session may send and receive session types:

\[A, B, ::= \ldots | ?(A^p)B | ![A^p]B \quad \text{for } p = c, s \]

By considering higher-order behaviours we can extend the interpretation map to higher order session types straightforwardly:

\[
\llbracket ?(A^p)B \rrbracket = ?[A]^p[B], \quad \llbracket ![A^p]B \rrbracket = ![A]^p[B]
\]

Note. We have studied asymmetric session-types, with polarized channels to record either client or server role, elsewhere: see [Barbanera-Capecchi-de’Liguoro, Proc. of FSEN’09].
Subtyping Higher-Order Sessions

We decorate the sent/received session by a polarity:

\[A, B, ::= \ldots | ?(A^p)B | ![A^p]B \quad \text{for} \quad p = c, s. \]

Then consider the (coinductive versions of) the Gay-Hole rules:

\[
\begin{align*}
\Gamma, ?(A^p)B <: ?(C^p)D &\vdash A <: C, B <: D \\
\hline
\Gamma &\vdash ?(A^p)B <: ?(C^p)D \\
\Gamma, ![A^p]B <: ![C^p]D &\vdash C <: A, B <: D \\
\hline
\Gamma &\vdash ![A^p]B <: ![C^p]D
\end{align*}
\]

Fact \(A <: B \) (according to Gay-Hole) if and only if \(\vdash A <: B \)
The Soundness Theorem

Main Theorem

Define:

1. $\models A <: B$ iff $\llbracket A \rrbracket \preceq \llbracket B \rrbracket$
2. $\models \Gamma$ iff $\models C <: D$ for all $C <: D \in \Gamma$
3. $\Gamma \models A <: B$ iff $\models \Gamma$ implies $\models A <: B$

then

$$\Gamma \vdash A <: B \Rightarrow \Gamma \models A <: B$$

Conjecture. Completeness holds, hence known decision algorithms for session subtyping are useful also for the subcontract relation in case of session behaviours.
Final Remarks

Results and conjectures:

- we have proposed an interpretation of session types into behaviours which is sound w.r.t. Gay-Hole subtyping
- we conjecture that the interpretation is actually complete
- when restricting to S, there is no theoretical loss w.r.t. the full set of contracts in the case of two-ended sessions

Further work:

- things are different when considering multiparty sessions and fairness concepts are involved
- the power of higher-order LTS in giving semantics to the typed π-calculus deserves further attention