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Abstract. Earlier work explored the introduction of session types into
object oriented languages. Following the session types literature, two
parties would start communicating, provided the types attached to that
communication, i.e. the corresponding session types, were dual of each
other. Then, the type system was able to ensure soundness, in the sense
that two communicating partners were guaranteed to receive/send se-
quences of values following the order specified by their session types.

In the current paper we improve upon our earlier work in two ways: we
extend the type system to support bounded polymorphism, and we make
the selection more object-oriented, so that control structures determine
how to continue evaluation, depending on the class of the object being
sent/received.

Interestingly, although our notion of selection is more powerful than that
in earlier work, the ensuing system turned out not to be more complex,
except for the notion of duality, which needed to be extended, to correctly
deal with bounded polymorphism, and to capture the new notion of
selection.

The paper contains an example, informal explanations, a formal descrip-
tion of the operational semantics and of type system, and a proof of
subject reduction.

1 Introduction

In earlier work [12], some of the authors of this paper explored the incorporation
of session types [19] into object oriented languages through Moose, a minimal
object oriented language extended with the notion of a session. A session is
established when two parties connect, using session types which are dual to
each other. Session types express sequences and iterations of types of values

⋆ This work was partly funded by FP6-2004-510996 Coordination Action TYPES,
by the Information Society Technologies programme of the European Commission,
Future and Emerging Technologies under the IST-2005-015905 MOBIUS project
and by EPSRC GR/T03208, GR/S55538, GR/T04724 and GR/S68071. This paper
reflects only the authors’ views and the Community is not liable for any use that
may be made of the information contained therein.



being received/sent. The dual of a session type is a session type where receipt is
replaced by sending with a smaller type, and vice versa.

After such a session is established, the two parties can communicate by send-
ing to, or receiving from, each other, objects of the types prescribed in their
session type. Through the use of such session types, we could ensure soundness,
in the sense that two communicating partners were guaranteed to receive/send
values as expected in their session type.

In the current paper we describe the language Moose<: which extends
Moose in the following two ways. Firstly, following ideas from [16, 18] we sup-
port bounded polymorphism in session types. Thus, the following fragment of a
session type

?(X<:Image).!X

expresses that an object of a subclass of Image will be received, and then an
object of the same class will be sent. This clearly agrees with the standard use
of bounded polymorphism for λ-calculus [26].

Secondly, we have made the notion of selection more object-oriented, so that
it is possible to determine branch selection and iteration based on the class of
the object being sent/received. For example, the following fragment of a session
type

?(X<:Image).?L((Y<:ArrayList).!X)∗,(Z<:Image).εM.?Address
expresses that first an object of class X, a subclass of Image, will be received, then
a value will be received. If that value is an ArrayList, then an X will be sent, and
this will be repeated until a value of class different from ArrayList, i.e. Image, is
received. After that, an Address will be received.

A significant part of the design effort for Moose<:was devoted to the design
of the type system. In order to fully exploit the expressive power of bounded
polymorphism we developed a sophisticated notion of duality between session
types. The choice based on the class of exchanged objects has required particular
care in determining the typing rules.

The type system of Moose can also achieve progress by taking into account
the current channel used to communicate [12]. Because this analysis is orthogonal
to the extensions from Moose to Moose<:, and because progress for Moose<:

could be obtained exactly as for Moose, in this work we do not explore this
issue any further.

Related Papers Session types have been proposed first in [19] for the π-calculus
and then they have been studied for several different settings, i.e. for π-calculus-
based formalisms [1, 16, 20, 24, 28], for CORBA [29], for functional languages [11,
17, 30], for object-oriented languages [10, 12, 13], for boxed ambients [15], and
recently, for CDL, a W3C standard description language for web services [5, 6,
21, 27, 32]. In this paper we essentially extend the language of [12].

Bounded quantification for object-oriented programming was introduced in [7]
as a means of typing functions that operate uniformly over all subtypes of a given
type. In order to deal with recursively defined types, bounded quantification
was generalised to F-bounded quantification [4]. Pizza [25] is a strict superset of
Java that incorporates F-bounded polymorphism. The recently-released version



1.5 of Java adds bounded polymorphism to the language. It is based on a pro-
posal known as GJ (Generic Java) [2]. C# also supports bounded polymorphism.
The language PolyTOIL [3] has match-bounded polymorphism that provides a
very flexible yet safe type discipline for object-oriented programming. In fact
the matching relation is more general than subtyping on object types. We only
consider here bounded quantification.

[18] is the first study of bounded polymorphism in the π-calculus, and the
first study of any form of polymorphism in relation to session types. In that
paper polymorphism is associated with the labels in the branching types. We
instead allow to bound all received values in session types.

The selection on the basis of the exchanged object class is reminiscent of the
semantic subtyping approach [8, 9, 14].

Paper structure We express our ideas through the language Moose<:. In Section
2 we give an example, in Sections 3, 4, 5 we give the formal system; in 5.3 we
outline soundness, and in the Appendix we give the full proof.

2 Example: Collaborative Card Design

In this section, we describe Moose<: through an example, which expresses a
typical collaboration pattern, c.f. [5, 6, 32], and which uses our new primitives of
bounded polymorphism in session types, and branch selection according to the
dynamic type of objects.

This simple protocol contains essential features which demonstrate the ex-
pressivity of the new features of Moose<:, i.e. bounded polymorphism in session
types for object oriented languages and branch selection according to the dy-
namic types of objects.

A card producer and a card customer collaborate for the design of a card
that would please the customer. The design is based on two original photos, and

c1

c1 : photo

c1 : answer ? ArrayList

c1 : card

c2 : prodDetails

c2

c2 : c1

c1 : custAddress

c1 : delivDate

A  B : connect over c

A B : send value x over c
c : x

A B : send channel c2 over c1
c1 : c2

c

Customer Producer Shipper

{loop

A B : send x over c if x is C
c : x?Cc1 : answer ? JPGImage

Fig. 1. Collaborative Card Design.



some card samples sent by the customer. The producer creates a new card based
on the customer’s originals and samples, and the customer examines the created
card, and sends new samples. This process repeats itself (iterates), until the
customer is satisfied. The customer expresses his satisfaction (and consequently
the end of the iteration) by sending a single image, rather than further card
samples. Thus, branch selection in control structures (here iteration) is based on
the dynamic type of an object sent.

1 session AcceptCards =

2 begin.?(X1<:Image).?(X2<:X1).?L((Y<:ArrayList).!X1)∗, (Z<:Image).εM.
3 ?Address.!DeliveryDetails.end

4 session RequestJPGCards =

5 begin.!JPGImage.!JPGImage.!L(ArrayList.?(X<:JPGImage))∗, Image.εM.
6 !Address.?DeliveryDetails.end

7 session RequestDelivery =

8 begin.!CardSet.!(?Address.!DeliveryDetails.end).end

9 session AcceptDelivery =

10 begin.?CardSet.?(?Address.!DeliveryDetails.end).end

Fig. 2. Session Types for the Card Producer-Customer-Shipper Example.

Furthermore, the card producer needs to be capable to collaborate with cus-
tomers who use different image formats. If the customer sends two JPG originals,
then the card producer should create JPG images too. If the customer sends two
GIF originals, then the card producer should create GIF images too. The costumer
is not allowed to sent the two images in different formats, for example one JPG

and one GIF images. We express all this through bounded polymorphism.

In Fig. 1 we show a sequence diagram for the example we described above.
The CardProducer and JPGCardCustomer participants initiate interaction over
channel c1. The JPGCardCustomer sends to the CardProducer two photos in JPG

format followed by his decision, which is either a list of cards (which represent
samples and hints for the production of a new card), or just a single, chosen,
card. The CardProducer examines the decision; if it is a list of cards, then he
designs a new card and sends it to the JPGCardCustomer, and the process of card
design iterates. If the JPGCardCustomer’s decision is a single, chosen card, then
the iteration terminates, and the CardProducer prints the required number of
copies of the chosen card. Then the CardProducer connects with the Shipper over
channel c2 and sends him the printed cards. He then delegates his part of the re-
maining activity with the JPGCardCustomer to the Shipper; the latter is realised
by sending c1 over c2. Now the Shipper will await JPGCardCustomer’s address,
before responding with the delivery date.

In Fig. 2 we declare the necessary session types, and in Fig. 3, Fig. 4 and
Fig. 5 we encode the given scenario in Moose<:, using one class per protocol
participant.



The session types RequestJPGCards and AcceptCards describe the communi-
cation pattern between the CardProducer and the JPGCardCustomer. The session
type AcceptCards describes accepting a first image in any format, a second im-
age in the same format of the first one, followed by an iteration. The iteration
is repeated as long as the received object is an ArrayList, in which case an im-
age, of the same class as the two received is sent; the iteration stops if an Image

is received3. After the iteration, an address is received and the delivery details
are sent. The session type RequestJPGCards models the sending of two images
in JPG format, followed by an iteration. The iteration is repeated as long as an
ArrayList is sent, in which case an Image is received; the iteration stops if an
Image is sent4; afterwards, an address is sent and the delivery details are re-
ceived. The interesting observation is that (under the assumption that JPGImage

is a subclass of Image) the types RequestJPGCards and AcceptCards represent dual
behaviours associated with the same session, in which the sending of a value in
one end corresponds to its reception at the other.

Thus, the implementor of AcceptCards could also collaborate with a thread
which required GIF instead of JPG images. Such a thread would have a type like:

1 session RequestGIFCards =

2 begin.!GIFImage.!GIFImage.!L(ArrayList.?(X<:GIFImage))∗, Image.εM.
3 !Address.?DeliveryDetails.end

In our terminology, AcceptCards is a dual of RequestJPGCards as well as of
RequestGIFCards. Thus, in Moose<: more than one session type may be dual of
another; therefore, our notion of duality is not standard.

Equally important is the assurance that each value received will belong to
the type expected by the receiving party, where the latter can depend on the
types of previously exchanged objects. For example, according to AcceptCards,
the object sent in the communication within the cycle will belong to a subclass
of that of the object received in the first communication.

The session type RequestDelivery describes sending the printed cards, fol-
lowed by a live session channel of remaining type ?Address.!DeliveryDetails.end.
The session type AcceptDelivery is simply RequestDelivery with all the external
! and ? exchanged.

Sessions can start when two compatible connect statements are active. In
Fig. 3, the first component of connect is the shared channel that is used to start
communication, the second is the session type, and the third is the session body,
which implements the session type. The method sellCards of class CardProducer

contains a connect statement that implements the session type AcceptCards,
while the method buyCards of class JPGCardCustomer contains a connect state-
ment over the same channel and with the session type RequestJPGCards. When
a CardProducer and a JPGCardCustomer are executing concurrently the method

3 The iteration also stops if an object is received which is neither an ArrayList nor
an Image. More in the next sections.

4 As before, the iteration also stops if an object is sent which is neither an ArrayList

nor an Image.



1 class CardProducer {

2

3 (X <: Image) createCard(X x1, Image x2, ArrayList y) {...} //impl.

omitted

4

5 void sellCards() {

6 connect c1 AcceptCards {

7 c1.receive(x1) {

8 c1.receive(x2) {

9 c1.receiveWhile(y) {

10 ArrayList ⊲ c1.send(createCard(x1, x2, y));

11 }{ Image ⊲ Image card := y;}

12 } }

13 CardSet cardSet := cardPrint(card); //impl. omitted

14 // print the required number of copies of the chosen card

15 spawn { connect c2 RequestDelivery {

16 c2.send(cardSet); c2.sendS(c1);} }

17 } /* End connect */

18 } /* End method sellCards */

19

20 }

Fig. 3. Code for the CardProducer.

sellCards and buyCards respectively, they can engage in a session, which will
result in a fresh channel being replaced for occurrences of the shared channel
c1 within both session bodies; freshness guarantees that the new channel only
occurs in these two threads, therefore the objects can proceed to perform their
interactions without the possibility of external interference.

The type of method createCard of the class CardProducer is parameterized, in
that its return type is the class of its first argument, and it is a subclass of the
class Image. We simplified Java syntax for polymorphic methods in an obvious
way, and following the notation from [31].

After starting a session in the body of method sellCards(), two photos are
received using c1.receive(x1), c1.receive(x2) and replace x1, x2. Then an ob-
ject is received by the iterative expression c1.receiveWhile(y): while the received
object is an array list, a new card – designed out of the photo and of the list of
cards – is sent using c1.send(createCard(x1, x2, y)). If the received object is
an image, the iteration stops. Then, the required copies of this card are printed
and a new thread is spawned. The body of the spawn expression has a nested
connect, via which printed cards are sent to the Shipper. Then the actual run-
time channel, i.e. the channel which substituted c1 when the outer connect took
place, is sent through the construct c2.sendS(c1). The latter is an example of
higher-order session communication.

The method buyCards uses the field cardList to keep track of the cards
proposed by the CardProducer. Once the session has started, the two photos



1 class JPGCardCustomer {

2

3 JPGImage photo1;

4 JPGImage photo2;

5 ArrayList cardList;

6 Address addr;

7 DeliveryDetails dDetails;

8

9 void buyCards(JPGImage photo) {

10 connect c1 RequestJPGCards {

11 c1.send(photo1);

12 c1.send(photo2);

13 Object answer := examine(cardList); //impl. omitted

14 c1.sendWhile(answer) {

15 Arraylist ⊲ c1.receive(x) {

16 cardList.add(x);

17 answer := examine(cardList);}

18 }{ Image ⊲ null; }

19 c1.send(addr);

20 c1.receive(z) { dDetails := z; };

21 } /* End connect */

22 } /* End method buyCards */

23

24 }

Fig. 4. Code for the JPGCardCustomer.

1 class Shipper {

2

3 void delivery() {

4 connect c2 AcceptDelivery {

5 c2.receive(x) { CardSet cardSet := x };

6 c2.receiveS(x) {

7 x.receive(y) { Address custAddress := y };

8 DeliveryDetails delivDetails := new DeliveryDetails();

9 //... set state of delivDetails

10 x.send(delivDetails);

11 }

12 } /* End connect */

13 } /* End method delivery */

14

15 }

Fig. 5. Code for the Shipper.



are sent using c1.send(photo1), c1.send(photo2), and a card is received using
c1.receive(x); this card replaces x. The method examine takes cardList and it
returns an answer, which is sent using c1.sendWhile(answer). If the answer is
a list of cards (this is meant to happen if the JPGCardCostumer does not like
any of the proposed cards, and then the answer is meant to contain suggestions
of changes), then a new card is received through c1.receive(x) and added to
the card list through cardList.add(x), a new answer is produced through the
call of method examine, and the iteration continues. If the answer is an image
(this is meant to contain the card chosen by the JPGCardCostumer), then the
iteration stops. Then, the customer’s address, addr, is sent and an instance of
DeliveryDetails is received.

Notice that in order to get an arbitrary number of repetitions, it is crucial to
allow objects of different classes to be sent in the different iterations of sendWhile.

3 Syntax

In Fig. 6 we describe the syntax of Moose<:, which extends the language
Moose [12] to support bounded polymorphism and choice of session communi-
cation depending on object classes. We distinguish user syntax, i.e. source level
code, and runtime syntax, which includes null pointer exceptions, threads and
heaps.

Channels We distinguish shared channels and live channels. Shared channels
have not yet been connected; they are used to decide if two threads can commu-
nicate, in which case they are replaced by fresh live channels. After a connection
has been created the channel is live; data may be transmitted through such
active channels only.

(type) t ::= X | C | s | (s , s )

(class) class ::= class C extends C { f̃ t̃ ˜meth }
(method) meth ::= t m ( t̃ x̃ , ρ̃ ỹ ) { e } | (X <: t ) m ( t̃ x̃ , ρ̃ ỹ ) { e }

(expression) e ::= x | v | this | e ; e | e .f := e | e .f | e . m ( ẽ ) | new C

| new (s , s ) | NullExc | spawn { e } | connect u s {e }
| u .send (e ) | u .receive (x ){e } | u .sendS (u ) | u .receiveS (x ){e }
| u .sendCase (e ){C̃ ⊲ ẽ } | u .receiveCase (x ){C̃ ⊲ ẽ }
| u .sendWhile (e ){C̃ ⊲ ẽ }{C̃ ⊲ ẽ }
| u .receiveWhile (x ){C̃ ⊲ ẽ }{C̃ ⊲ ẽ }

(channel) u ::= c | x

(value) v ::= c | null | o

(thread) P ::= e | P |P

Fig. 6. Syntax, where syntax occurring only at runtime appears shaded .



User syntax The metavariable t ranges over types for expressions, ρ ranges
over running session types, C ranges over class names and s ranges over shared
session types. We introduce the full syntax of types in § 5.

Class declarations are as expected, except for the restriction that object fields
cannot contain live channels. Without this restriction session would not behave
as required, as shown in Example 5.1 of [12].

The method declaration t m ( t̃ x̃ , ρ̃ ỹ ) { e } introduces a standard method,
while the method declaration (X <: t )m ( t̃ x̃ , ρ̃ ỹ ) { e } introduces a parame-
terized method whose result has the type of the first of its parameters and this
type is bound by t 5.

The syntax of user expressions e is standard except for the channel con-
structor new (s , s ′), which builds a fresh shared channel used to establish a
private session, and the communication expressions, i.e. connect u s {e } and all
the expressions in the last three lines.

The first line describes the syntax for parameters, values, the self identi-
fier this, sequence of expressions, assignment to fields, field access, method call,
and object creation. The values are channels and null. Threads may be created
through spawn { e }, in which the expression e is called the thread body.

The expression connect u s {e } starts a session: the channel u appears within
the term {e } in session communications that agree with the session type s . The
remaining eight expressions, which realise the exchanges of data, are called ses-
sion expressions, and start with “u . ”; we call u the subject of such expressions.

The expressions u .send (e ) and u .receive (x ){e } exchange values (which can
be shared channels): the former evaluates e and sends the result over u , while
the latter receives a value via u that will be bound to x within e . The expressions
u .sendS (u ′) and u .receiveS (x ){e } exchange live channels: in u .receiveS (x ){e }
the received channel will be bound to x within e , in which x is used for com-
munications.

The next four primitives are extended from those in [12]; they allow choice
of communication on the basis of the class of an object sent/received.

The expression u .sendCase (e ){C1 ⊲ e 1; · · · ;Cn ⊲ e n} first evaluates the ex-
pression e to an object o , and sends o over u . It continues with e i, where i is
the smallest index in {1, ..., n} such that o is Ci, if such an i exists. Otherwise,
it returns null. The expression c .receiveCase (x ){C1 ⊲ e 1; · · · ;Cn ⊲ e n} receives
an object o via channel u and binds it to x . It continues with e i[o/x ], where i is
the smallest index in {1, ..., n} such that o is Ci, if such an i exists. Otherwise,
it returns null.

The expressions u .sendWhile (e ){C1⊲e 1; · · · ;Cn⊲e n}{D1⊲d 1; · · · ;Dm⊲d m}
and u .receiveWhile (x ){C1 ⊲e 1; · · · ;Cn ⊲e n}{D1⊲d 1; · · · ;Dm ⊲d m} express iter-
ative communication. The expression u .sendWhile (e ){C1⊲e 1; · · · ;Cn ⊲e n}{D1⊲
d 1; · · · ;Dm ⊲ d m} evaluates e to an object o and sends it over u . Then it con-
tinues with e i and iterates, where i is the smallest index in {1, ..., n} such that

5 We do not expect any technical difficulties in allowing standard parameterized meth-
ods. We restricted the result type in this way in order to focus on the features of the
object oriented paradigm which interact with sessions.



o is Ci, if such i exists. If no such i exists, then it continues with d j , where j is
the smallest index in {1, ..., m} such that o is Dj , if such a j exists. Otherwise, it
returns null. The meaning of the expression u .receiveWhile (x ){C1 ⊲ e 1; · · · ;Cn ⊲
e n}{D1 ⊲ d 1; · · · ;Dm ⊲ d m} is analogous.

Runtime syntax The runtime syntax (shown shaded in Fig. 6) extends the
user syntax: it introduces threads running in parallel; adds NullExc to expres-
sions, denoting the null pointer error; finally, extends values to allow for object
identifiers o , which denote references to instances of classes. Single and multiple
threads are ranged over by P, P ′. The expression P |P ′ says that P and P ′ are
running in parallel.

4 Operational Semantics

This section presents the operational semantics of Moose<:, which is mainly
inspired by the language Moose of [12]. We only discuss the more interesting
rules. First we list the evaluation contexts.

E ::= [ ] | E .f | E; e | E .f := e | o .f := E | E.m (ẽ ) | o .m (ṽ , E, ẽ )
| c .send (E) | c .sendCase (E){C1 ⊲ e 1; · · · ;Cn ⊲ e n}

Fig. 7 defines auxiliary functions used in the operational semantics and typing
rules. We assume a fixed, global class table CT, which contains Object as top-most
class.

Objects and fresh channels are stored in heaps, whose syntax is given by:

h ::= [ ] | h :: [o 7→ (C , f̃ : ṽ )] | h ::c

Heaps, ranged over h, are built inductively using the heap composition oper-
ator “::”, and contain mappings of object identifiers to instances of classes, and
channels. In particular, a heap will contain the set of objects and fresh channels,
both shared and live, that have been created since the beginning of execution.
The heap produced by composing h :: [o 7→ (C , f̃ : ṽ )] will map o to the object
(C , f̃ : ṽ ), where C is the class name and f̃ : ṽ is a representation for the vector
of distinct mappings from field names to their values for this instance. The heap
produced by composing h ::c will contain the fresh channel c . Heap membership
for object identifiers and channels is checked using standard set notation, we
therefore write it as o ∈ h and c ∈ h, respectively. Heap update for objects is
written h[o 7→ (C , f̃ : ṽ )], and field update is written (C , f̃ : ṽ )[f 7→ v ].

Expressions Fig. 8 shows the rules for execution of expressions which corre-
spond to the sequential part of the language. These are identical to the rules
of [12] except for the addition of a fresh shared channel to the heap (rule NewS-
R). In this rule we assume the two session types s and s ′ to be dual. The duality
relation 1 will be defined in Fig. 15. In rule NewC-R the auxiliary function
fields(C) examines the class table and returns the field declarations for C. The



Field lookup

fields(Object) = •
fields(D) = f̃

′
t̃
′

class C extends D {f̃ t̃ M̃} ∈ CT

fields(C) = f̃
′
t̃
′
, f̃ t̃

Method lookup

methods(Object) = •
methods(D) = M̃ ′ class C extends D {f̃ t̃ M̃} ∈ CT

methods(C) = M̃ ′, M̃

Method type lookup

class C extends D {f̃ t̃ M̃} ∈ CT T m ( σ̃ x̃ ) { e } ∈ M̃

mtype(m , C) = σ̃ → T

class C extends D {f̃ t̃ M̃} ∈ CT m 6∈ M̃

mtype(m , C) = mtype(m , D)

Method body lookup

class C extends D {f̃ t̃ M̃} ∈ CT Tm ( σ̃ x̃ ) { e } ∈ M̃

mbody(m , C) = (x̃ , e )

class C extends D {f̃ t̃ M̃} ∈ CT m /∈ M̃

mbody(m , C) = mbody(m, D)

σ is either t or ρ
T is either t or (X <: t ).

Fig. 7. Lookup Functions.

method invocation rule is Meth-R; the auxiliary function mbody(m , C) looks
up m in the class C, and returns a pair consisting of the formal parameter names
and the method’s code. The result is the method body where the keyword this

is replaced by the object identifier o , and the formal parameters x̃ are replaced
by the actual parameters ṽ .

Threads The reduction rules for threads, shown in Fig. 9, are given modulo
the standard structural equivalence rules of the π-calculus [23], written ≡. We

define multi-step reduction as: →→
def
= (−→ ∪ ≡)∗. All rules are essentially taken

from [12], except for the last three rules which support branching of the com-
munications depending on the class of the object send/received.

When spawn { e } is the active redex within an arbitrary evaluation context,
the thread body e becomes a new thread, and the original spawn expression is
replaced by null in the context.



Fld-R

h(o ) = (C, f̃ : ṽ )

o .fi , h −→ v i , h

Seq-R

v ; e , h −→ e , h

FldAss-R
h′ = h[o 7→ h(o )[f 7→ v ]]

o .f := v , h −→ v , h′

NewC-R

fields(C) = f̃ t̃ o 6∈ h

new C, h −→ o , h :: [o 7→ (C, f̃ : gnull)]

NewS-R
s 1 s

′
c 6∈ h

new (s , s ′), h −→ c , h ::c

Cong-R

e , h −→ e
′, h′

E[e ], h −→ E[e ′], h′

Meth-R
h(o ) = (C, . . . ) mbody(m , C) = (x̃ , e )

o .m (ṽ ), h −→ e [o/this][ṽ/̃x ], h

NullProp-R

E[NullExc ], h −→ NullExc , h
NullFldAss-R
null .f := v , h −→ NullExc , h

NullFld-R
null .f , h −→ NullExc , h

NullMeth-R
null.m (ṽ ), h −→ NullExc , h

Fig. 8. Expression Reduction.

Rule Connect-R describes the opening of sessions: if two threads require a
session on the same channel name c with dual session types, then a new fresh
channel c ′ is created and added to the heap. The freshness of c ′ guarantees
privacy and bilinearity of the session communication between the two threads.
Finally, the two connect expressions are replaced by their respective session
bodies, where the shared channel c has been substituted by the live channel c ′.

Rule ComS-R gives simple session communication: value v is sent by one
thread to another and it is bound to the variable x within the expression e at
the receiver side.

Rule ComSS-R describes session delegation. One thread is ready to receive
a live channel, which will be bound to the variable x within the expression e ; the
other thread is ready to send such a channel. Notice that when the channel is
exchanged, the receiver spawns a new thread to handle the consumption of the
delegated session. This strategy is necessary in order to avoid deadlocks in the
presence of circular paths of session delegation, as shown in example 4.2 of [12].

To understand rule ComSCaseSuccess-R it is important to notice that in a
well-typed process for all i ∈ {1, ..., n} there is k ∈ {1, ..., m} such that Ci <: C ′

k

and vice versa. The sender thread checks if the exchanged object o belongs to
some class of its own list of classes: if i is the smallest index in {1, ..., n} such
that o is Ci, then the sender thread continues with e i. Similarly, if k is the
smallest index in {1, ..., m} such that o is C ′

k, then the receiver thread continues
with e ′

k[o/x ]. If instead the object o does not belong to any of the classes Ci,C
′

k

for i ∈ {1, ..., n} and k ∈ {1, ..., m}, then rule ComSCaseFailure-R is applied:
both expressions return null. Notice that this choice is made at run time and



Struct

P | null ≡ P P |P1 ≡ P1 |P P | (P1 |P2) ≡ (P |P1) |P2 P ≡ P ′ ⇒ P |P1 ≡ P ′ |P1

Spawn-R

E[spawn { e }], h −→ E[null] | e , h

Par-R
P, h −→ P ′, h′

P |P0, h −→ P ′ |P0, h
′

Str-R
P ′

1 ≡ P1 P1, h −→ P2, h
′ P2 ≡ P ′

2

P ′
1, h −→ P ′

2, h
′

Connect-R
c
′ 6∈ h s 1 s

′

E1[connect c s {e 1}] |E2[connect c s
′{e 2}], h −→ E1[e 1[c

′
/c ]] |E2[e 2[c

′
/c ]], h ::c ′

ComS-R
E1[u .send (v )] |E2[u .receive (x ){e }], h −→ E1[null] |E2[e [v/x ]], h

ComSS-R

E1[c .sendS (c ′)] |E2[c .receiveS (x ){e }], h −→ E1[null] | e [c
′
/x ] |E2[null], h

ComSCaseSuccess-R
h(o ) = (C , . . . ) C <: Ci ∀j < i(C 6<: Cj) i ∈ {1, . . . , n}

C <: C
′
k ∀l < k(C 6<: C

′
l ) k ∈ {1, . . . , m}

E1[c .sendCase (o ){C1 ⊲ e 1; · · · ;Cn ⊲ e n}] |E2[c .receiveCase (x ){C ′
1 ⊲ e

′
1; · · · ;C ′

m ⊲ e
′
m}], h

−→ E1[e i] |E2[e
′
k[o/x ]], h

ComSCaseFailure-R
h(o ) = (C , . . . ) ∀i ∈ {1, . . . , n}(C 6<: Ci) ∀k ∈ {1, . . . , m}(C 6<: C

′
k)

E1[c .sendCase (o ){C1 ⊲ e 1; · · · ;Cn ⊲ e n}] |E2[c .receiveCase (x ){C ′
1 ⊲ e

′
1; · · · ;C ′

m ⊲ e
′
m}], h

−→ E1[null] |E2[null], h

ComSWhile-R

E1[c .sendWhile (e ){C1 ⊲ e 1; · · · ;Cn ⊲ e n}{D1 ⊲ d 1; · · · ;Dm ⊲ d m}] |
E2[c .receiveWhile (x ){C ′

1 ⊲ e ′
1; · · · ;C ′

n′ ⊲ e ′
n′}{D ′

1 ⊲ d ′
1; · · · ; D ′

m′ ⊲ d ′
m′}], h −→

E1[c .sendCase (e ){C1 ⊲ e ′′
1 ; · · · ;Cn ⊲ e ′′

n,D1 ⊲ d 1; · · · ;Dm ⊲ d m}] |
E2[c .receiveCase (x ){C ′

1 ⊲ e ′′′
1 ; · · · ; C ′

n′ ⊲ e ′′′
n′ ,D ′

1 ⊲ d ′
1; · · · ;D ′

m′ ⊲ d ′
m′}], h

where e ′′
i = e i; c .sendWhile (e ){C1 ⊲ e 1; · · · ;Cn ⊲ e n}{D1 ⊲ d 1; · · · ;Dm ⊲ d m}

e ′′′
j = e ′

j ; c .receiveWhile (x ){C ′
1 ⊲ e ′

1; · · · ;C ′
n′ ⊲ e ′

n′}{D ′
1 ⊲ d ′

1; · · · ;D ′
m′ ⊲ d ′

m′}
(1 ≤ i ≤ n)(1 ≤ j ≤ n′)

Fig. 9. Thread Reduction.



that it depends on the class of the exchanged object, which it is not known at
compile time.

Rule ComSWhile-R describes iteration by means of case expressions. The
iteration loops on the alternatives in the first pair of lists of classes and expres-
sions, while the second pair of lists represents default expressions which can be
possibly evaluated only once after the loop end. The typing rules assure that
for all i ∈ {1, ..., n} there is k ∈ {1, ..., n′} such that Ci <: C ′

k and vice versa.
Moreover, for all j ∈ {1, ..., m} there is l ∈ {1, ..., m′} such that Dj <: D ′

l and
vice versa. The test is on the class of the exchanged object o : if there exists
an i which is the smallest index in {1, ..., n} such that o is Ci, then the sender
thread continues with e i, and iterates. Otherwise, if there exists a j which is the
smallest index in {1, ..., m} such that o is Dj , then the sender thread continues
with d j . Last, if the object o does not belong to any of the classes Ci,Dj for
i ∈ {1, ..., n} and j ∈ {1, ..., m}, then the sender thread returns null. Dually, if
there exists a k which is the smallest index in {1, ..., n′} such that o is C ′

k, then
the receiver thread continues with e ′

k[o/x ], and iterate. Otherwise if there exists
an l which is the smallest index in {1, ..., m′} such that o is D ′

l , then the receiver
thread continues with d ′

l[o/x ]. Last, if the object o does not belong to any of
the classes C ′

k,D ′

l for k ∈ {1, ..., n′} and l ∈ {1, ..., m′}, then the receiver thread
returns null.

5 The Type Assignment System and its Properties

5.1 Types

The full syntax of types is given in Fig. 10. It extends the syntax of [12] by
allowing bounded polymorphism.

Partial session types, ranged over by π, represent sequences of communica-
tions, where ε is the empty communication, and π1.π2 consists of the communi-
cations in π1 followed by those in π2. The partial session types ?(X <: t 1) and
!t 2 express respectively the reception of a value whose type is bound by type

π ::= ε | π.π | ?(X <: t ) | !t | ?(X <:η) | !( η) |
!LC̃ .π̃M | ?L(X̃ <: C̃ ).π̃M |
!L(C̃ .π̃)∗, C̃ .π̃M | ?L((X̃ <: C̃ ).π̃)∗, (X̃ <: C̃ ).π̃M partial session type

η ::= X | π.end | π.η | !LC̃ .η̃M | ?L(X̃ <: C̃ ).η̃M ended session type
ρ ::= π | η running session type
τ ::= ρ | l live session type
s ::= begin.η shared session type
θ ::= τ | s session type
t ::= X | C | s | (s , s ) standard type

Fig. 10. Syntax of Types.



Class
C ∈ D(CT)

⊢ C : tp

Wf-Session

⊢ s : tp

Pair
s 1 s

′

⊢ (s , s ′) : tp

Fig. 11. Well-formed Standard Types.

t 1 and the sending of a value of type t 2. Analogously, the partial session types
?(X <:η1) and !(η2) represent the exchange of a live channel, and therefore of an
active session, with remaining communications bound by η1 and determined by
η2, respectively. Note that we allow bounds to be type variables; this supports
more expressive session types as shown in the example of Section 2.

The case types !LC̃ .π̃M and ?L(X̃ <: C̃ ).π̃M reflect in an obvious way the struc-
ture of the case expressions. The same observation applies to the iterative types
!L(C̃ .π̃)∗, C̃ .π̃M and ?L((X̃ <: C̃ ).π̃)∗, (X̃ <: C̃ ).π̃M and the while expressions.

An ended session type, η, is either a type variable or a partial session type
concatenated either with end or with a case type whose branches in turn are all
ended session types. It expresses a sequence of communications with its termi-
nation, i.e. no further communications on that channel are allowed at the end.
Ended session types guarantee that a channel is consumed, i.e. it cannot be
further used. This is essential to guarantee the uniqueness of communications in
sessions, as shown in Example 5.2 of [12].

We use ρ to range over both partial session types and ended session types:
we call it a running session type.

A live session type τ is either a running session type or l. We use l when
typing threads, to indicate the type of a channel which is being used by two
threads in complementary ways.

A shared session type, s , starts with the keyword begin and has one or more
endpoints, denoted by end. Between the start and each ending point, a sequence
of session parts describes the communication protocol. Shared session types are
only used to type shared channels which behave as standard values in that they
can be sent using send and can be stored in object fields. Live channels instead
can only be sent using sendS and cannot be stored in object fields.

A session type θ is either a live session type or a shared session type.

Standard types, t , are either type variables (X), class identifiers (C ), shared
session types, or pairs of shared session types which are duals (i.e. (s , s ′)). Fig. 11
defines well-formed standard types. Note that D(CT) denotes the domain of the
class table CT, i.e. the set of classes declared in CT.

The subtyping judgements use subtyping environments which take into ac-
count the bounds of type variables. Subtyping environments (ranged over by
∆) are defined in Fig. 12, where D(∆) is the set of the left hand sides in the
subtyping judgements of ∆.



∆ := ∅ | ∆, X <: t | ∆, X <: ρ

SuEmp

∅ ⊢ ok

SuAdd1
∆ ⊢ ok X 6∈ D(∆)

∆, X <: t ⊢ ok

SuAdd2
∆ ⊢ ok X 6∈ D(∆)

∆, X <: ρ ⊢ ok

Fig. 12. Subtyping Environments.

∆, X <: t ⊢ X <: t

class C extends D {f̃ t̃ M̃} ∈ CT

∆ ⊢ C <: D

⊢ (s , s ′) : tp

∆ ⊢ (s , s ′) <: s

⊢ (s , s ′) : tp

∆ ⊢ (s , s ′) <: s
′

Fig. 13. Subtyping for Standard Types.

∆ ⊢ t <: t
′

∆ ⊢ !t <:!t ′

∆ ⊢ t <: t
′

∆ ⊢ ?(X <: t ′) <:?(X <: t )

∆ ⊢ η <: η′

∆ ⊢ !( η) <:!( η′)

∆ ⊢ η <: η′

∆ ⊢ ?(X <:η′) <:?(X <:η)

∆, X <: η ⊢ X <: η

∆ ⊢ ρi <: ρ′
i i ∈ {1, ..., n}

∆ ⊢ !LC1.ρ1, . . . ,Cn.ρnM <:!LC1.ρ
′
1, . . . ,Cn.ρ′

nM

∆, Xi <: Ci ⊢ ρi <: ρ′
i i ∈ {1, ..., n}

∆ ⊢ ?L(X1 <:C1).ρ1, . . . , (Xn <:Cn).ρnM <:?L(X1 <:C1).ρ
′
1, . . . , (Xn <:Cn).ρ′

nM

∆ ⊢ πi <: π′
i i ∈ {1, ..., n + m}

∆ ⊢ !L(C1.π1, . . . ,Cn.πn)∗,D1.πn+1, . . . ,Dm.πn+mM
<:!L(C1.π

′
1, . . . ,Cn.π′

n)∗,D1.π
′
n+1, . . . ,Dm.π′

n+mM

∆, Xi <: Ci ⊢ πi <: π′
i i ∈ {1, ..., n} ∆, Yj <: Dj ⊢ πn+j <: π′

n+j j ∈ {1, ..., m}

∆ ⊢ ?L((X1 <:C1).π1, . . . , (Xn <:Cn).πn)∗, (Y1 <:D1).πn+1, . . . , (Ym <:Dm).πn+mM
<:?L((X1 <:C1).π

′
1, . . . , (Xn <:Cn).π′

n)∗, (Y1 <:D1).π
′
n+1, . . . , (Ym <:Dm).π′

n+mM

∆ ⊢ π <: π′

∆ ⊢ π.end <: π′.end

∆ ⊢ π <: π′ ∆ ⊢ ρ <: ρ′

∆ ⊢ π.ρ <: π′.ρ′

Fig. 14. Subtyping for Running Session Types.



ρ 1 ρ′

begin.ρ 1 begin.ρ′
end 1 end

ρ 1 ρ′

ρ′
1 ρ

ρ 1 ρ′[η/X]

!( η).ρ 1?(X <:η′).ρ′

ρ 1 ρ′[t/X]

!t .ρ 1?(X <: t ′).ρ′

&i∈{1,...,n},j∈{1,...,m} (ρi 1 ρ′
j [Ci g C

′
j/Xj ])

∀i ∈ {1, ..., n}∃j ∈ {1, ..., m}. Ci <: C
′
j ∀j ∈ {1, ..., m}∃i ∈ {1, ..., n}. C

′
j <: Ci

!LC1.ρ1, . . . ,Cn.ρnM 1?L(X1 <:C ′
1).ρ

′
1, . . . , (Xm <:C ′

m).ρ′
mM

&i∈{1,...,n},k∈{1,...,n′} (πi 1 π′
k[Ci g C

′
k/Xk])&

&j∈{1,...,m},l∈{1,...,m′} (πn+j 1 π′
n′+l[Dj g D

′
l/Yl])

∀i ∈ {1, ..., n}∃k ∈ {1, ..., n′}. Ci <: C
′
k ∀k ∈ {1, ..., n′}∃i ∈ {1, ..., n}. C

′
k <: Ci

∀j ∈ {1, ..., m}∃l ∈ {1, ..., m′}. Dj <: D
′
l ∀l ∈ {1, ..., m′}∃j ∈ {1, ..., m}. D

′
l <: Dj

!L(C1.π1, . . . ,Cn.πn)∗,D1.πn+1, . . . ,Dm.πn+mM 1

?L((X1 <:C ′
1).π

′
1, . . . , (Xn′ <:C ′

n′).π′
n′)∗(Y1 <:D ′

1).π
′
n′+1, . . . , (Ym′ <:D ′

m′).π′
n′+m′M

Fig. 15. Duality Relation.

The subtyping judgement for standard types has the shape:

∆ ⊢ t <: t ′

and it holds if it can be derived from the axioms of Fig. 13 plus the reflexive and
transitive rules. As in [26], we assume that the subclassing is acyclic.

The subtyping judgement for running session types has the shape:

∆ ⊢ ρ <: ρ′

and it holds if it can be derived from the axioms of Fig. 14 plus the reflexive
and transitive rules. It is worthwhile to notice that, in contrast with [16], our
session subtyping is covariant for outputs and contravariant for inputs with re-
spect to the standard subtyping of the communicated values. The motivation for
this is that we expect all channels whose type is a subtype of !t to be able to
communicate with channels whose type is ?(X <: t ) and similarly for the other
types. This requires the given rules for output. Similar reasons justify the rules
for inputs.

In order to guarantee protocol soundness it is crucial to introduce a duality
relation between shared session types which ensures that two sessions agree with
each other with respect to the order in which data are communicated and with
respect to the types of the communicated data. The introduction of bounded
polymorphism allows to relate more than one session type to another session
type, in contrast to the systems of [1, 12, 16, 20, 30], where each session type has
a unique dual. The definition of this relation (denoted by 1) is given in Fig. 15,
where we use t <: t ′ as shorthand for ∅ ⊢ t <: t ′ and similarly for ρ <: ρ′.

Two case types !LC1.ρ1, . . . ,Cn.ρnM and ?L(X1 <:C ′

1).ρ
′

1, . . . , (Xm <:C ′

m).ρ′mM
are dual if for any arbitrary class C either C <: Ci and C <: C ′

j for some



i ∈ {1, . . . , n} and j ∈ {1, . . . , m}, or C 6<: Ci and C 6<: C ′

j for all i ∈ {1, . . . , n}
and j ∈ {1, . . . , m}. This condition is necessary in order to ensure applicability of
one of the two reduction rules ComSCaseSuccess-R and ComSCaseFailure-
R. We ensure this condition by requiring that for all i ∈ {1, ..., n} there exists
a j ∈ {1, ..., m} such that Ci <: C ′

j and for all j ∈ {1, ..., m} there exists a
i ∈ {1, ..., n} such that C ′

j <: Ci. Moreover, if there is a class which is a subclass
of both Ci and C ′

j (i.e. Ci and C ′

j are comparable), then we need to guarantee

that the two threads will continue the communication in a coherent way.6 This
means that ρi and ρ′j must agree as specified below. Instead, if Ci and C ′

j are
incomparable, then ρi and ρ′j can be unrelated. In order to express the above
conditions we define the “minimum” of two classes as follows:

C g C ′ =











C if C <: C ′,

C ′ if C ′ <: C ,

⊥ otherwise.

and we require ρi 1 ρ′j [Ci g C ′
j/Xj ] for all i ∈ {1, ..., n} and all j ∈ {1, ..., m},

with the convention ρi 1 ρ′j [⊥/Xj] = true.
The duality of iterative types can be explained similarly, taking into account

that we need to ensure that either both threads choose to iterate, or both threads
choose default expressions, or both threads choose null.

It is easy to verify by induction on the definition of 1 that subtyping preserves
duality, i.e.:

Lemma 5.1. If ρ 1 ρ′ and ρ′′ <: ρ′, then ρ 1 ρ′′.

5.2 Typing Rules

The typing judgements for expressions and threads have three environments, i.e.
they have the shape:

∆; Γ ; Σ ⊢ e : t ∆; Γ ; Σ ⊢ P : thread

where the standard environment Γ associates standard types to this, param-
eters, objects, and shared channels, while the session environment Σ contains
only judgements for channel names and variables. Fig. 16 defines well-formedness
of standard and session environments, where the domain of an environment is
defined as usual and denoted by D().

The main differences with the typing rules of [12] are the addition of bounded
polymorphism and the deletion of hot sets, which in [12] were used to guarantee
progress, a property we will not consider here. As we already discussed in the
introduction, we could add hot sets to get progress without problems.

In Fig. 17, Fig. 18 and Fig. 20 we give the typing rules for expressions and
threads using the lookup functions defined in Fig. 7. In the typing rules for

6 Taking into account the order in which the classes appear we could avoid to check
some pairs of i, j. For simplicity we do not consider this refinement.



Standard Environments, and Well-formed Standard Environments

Γ ::= ∅ | Γ, x : t | Γ, this : C | Γ, o : C | Γ, c : s | Γ, c : (s , s ′)

Emp

∅ ⊢ ok

EVar
Γ ⊢ ok ⊢ t : tp x 6∈ D(Γ )

Γ, x : t ⊢ ok
EOid
Γ ⊢ ok C ∈ D(CT) o 6∈ D(Γ )

Γ, o : C ⊢ ok

Ethis
Γ ⊢ ok C ∈ D(CT) this 6∈ D(Γ )

Γ, this : C ⊢ ok
ECha1
Γ ⊢ ok ⊢ s : tp c 6∈ D(Γ )

Γ, c : s ⊢ ok

ECha2
Γ ⊢ ok ⊢ (s , s ′) : tp c 6∈ D(Γ )

Γ, c : (s , s ′) ⊢ ok

Session Environments, and Well-formed Session Environments

Σ ::= ∅ | Σ, u : θ

SEmp

∅ ⊢ ok

SeAdd
Σ ⊢ ok u 6∈ D(Σ)

Σ, u : θ ⊢ ok

Fig. 16. Standard and Session Environments.

expressions the session environments of the conclusions are obtained from those
of the premises and possibly other session environments using the concatenation
operator, ◦, defined below. We consider different cases for the concatenation of
session types since we want to avoid to have redundant ε. As usual, ⊥ stands
for undefined.

– ρ◦ρ′ =































ρ if ρ′ = ε
ρ′ if ρ = ε
ρ.end if ρ′ = ε.end and ρ is a partial session type
ρ.ρ′ if ρ is a partial session type and

ρ′ is a running session type
⊥ otherwise.

– Σ \ Σ′ = {u : Σ(u ) | u ∈ D(Σ) \ D(Σ′)}

– Σ◦Σ′ =







Σ \ Σ′ ∪ Σ′ \ Σ ∪ {u : Σ(u ) ◦ Σ′(u ) | u∈D(Σ)∩D(Σ′)}
if ∀u∈D(Σ)∩D(Σ′) : Σ(u ) ◦ Σ′(u ) 6= ⊥;

⊥ otherwise.

The concatenation of two channel types ρ and ρ′ is the unique channel type
(if it exists) which prescribes all the communications of ρ followed by all those
of ρ′. The concatenation only exists if ρ is a partial session type, and ρ′ is a
running session type. The extension to session environments is straightforward.
The typing rules concatenate the session environments to take into account the



Typing Rules for Values

Null
Γ ⊢ ok ⊢ t : tp

∆; Γ ; ∅ ⊢ null : t

Oid
Γ, o : C ⊢ ok

∆; Γ, o : C; ∅ ⊢ o : C

Chan
Γ, c : t ⊢ ok

∆; Γ, c : t ; ∅ ⊢ c : t

Typing Rules for Standard Expressions

Var
Γ, x : t ⊢ ok

∆; Γ, x : t ; ∅ ⊢ x : t

This
Γ, this : C ⊢ ok

∆; Γ, this : C; ∅ ⊢ this : C

Fld
∆; Γ ;Σ ⊢ e : C f t ∈ fields(C)

∆; Γ ;Σ ⊢ e .f : t

Seq

∆; Γ ; Σ ⊢ e : t ∆; Γ ; Σ′ ⊢ e
′ : t

′

∆; Γ ; Σ◦Σ′ ⊢ e ; e ′ : t
′

FldAss
∆; Γ ; Σ ⊢ e : C ∆; Γ ;Σ′ ⊢ e

′ : t f t ∈ fields(C)

∆; Γ ; Σ◦Σ′ ⊢ e .f := e
′ : t

NewC
Γ ⊢ ok C ∈ D(CT)

∆; Γ ; ∅ ⊢ new C : C

NewS
Γ ⊢ ok

∆; Γ ; ∅ ⊢ new (s , s ′) : (s , s ′)

Spawn

∆; Γ ; Σ ⊢ e : t ended(Σ)

∆; Γ ;Σ ⊢ spawn { e } : Object

NullPE
Γ ⊢ ok ⊢ t : tp

∆; Γ ; ∅ ⊢ NullExc : t

Meth
∆; Γ ; Σ0 ⊢ e : C ∆; Γ ; Σi ⊢ e i : t i i ∈ {1 . . . n}

mtype(m , C) = t 1, . . . , t n, ρ1, . . . , ρm → t

∆; Γ ; Σ0◦Σ1 . . . ◦Σn◦{u 1 : ρ1, . . . , u m : ρm} ⊢ e .m (e 1, . . . , e n, u 1, . . . , u m) : t

MethB
∆; Γ ; Σ0 ⊢ e : C ∆; Γ ; Σi ⊢ e i : t i i ∈ {1 . . . n}

mtype(m , C) = X, t 2, . . . , t n, ρ1, . . . , ρm → X <: t ∆ ⊢ t 1 <: t

∆; Γ ;Σ0◦Σ1 . . . ◦Σn◦{u 1 : ρ1, . . . , u m : ρm} ⊢ e .m (e 1, . . . , e n, u 1, . . . , u m) : t 1

Fig. 17. Typing Rules for Expressions I.

order of execution of expressions. We adopt the convention that typing rules are
applicable only when the session environments in the conclusions are defined.

Rule Spawn requires that all sessions used by the spawned thread are finally
consumed, i.e. they are all ended session types. This is necessary in order to
avoid configurations in which more than two threads are ready to communicate
on the same live channel. To guarantee the consumption we define:

ended(Σ) = ∀u : ρ ∈ Σ. ρ is an ended session type.



Typing Rules for Communication Expressions

Conn
∆; Γ ; ∅ ⊢ u : begin.η ∆; Γ \ u ; Σ, u : η ⊢ e : t

∆; Γ ;Σ ⊢ connect u begin.η {e } : t

Send
∆; Γ ;Σ ⊢ e : t

∆; Γ ;Σ◦{u :!t } ⊢ u .send ( e ) : Object

Receive
∆, X <: t ; Γ, x : X; Σ ⊢ e : t

′ X 6∈ Γ ∪ ∆ ∪ Σ \ u

∆; Γ ; {u : ?(X <: t )}◦Σ ⊢ u .receive (x ){e } : t
′

SendS
Γ ⊢ ok η 6= ε.end

∆; Γ ; {u ′ : η, u : !( η)} ⊢ u .sendS (u ′) : Object

ReceiveS
∆, X <: η; Γ \ x ; {x : X} ⊢ e : t η 6= ε.end

∆; Γ ; {u : ?(X <:η)} ⊢ u .receiveS (x ){e } : Object

SendCase
∆; Γ ; Σ0 ⊢ e : C ∆; Γ ;Σ, u : ρi ⊢ e i : t Ci <: C i ∈ {1, . . . , n}

∆; Γ ;Σ0◦Σ, u : !LC1.ρ1, . . . ,Cn.ρnM ⊢ u .sendCase (e ){C1 ⊲ e 1; · · · ;Cn ⊲ e n} : t

ReceiveCase
∆, Xi <: Ci; Γ, x : Xi; Σ, u : ρi ⊢ e i : t i ∈ {1, . . . , n}

∆; Γ ;Σ, u :?L(X1 <:C1).ρ1, . . . , (Xn <:Cn).ρnM ⊢ u .receiveCase (x ){C1 ⊲ e 1; · · · ;Cn ⊲ e n} : t

SendWhile
∆; Γ ; ∅ ⊢ e : C ∆; Γ ; {u : πi} ⊢ e i : t Ci <: C i ∈ {1, . . . , n}

∆; Γ ; {u : πn+j} ⊢ d j : t Dj <: C j ∈ {1, . . . , m}

∆; Γ ; {u : !L(C1.π1, . . . , Cn.πn)∗,D1.πn+1, . . . ,Dm.πn+mM}
⊢ u .sendWhile (e ){C1 ⊲ e 1; · · · ; Cn ⊲ e n}{D1 ⊲ d 1; · · · ;Dm ⊲ d m} : t

ReceiveWhile
∆, Xi <: Ci; Γ, x : Xi; {u : πi} ⊢ e i : t i ∈ {1, . . . , n}

∆, Yj <: Dj ; Γ, x : Yj ; {u : πn+j} ⊢ d j : t j ∈ {1, . . . , m}

∆; Γ ; {u : ?L((X1 <:C1).π1, . . . , (Xn <:Cn).πn)∗, (Y1 <:D1).πn+1, . . . , (Ym <:Dm).πn+mM}
⊢ u .receiveWhile (x ){C1 ⊲ e 1; · · · ;Cn ⊲ e n}{D1 ⊲ d 1; · · · ; Dm ⊲ d m} : t

Non-structural Typing Rules for Expressions

Sub
∆; Γ ;Σ ⊢ e : t ∆ ⊢ t <: t

′

∆; Γ ; Σ ⊢ e : t
′

WeakES
∆; Γ ;Σ ⊢ e : t u 6∈ D(Σ)

∆; Γ ; Σ, u : ε ⊢ e : t

WeakE
∆; Γ ; Σ, u : π ⊢ e : t

∆; Γ ; Σ, u : π.end ⊢ e : t

Fig. 18. Typing Rules for Expressions II.



M-ok
∅; {this : C, x̃ : t̃ } ; {ỹ : ρ̃} ⊢ e : t

t m ( t̃ x̃ , ρ̃ ỹ ) { e } : ok in C

MS-ok
{X <: t }; {this : C, x : X, x̃ : t̃ } ; {ỹ : ρ̃} ⊢ e : X

(X <: t ) m (X x , t̃ x̃ , ρ̃ ỹ ) { e } : ok in C

C-ok
M̃ : ok in C

class C extends D {f̃ t̃ M̃} : ok

CT-ok

class C extends D {f̃ t̃ M̃} : ok CT : ok

CT, class C extends D {f̃ t̃ M̃} : ok

Fig. 19. Well-formed Class Tables.

Start

∆; Γ ; Σ ⊢ e : t

∆; Γ ;Σ ⊢ e : thread

Par

∆; Γ ; Σi ⊢ Pi : thread i ∈ {1, 2}

∆; Γ ; Σ1||Σ2 ⊢ P1 | P2 : thread

Fig. 20. Typing Rules for Threads.

Rules Meth and MethB retrieve the type of the method m from the class
table using the auxiliary function mtype(m, C) defined in Fig. 7. The session en-
vironments of the premises are concatenated with {u 1 : ρ1, . . . , u m : ρm}, which
represents the communication protocols of the channels u 1, . . . , u m during the
execution of the method body. The difference between the two rules is the type
of the return value, which is fixed in rule Meth and instead parametrized on
the type of the first argument in rule MethB.

Rule Conn ensures that a session body properly uses its unique channel
according to the required session type. The first premise says that the shared
channel used for the session (u ) can be typed with the appropriate shared session
type (begin.η). The second premise ensures that the session body can be typed in
the restricted standard environment Γ \u with a session environment containing
u : η.

Rules SendCase and ReceiveCase put together the types of the different
alternatives in the expected way. Notice that, in a specific case expression, all ρi

for i ∈ {1, ..., n} are either partial session types or ended session types – this is
guaranteed by the syntax of case session types. Similarly for rules SendWhile
and ReceiveWhile.

Rule WeakES, where ES stands for empty session, is necessary to type
a branch of a case expression where the channel which is the subject of the
conditional is not used. Rule WeakE, where E stands for end, allows us to obtain
ended session types as predicates of session environments in order to apply rules
Conn, Spawn and ReceiveS.

Fig. 19 defines well-formed class tables. Rules M-ok and MS-ok type-check
the method bodies with respect to a class C taking as environments the asso-



ciation between formal parameters and their types and the association between
this and C. These rules differ in the return type of the method.

In the typing rules for threads, we need to take into account that the same
channel can occur with dual types in the session environments of two premises.
For this reason we compose the session environments of the premises using the
parallel composition, ||. We define parallel composition, ||, on session types and
on session environments as follows:

θ||θ′ =

{

l if θ 1 θ′

⊥ otherwise.

Σ||Σ′ =







Σ \ Σ′ ∪ Σ′ \ Σ ∪ {u : Σ(u ) || Σ′(u ) | u∈D(Σ)∩D(Σ′)}
if ∀u∈D(Σ)∩D(Σ′) : Σ(u ) || Σ′(u ) 6= ⊥

⊥ otherwise.

Note that l ||θ = θ|| l= ⊥.
Using the operator || the typing rules for processes are straightforward (see Fig. 20).
Rule Start promotes an expression to the thread level; and rule Par types a
composition of threads if the composition of their session environments is de-
fined.

In writing session environments we assume the following operator precedence:
“,”, “◦”, “||”. For example Σ0, c : π◦Σ1||Σ2 is short for ((Σ0, c : π)◦Σ1)||Σ2.

The typing rules of Moose<: are not syntax directed, because of the non
structural typing rules and also because of the use of the “◦” and “||” operators
in composing session environments. Nevertheless, we can design a type inference
algorithm for Moose<: as we did for Moose [12].

5.3 Subject Reduction

We will consider only reductions of well-typed expressions and threads. We define
agreement between environments and heaps in the standard way and we denote
it by Γ ; Σ ⊢ h. The judgement is defined in Fig. 21. The judgement Γ ; h ⊢ v : t

guarantees that the value v has type t . The judgement Γ ; h ⊢ o guarantees
that the object o is well-formed, i.e. that its fields contain values according to
the declared field types in C, the class of that object. The judgement Γ ; Σ ⊢ h
guarantees that the heap is well-formed for Γ and Σ, i.e. that all objects are
well-formed, all o in the domain of Γ denote in the h objects of the class given
to them in Γ , all channels in the domain of Σ are channels in h, and no channel
occurs both in Γ and Σ.
We define ∆; Γ ; Σ ⊢ P ; h as a shorthand for ∆; Γ ; Σ ⊢ P : thread and Γ ; Σ ⊢ h.

In the following we outline the proof of subject reduction, while we give full
details and proofs in the Appendix.

Standard ingredients of Subject Reduction proofs are Generation Lemmas.
The Generation Lemmas in this work are somewhat unusual, because, due to
the non-structural rules, when an expression is typed, we only can deduce some
information about the session environment used in the typing. For example,



HNull
C ∈ D(CT)

Γ ; h ⊢ null : C

HObj

h(o ) = (Γ (o ), ...) ∅ ⊢ Γ (o ) <: C

Γ ; h ⊢ o : C

HCha
∅ ⊢ Γ (c ) <: t

Γ ;h ⊢ c : t

WfObj

h(o ) = (C , f̃ : ṽ ) fields(C) = f̃ t̃ Γ ;h ⊢ v i : t i

Γ ; h ⊢ o

WfHeap

∀o ∈ D(h) : Γ ;h ⊢ o ∀o ∈ D(Γ ) : Γ ; h ⊢ o : Γ (o )
∀c ∈ D(Σ) : c ∈ h D(Γ ) ∩ D(Σ) = ∅

Γ ; Σ ⊢ h

Fig. 21. Types of Runtime Entities, and Well-formed Heaps

Γ ; Σ ⊢ x : t does not imply that Σ = ∅; instead, it implies that R(Σ) ⊆
{ε, ε.end}, where R(Σ) is the range of Σ.

In order to express the Generation Lemmas, we define the partial order �
among session environments, which basically reflects the differences introduced
through the application of non-structural rules.

Definition 5.2 (Weakening Order �). Σ � Σ′ is the smallest partial order
such that:

– Σ � Σ, u : ε if u /∈ D(Σ),
– Σ, u : π � Σ, u : π.end,
– Σ, u : ε.end � Σ, u :l.

The following lemma states that the ordering relation � preserves the types
of expressions and threads, and its proof is easy using the non-structural typing
rules and Generation Lemmas.

Lemma 5.3. 1. If Σ � Σ′ and ∆; Γ ; Σ ⊢ e : t , then ∆; Γ ; Σ′ ⊢ e : t .
2. If Σ � Σ′ and ∆; Γ ; Σ ⊢ P : thread , then ∆; Γ ; Σ′ ⊢ P : thread .

Using the above lemma and the Generation Lemmas one can show that the
structural equivalence preserves typing.

Lemma 5.4 (Preservation of Typing under Structural Equivalence). If
∆; Γ ; Σ ⊢ P : thread and P ≡ P ′, then ∆; Γ ; Σ ⊢ P ′ : thread .

Lemma 5.5 states that the typing of E[e ] can be broken down into the typing
of e , and the typing of E[x ]. Furthermore, Σ, the environment used to type E[x ],
can be broken down into two environments, Σ = Σ1◦Σ2, where Σ1 is used to
type e , and Σ2 is used to type E[x ].



Lemma 5.5 (Subderivations). If ∆; Γ ; Σ ⊢ E[e ] : t , then there exist Σ1, Σ2,
t ′, x fresh in E,Γ , such that Σ = Σ1◦Σ2, and ∆; Γ ; Σ1 ⊢ e : t ′, and
∆; Γ, x : t ′; Σ2 ⊢ E[x ] : t .

On the other hand, Lemma 5.6 allows the combination of the typing of E[x ]
and the typing of e , provided that the contexts Σ1 and Σ2 used for the two
typing can be composed through ◦, and that the type of e is the same as the
one of x in the first typing.

Lemma 5.6 (Context Substitution). If ∆; Γ ; Σ1 ⊢ e : t ′, and ∆; Γ, x :
t ′; Σ2 ⊢ E[x ] : t , and Σ1◦Σ2 is defined, then ∆; Γ ; Σ1◦Σ2 ⊢ E[e ] : t .

We can now state the Subject Reduction theorem:

Theorem 5.7 (Subject Reduction).

1. ∆; Γ ; Σ ⊢ e : t , and Γ ; Σ ⊢ h, and e , h −→ e ′, h′ imply ∆; Γ ′; Σ ⊢ e ′ : t ,
and Γ ′; Σ ⊢ h′, with Γ ⊆ Γ ′.

2. ∆; Γ ; Σ ⊢ P ; h and P, h −→ P ′, h′ imply ∆; Γ ′; Σ′ ⊢ P ; h′ with Γ ⊆ Γ ′ and
Σ ⊆ Σ′.

The proof, given in the Appendix, is by structural induction on the deriva-
tion e , h −→ e ′, h′ or P, h −→ P ′, h′. It uses the Generation Lemmas, the
Subderivations Lemma, and the Context Substitution Lemma, as well further
lemmas, stated and proven in the Appendix, and which deal with properties of
the relation “�”, of the operators “◦”, “||”, and of substitutions.

6 Conclusion and Further Work

In this paper we presented the language Moose<:, through which we studied the
addition of bounded polymorphism to an object-oriented language with session
types, and the selection of communication based on the class of objects being
sent/received. Through a case study we demonstrated how these new features
add flexibility and expressibility. Because of covariance/contravariance of out-
put/input, and the need to match cases, Moose<: subtype and duality relations
are more interesting than in most work on session types.

In terms of the type systems, there are several directions we plan to explore:
We want to extend Moose<: to incorporate generic classes in the style of GJ [22],
and allow method generic parameters to appear within class instantiations in the
argument and result types. We would also like to add union types [26] so as to
require the class of objects sent in case expressions to be one of the expected
classes and thus guarantee applicability of rule ComSCaseSuccess-R. Finally,
more refined notions of polymorphism, such as F-bounded polymorphism [4]
and match-bounded polymorphism [3], deserve investigations in the framework
of session types for object-oriented languages.

In terms of the language design, we believe that selection of communication
based on the class of objects being sent/received, rather than on the basis of a



label or a boolean, is the right design choice in the context of an object oriented
language. However, so far, we have only considered what is a natural extension of
an object oriented language. A more interesting question to tackle in the future,
is an amalgamation of object orientation with session primitives.
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A Proof of Subject Reduction

A.1 Generation Lemmas

Lemma A.1 (Generation for Standard Expressions).

1. ∆; Γ ; Σ ⊢ x : t implies ∅ � Σ and x : t ′ ∈ Γ for some t ′ such that
∆ ⊢ t ′ <: t .

2. ∆; Γ ; Σ ⊢ c : t implies ∅ � Σ and t = s .
3. ∆; Γ ; Σ ⊢ null : t implies ∅ � Σ.
4. ∆; Γ ; Σ ⊢ o : t implies ∅ � Σ and o : C ∈ Γ for some C such that

∆ ⊢ C <: t .
5. ∆; Γ ; Σ ⊢ NullExc : t implies ∅ � Σ.
6. ∆; Γ ; Σ ⊢ this : t implies ∅ � Σ and this : C ∈ Γ for some C such that

∆ ⊢ C <: t .
7. ∆; Γ ; Σ ⊢ e 1; e 2 : t implies Σ = Σ1◦Σ2, and t = t

2
and Γ ; Σi ⊢ e i : t

i
for

some Σi, t i
(i ∈ {1, 2}).

8. ∆; Γ ; Σ ⊢ e .f := e ′ : t implies Σ = Σ1◦Σ2, and Γ ; Σ1 ⊢ e : C and
Γ ; Σ2 ⊢ e ′ : t with f t ∈ fields(C) for some Σ1, Σ2, C.

9. ∆; Γ ; Σ ⊢ e .f : t implies Γ ; Σ ⊢ e : C and f t ∈ fields(C) for some C.
10. ∆; Γ ; Σ ⊢ e .m (e 1, . . . , e n) : t implies ∆; Γ ; Σ0 ⊢ e : C, and ∆; Γ ; Σi ⊢ e i : t i

for 1 ≤ i ≤ n−m, and e n−m+j = u j for 1 ≤ j ≤ m, and Σ0◦Σ1 . . . ◦Σn−m◦
{u 1 : ρ1, . . . , u m : ρm} � Σ and mtype(m , C) = t 1, . . . , t n−m, ρ1, . . . , ρm → t ,
for some m (0 ≤ m ≤ n), Σi, t i, u j , ρj , C (1 ≤ i ≤ n − m, 1 ≤ j ≤ m).

11. ∆; Γ ; Σ ⊢ new C : t implies ∅ � Σ and ∆ ⊢ C <: t .
12. ∆; Γ ; Σ ⊢ new (s , s ) : t implies ∅ � Σ and ∆ ⊢ (s , s )<: t .
13. ∆; Γ ; Σ ⊢ spawn { e } : t implies Σ′ � Σ, and ended(Σ′) and t = Object

and ∆; Γ ; Σ′ ⊢ e : t ′ for some Σ′, t ′.

Proof. By induction on typing derivations, then case analysis over the shape of
the expression being typed, and then case analysis over the last rule applied. We
just show one paradigmatic case of the inductive step.

(10) If the expression being typed has the shape e .m (e 1, . . . , e n), then the
last rule applied is Meth, or one of the structural rules. We only consider the
case where the last applied rule is Consume:

∆; Γ ; Σ, u : ε.end ⊢ e .m (e 1, . . . , e n) : t

∆; Γ ; Σ, u :l⊢ e .m (e 1, . . . , e n) : t

By induction hypothesis we get ∆; Γ ; Σ0 ⊢ e : C, and ∆; Γ ; Σi ⊢ e i : t i for
1 ≤ i ≤ n − m, and e n−m+j = u j for 1 ≤ j ≤ m, and

Σ0◦Σ1 . . . ◦Σn−m◦{u 1 : ρ1, . . . , u m : ρm} � Σ, u : ε.end

and mtype(m , C) = t 1, . . . , t n−m, ρ1, . . . , ρm → t , for some m (0 ≤ m ≤ n),
Σi, t i, u j , ρj, C (1 ≤ i ≤ n−m, 1 ≤ j ≤ m). By definition we also have that Σ, u :
ε.end � Σ, u :l, and from transitivity of � we obtain that Σ0◦Σ1 . . . ◦Σn−m◦{u 1 :
ρ1, . . . , u m : ρm} � Σ, u :l.



Lemma A.2 (Generation for Communication Expressions).
1. ∆; Γ ; Σ ⊢ connect u s {e } : t implies s = begin.η, and ∆; Γ ; ∅ ⊢ u : begin.η

and ∆; Γ \ u ; Σ, u : η ⊢ e : t , for some η.
2. ∆; Γ ; Σ ⊢ u .send ( e ) : t implies t = Object and ∆; Γ ; Σ′ ⊢ e : t ′ and

Σ′◦{u : !t } � Σ for some Σ′, t ′.
3. ∆; Γ ; Σ ⊢ u .receive (x ){e } : t implies ∆, X <: t ′; Γ, x : X ; Σ′ ⊢ e : t and

X 6∈ Γ ∪ ∆ ∪ Σ \ u and {u : ?(X <:t ′)}◦Σ′ = Σ for some X, t ′, Σ′.
4. ∆; Γ ; Σ ⊢ u .sendS (u ′) : t implies t = Object and {u ′ : η, u :!(η)} � Σ for

some η.
5. ∆; Γ ; Σ ⊢ u .receiveS (x ){e } : t implies t = Object and

∆, η <: X ; Γ \ x ; {x : η} ⊢ e : t ′ and {u : ?(X <:η)} � Σ for some X, η.
6. ∆; Γ ; Σ ⊢ u .sendCase (e ){C1 ⊲ e 1; · · · ;Cn ⊲ e n} : t implies ∆; Γ ; Σ0 ⊢ e : C

and ∆, Xi <: Ci; Γ, x : Xi; Σ
′, u : ρi ⊢ e i : t ∀i ∈ {1, ..., n}, and

Σ0◦Σ′, u :!LC1.ρ1, . . . ,Cn.ρnM � Σ for some C , Σ0, Σ
′, ρ1, . . . , ρn.

7. ∆; Γ ; Σ ⊢ u .receiveCase (x ){C1 ⊲ e 1; · · · ;Cn ⊲ e n} : t implies
∆, Xi <: Ci; Γ, x : Xi; Σ

′, u : ρi ⊢ e i : t ∀i ∈ {1, ..., n}, and
Σ′, u :?L(X1 <:C1).ρ1, . . . , (Xn <:Cn).ρnM � Σ for some Σ′, ρ1, . . . , ρn.

8. ∆; Γ ; Σ ⊢ u .sendWhile (e ){C1 ⊲ e 1; · · · ;Cn ⊲ e n}{D1 ⊲ d 1; · · · ;Dm ⊲ d m} : t

implies ∆; Γ ; ∅ ⊢ e : C, and ∆; Γ ; {u : πi} ⊢ e i : t and Ci <: C
∀i ∈ {1, . . . , n}, and ∆; Γ ; {u : πn+j} ⊢ d j : t and Dj <: C ∀j ∈ {1, . . . , m},
and {u : !L(C1.π1, . . . ,Cn.πn)∗,D1.πn+1, . . . ,Dm.πn+mM} � Σ for some
C , π1, . . . , πn+m.

9. ∆; Γ ; Σ ⊢ u .receiveWhile (x ){C1 ⊲ e 1; · · · ;Cn ⊲ e n}{D1 ⊲ d 1; · · · ; Dm ⊲ d m} : t

implies ∆, Xi <: Ci; Γ, x : Xi; {u : πi} ⊢ e i : t ∀i ∈ {1, . . . , n}, and
∆, Yj <: Dj ; Γ, x : Yj ; {u : πn+j} ⊢ d j : t ∀j ∈ {1, . . . , m}, and
{u : ?L((X1 <:C1).π1, . . . , (Xn <:Cn).πn)∗, (Y1 <:D1).πn+1, . . . , (Ym <:Dm).πn+mM} � Σ,

for some X1, . . . , Xn, Y1, . . . , Ym, π1, . . . , πn+m.

Proof. Similar to the proof of Lemma A.1.

Lemma A.3 (Generation for Threads).
1. ∆; Γ ; Σ ⊢ e :thread implies ∆; Γ ; Σ ⊢ e : t for some t .
2. ∆; Γ ; Σ ⊢ P1 |P2 : thread implies Σ = Σ1||Σ2 and ∆; Γ ; Σi ⊢ Pi : thread

(i ∈ {1, 2}) for some Σ1, Σ2.

Proof. Similar to the proof of Lemma A.1.

A.2 Types Preservation under Structural Equivalence, and under
Substitutions

As a convenient shorthand, for any two entities x and y which belong to a domain
that includes ⊥, we use the notation x , y to indicate that x is defined if and
only if y is defined, and if x is defined then x = y.

In Lemma 5.4 we show that structural equivalence of terms preserves types.
To prove this, we first prove in Lemma A.4 the neutrality of element ∅, and
associativity and commutativity of parallel composition of session environments.
Moreover we show in Lemma A.5 various properties of “�”, “||”, and “◦” which
easily follow from their definitions.



Lemma A.4. 1. Σ1||∅ = Σ1 = ∅||Σ1.
2. Σ1||Σ2 , Σ2||Σ1.
3. Σ1||(Σ2||Σ3) , (Σ1||Σ2)||Σ3.

Proof. Note that for any Σ, Σ′, if Σ||Σ′ is defined, then D(Σ||Σ′) = D(Σ) ∪
D(Σ′).
(1) follows from definition of ||.
For (2) show ∀u∈ D(Σ1)∪D(Σ2) : Σ1(u )||Σ2(u ) , Σ2(u )||Σ1(u ). For (3) show
∀u∈ D(Σ1)∪D(Σ2)∪D(Σ3) : Σ1(u )||(Σ2(u )||Σ3(u )) , (Σ1(u )||Σ2(u ))||Σ3(u ).

The next Lemma, i.e. A.5, characterizes small modifications on operations
that preserve well-formedness of the session environment compositions, “||” and
“◦”, and also the preservation of the relationship “�”. It will be used in the
proof of Subject Reduction.

We define:

Σ[u 7→ θ](u ′) =

{

θ if u = u ′,

Σ(u ′) otherwise.

A running type is atomic if it is of one of the following shapes:

?(X <:t ), !t , ?(X <:η), !( η), !LC̃ .ρ̃M, ?L(X̃ <: C̃ ).ρ̃M,

!L(C̃ .π̃)∗, C̃ .π̃M, ?L((X̃ <: C̃ ).π̃)∗, (X̃ <: C̃ ).π̃M.

Lemma A.5. 1. ∅ � Σ1, and Σ1||Σ2 defined imply Σ2 � Σ1||Σ2.
2. Σ1||Σ2 � Σ, implies that there are Σ′

1, Σ
′

2 such that Σ1 � Σ′

1 and Σ2 � Σ′

2

and Σ′

1||Σ
′

2 = Σ.
3. Σ1 � Σ′

1, and Σ′

1◦Σ2 defined, imply Σ1◦Σ2 defined, and Σ1◦Σ2 �
Σ′

1◦Σ2.
4. ended(Σ1) and (Σ1 ∪ Σ′

1)◦Σ2 defined imply
(a) Σ′

1◦Σ2 defined,
(b) (Σ1 ∪ Σ′

1)◦Σ2 = Σ1||Σ′

1◦Σ2.
5. Σ � Σ′ implies Σ \ u � Σ′ \ u .
6. {u : τ} � Σ implies

(a) Σ(u ) ∈ {τ, τ.end, l} and R(Σ \ u ) ⊆ {ε, ε.end, l};
(b) {u : τ ′} � Σ[u 7→ τ ′] for all τ ′.

7. Σ, u : ρ � Σ′ and Σ′◦Σ′′ defined imply
(a) Σ′[u 7→ ρ′]◦Σ′′ defined for all ρ′, proviso that ρ′ is ended only if ρ is

ended;
(b) Σ, u : ρ′ � Σ′[u 7→ ρ′] for all ρ′.

8. Σ1||Σ2 defined and
(a) {u :!t }◦Σ′

1 � Σ1 and {u :?(X <:t ′)}◦Σ′

2 � Σ2 imply t <: t ′,
(b) {u :!η}◦Σ′

1 � Σ1 and {u :?(X <:η′)}◦Σ′

2 � Σ2 imply η <: η′.
9. Σ1◦Σ2||Σ3◦Σ4 defined, and Σ′

1, u : ρ � Σ1 and Σ′

3, u : ρ′ � Σ3, where ρ
and ρ′ are atomic, imply:
(a) ρ 1 ρ′;
(b) Σ1[u 7→ ρ1]◦Σ2||Σ3[u 7→ ρ2]◦Σ4 = Σ1◦Σ2||Σ3◦Σ4, for all ρ1, ρ2 such

that ρ1 1 ρ2 and ρ1, ρ2 are ended only if ρ, ρ′ are ended too.
10. Σ1◦Σ2||Σ3◦Σ4 defined, and {u : π} � Σ1 and {u : π′}◦Σ′

3 = Σ3 and π 1 π′

imply Σ1[u 7→ ε]◦Σ2||{u : ε}◦Σ′

3◦Σ4 = Σ1◦Σ2||Σ3◦Σ4.



Proof. For (1) notice that ∅ � Σ1 implies R(Σ1) ⊆ {ε, ε.end, l} and that Σ1||Σ2

defined implies Σ1(u ) 1 Σ2(u ) for all u ∈ D(Σ1) ∩ D(Σ2).
For (2) one can obtain Σ′

1 and Σ′

2 by applying to Σ1 and Σ2 the same transfor-
mations which build Σ from Σ1||Σ2.
(3) follows easily from the definitions of “�” and of “◦”.
(4a) is immediate. For (4b), ended(Σ1) and (Σ1 ∪ Σ′

1)◦Σ2 defined imply that
D(Σ1) ∩ D(Σ2) = ∅.
(5) follows from the definition of “�”.
(6a) follows from the definition of “�” and (6b) is a consequences of (6a).
(6a) implies (7a) and (7b).
The definition of “||”, (5) and (6a) imply (8a), (8b) and (9a). Points (9b) and
(10) follow from the observation that in all the equated session environments the
predicates of u are l.

Lemma 5.4 (Preservation of Typing under Structural Equivalence).
If ∆; Γ ; Σ ⊢ P : thread and P ≡ P ′ then ∆; Γ ; Σ ⊢ P ′ : thread .

Proof. By induction on the derivation of ≡.
For the case where P ′ = P | null, we use Lemma A.3(2), and obtain Σ = Σ1||Σ2

and ∆; Γ ; Σ1 ⊢ P : thread and ∆; Γ ; Σ2 ⊢ null : thread . Using Lemma A.3(1)
and Lemma A.1(3) we get ∆; Γ ; Σ2 ⊢ null : t 2, and ∅ � Σ2. Using Lemma
A.5(1), we obtain that Σ1 � Σ, and from that, with Lemma 5.3(2) we obtain
that ∆; Γ ; Σ ⊢ P : thread .
For the other two basic cases use Lemmas A.3(1) and A.4(2)-(3). For the induc-
tion case use Lemma A.3(1) and induction hypothesis.

The next goal is to prove that term substitution preserves types (Lemma A.6).

Lemma A.6 (Preservation of Typing under Substitution).

1. If ∆; Γ \ u ; Σ ⊢ e : t and c is fresh then ∆; Γ ; Σ[c/u ] ⊢ e [c/u ] : t .
2. If ∆; Γ, this : C ; Σ ⊢ e : t and ∆; Γ ; ∅ ⊢ o : C then ∆; Γ ; Σ ⊢ e [o/this] : t .
3. If ∆, X <: t ′; Γ, x : X ; Σ ⊢ e : t and ∆; Γ ; ∅ ⊢ v : t ′′ and ∆ ⊢ t ′′ <: t ′,

then ∆; Γ ; Σ[t
′′
/X] ⊢ e [v/x ] : t .

4. If ∆, X <: η; Γ ; {x : X} ⊢ e : t and c is fresh and ∆ ⊢ η′ <: η, then
∆; Γ ; {c : η′} ⊢ e [c/x ] : t .

Proof. All points are proven by induction on derivations.

A.3 Types in Subderivations, and Substitutions within Contexts

Lemma 5.5 (Subderivations). If ∆; Γ ; Σ ⊢ E[e ] : t then there exist
Σ1, Σ2, x , t ′, x fresh in E,Γ , such that Σ = Σ1◦Σ2, and ∆; Γ ; Σ1 ⊢ e : t ′,
and ∆; Γ, x : t ′; Σ2 ⊢ E[x ] : t .

Proof. By induction on E, and using Generation Lemmas. For example if
E = [ ]; e ′, then ∆; Γ ; Σ ⊢ e ; e ′ : t implies Σ = Σ1◦Σ2 and Γ ; Σ1; π ⊢ e : t ′

and Γ ; Σ2; π ⊢ e ′ : t by Lemma A.1(9). Then we get ∆; Γ, x : t ′; Σ2 ⊢ x ; e ′ : t

by rules Var and Seq.



Lemma 5.6 (Context Substitution). If ∆; Γ ; Σ1 ⊢ e : t ′, and
∆; Γ, x : t ′; Σ2 ⊢ E[x ] : t , and Σ1◦Σ2 is defined, then ∆; Γ ; Σ1◦Σ2 ⊢ E[e ] : t .

Proof. By induction on E, and using the Generation Lemmas.

Theorem 5.7 (Subject Reduction).

1. ∆; Γ ; Σ ⊢ e : t , and Γ ; Σ ⊢ h, and e , h −→ e ′, h′ imply ∆; Γ ′; Σ ⊢ e ′ : t ,
and Γ ′; Σ ⊢ h′, with Γ ⊆ Γ ′.

2. ∆; Γ ; Σ ⊢ P ; h and P, h −→ P ′, h′ imply ∆; Γ ′; Σ′ ⊢ P ; h′ with Γ ⊆ Γ ′ and
Σ ⊆ Σ′.

Proof. By induction on the reduction e , h −→ e ′, h′. We only consider the most
interesting cases.

Rule Spawn-R.

Therefore, the expression being reduced has the form E[spawn { e }], and
0) h′ = h and P ′ = E[null] | e ,
1) ∆; Γ ; Σ ⊢ E[spawn { e }] : t ,
2) Γ ; Σ ⊢ h.

The aim of the next steps is to derive types for e and for E[null].

Applying Lemma 5.5 on 1) we obtain for some t ′, Σ1, Σ2:
3) ∆; Γ ; Σ1 ⊢ spawn { e } : t ′,
4) Σ = Σ1◦Σ2,
5) ∆; Γ, x : t ′; Σ2 ⊢ E[x] : t .
From 3) and Lemma A.1(13), we get for some t ′′, Σ′

1:
6) t ′ = Object ,
7) ∆; Γ ; Σ′

1 ⊢ e : t ′′,
8) ended(Σ′

1),
9) Σ′

1 � Σ1.
From 5), type rule Null, and Lemma 5.6, we get:

10) ∆; Γ ; Σ2 ⊢ E[null] : t .
From 10) and rule Start, and from 7) and rule Start, we obtain:

11) ∆; Γ ; Σ2 ⊢ E[null] : thread ,
12) ∆; Γ ; Σ′

1 ⊢ e : thread .
From 11), 12) and rule Par we get:

13) ∆; Γ ; Σ′

1||Σ2 ⊢ e |E[null] : thread .

The aim of the next steps is to derive types for e |E[null] in the session envi-
ronment Σ.

From 4) we obtain that Σ1◦Σ2 is defined, and therefore, from 9) and Lemma A.5(3),
we obtain:

14) Σ′

1◦Σ2 is defined, and Σ′

1◦Σ2 � Σ1◦Σ2.
Also, from 8), Lemma A.5(4b), we obtain:

15) Σ′

1||Σ2 = Σ′

1◦Σ2.
Therefore, from 13), 14), 15), and Lemma 5.3(2), we obtain:



16) ∆; Γ ; Σ ⊢ e |E[null] : thread .

The case concludes by taking Σ′ = Σ, Γ ′ = Γ and with 15) and 0).

Rule Connect-R.

Then, we have that
0) P = E1[connect c s {e 1}] |E2[connect c s ′{e 2}],
1) h′ = h ::c ′, with c ′ is fresh in h,
2) P ′ = E1[e 1[c

′
/c ]] |E2[e 2[c

′
/c ]].

The aim of the next steps is to derive types for e 1 and for e 2.

From premises, 0) and Lemmas A.3(2), and A.3(1) we obtain for some
Σ1, Σ2, t 1, t 2:

3) Σ = Σ1||Σ2,
4) ∆; Γ ; Σi ⊢ Ei[connect c s i{e i}] : t i for (i ∈ {1, 2}),
5) Γ ; Σ ⊢ h,
where s 1 1 s 2.
From 4), applying Lemma 5.5, there exist Σ11, Σ12, Σ21, Σ22, t ′

1, t
′

2, such
that:

6) Σi = Σi1◦Σi2,
7) ∆; Γ ; Σi1 ⊢ connect c s i{e i} : t ′

i (i ∈ {1, 2}),
8) ∆; Γ, x i : t ′

i; Σi2 ⊢ Ei[x i] : t i (i ∈ {1, 2}).
From 7), and Lemma A.2(1) we obtain for some η1, η2:

9) ∆; Γ ; ∅ ⊢ c : s i,
10) s i = begin.ηi,
11) ∆; Γ \ c ; Σi1, c : ηi ⊢ e i : t ′

i (i ∈ {1, 2}).

The aim of the next steps is to derive types for P ′ in a session environment Σ′,
so that Σ ⊆ Σ′.

From 1) and 11), and Lemma A.6(1),we get:
12) ∆; Γ ; Σi1, c

′ : ηi ⊢ e i[c
′
/c ] : t ′

i (i ∈ {1, 2}).
From 12), 8) and Lemma 5.6, we obtain (notice that (Σi1, c

′ : ηi)◦Σi2 is
defined by 6) since c ′ is fresh):

13) ∆; Γ ; (Σi1, c
′ : ηi)◦Σi2 ⊢ Ei[e i[c

′
/c ]] : t ′

i (i ∈ {1, 2}).
Applying rules Start and Par on 13), and also the fact that

(Σ11, c
′ : η1)◦Σ12||(Σ21, c

′ : η2)◦Σ22 = Σ, c ′ :l,

since s 1 1 s 2 implies η1 1 η2, we obtain:
14) ∆; Γ ; Σ, c ′ :l⊢ E1[e 1[c

′
/c ]] |E2[e 2[c

′
/c ]] : thread .

Take
15) Σ′ = Σ, c ′ :l.
This gives, trivially that:

16) Σ ⊆ Σ′.
Also, from 1) and 5) we obtain:

17) Γ ; Σ′ ⊢ h′.



The case concludes by considering 14), 15), 16) and 17).

Rule ComS-R.

Therefore, we have that
0) P = E1[c .send (v )] |E2[c .receive (x ){e }], P ′ = E1[null ] |E2[e [v/x ]],
1) h′ = h, Γ ; Σ ⊢ h.
From 0), and from the premises, we obtain by Lemma A.3(2) and A.3(1)
that for some Σ1, Σ2, t 1

, t
2
:

2) ∆; Γ ; Σ1 ⊢ E1[c .send (v )] : t 1,
3) ∆; Γ ; Σ2 ⊢ E2[c .receive (x ){e }] : t 2,
4) Σ = Σ1||Σ2.

The aim of the next steps is to derive types for c .receive (x ){e } and c .send (v ),
and for E1[x ] and E2[x ].

From 2) and Lemma 5.5, we obtain for some Σ11, Σ12, t
′

1:
5) ∆; Γ ; Σ11 ⊢ c .send (v ) : t ′

1,
6) ∆; Γ, z : t ′

1; Σ12 ⊢ E1[z ] : t 1,
7) Σ1 = Σ11◦Σ12.
From 5) and Lemmas A.2(2)and A.1(2), A.1(3), A.1(4), we obtain for some
t ′′

1 :
8) ∆; Γ ; ∅ ⊢ v : t ′′

1 ,
9) {c :!t ′′

1} � Σ11.
From 3), and Lemma 5.5, we obtain for some Σ21, Σ22, t

′

2:
10) ∆; Γ ; Σ21 ⊢ c .receive (x ){e } : t ′

2,
11) ∆; Γ, y : t ′

2; Σ22 ⊢ E2[y ] : t 2,
12) Σ2 = Σ21◦Σ22.
From 10), by Lemma A.2(3), we obtain for some X , t ′′

2 and Σ′

21:
13) {c : ?(X <:t ′′

2)}◦Σ′

21 = Σ21,
14) ∆, X <: t ′′

2 ; Γ, x : X ; Σ′

21 ⊢ e : t ′

2.

The aim of the next steps is to derive types for E1[null] and E2[e [v/x ]].

From 9), and 7), and Lemma A.5(7a) and (6b), we obtain:
15) Σ11[c 7→ ε]◦Σ12 is defined,
16) {c : ε} � Σ11[c 7→ ε].
By rules Null, and WeakES, we obtain ∆; Γ ; {c : ε} ⊢ null : t ′

1.
Then, by 16) and Lemma 5.3(1) we obtain:

17) ∆; Γ ; Σ11[c 7→ ε] ⊢ null : t ′

1.
From 6), 15) , 17), and Lemma 5.6, we obtain:

18) ∆; Γ ; Σ11[c 7→ ε]◦Σ12 ⊢ E1[null] : t 1.
From 7), 9) by Lemma A.5(3) we get:

19) {c :!t ′′

1}◦Σ12 � Σ1.
12) and 13) imply:

20) {c :?(X <:t ′′

2)}◦Σ′

21◦Σ22 = Σ2.
19), and 20) imply by Lemma A.5(8a)

21) t ′′

1 <: t ′′

2 .
Therefore, with 8) and 14) we obtain by Lemma A.6(3):



22) ∆; Γ ; Σ′

21 ⊢ e [v/x ] : t ′

2,
and then by 11) and Lemma 5.6 and possibly rule WeakES:

23) ∆; Γ ; {c : ε}◦Σ′

21◦Σ22 ⊢ E2[e [v/x ]] : t 2.
Furthermore, from 4), 7), 12), 9), 13), 21) and Lemma A.5(10), we obtain:

24) Σ11[c 7→ ε]◦Σ12||{c : ε}◦Σ21◦Σ22 = Σ11◦Σ12||Σ21◦Σ22 = Σ.

The case concludes by applying rules Par and Start to 18) and 23) taking 24)
and 1) into account.

Rule ComSS-R.

We have:
0) P = E1[c .sendS (c ′)] | E2[c .receiveS (x ){e }],
1) P ′ = E1[null] | e [c

′
/x ] | E2[null],

2) h′ = h, Γ ; Σ ⊢ h,
3) ∆ ; Γ ; Σ ⊢ P : thread .
From 0), 3) and using Lemma A.3(2) and (1), we obtain for some Σ1, Σ2, t 1, t 2:

4) ∆ ; Γ ; Σ1 ⊢ E1[c .sendS (c ′)] : t 1,
5) ∆ ; Γ ; Σ2 ⊢ E2[c .receiveS (x ){e }] : t 2,
6) Σ = Σ1||Σ2.

The aim of the next steps is to derive types for E1[null] and E2[null].

From 4), Lemma 5.5 and Lemma A.2(4) we get for some Σ11, Σ12, t
′

1, η 6=
ε.end:

7) ∆ ; Γ ; Σ11 ⊢ c .sendS (c ′) : t ′

1,
8) ∆ ; Γ, y : t ′

1 ; Σ12 ⊢ E1[y ] : t 1,
9) Σ1 = Σ11◦Σ12,
10) t ′

1 = Object ,
11) {c :!(η), c ′ : η} � Σ11.

11) and Lemma A.5(5) imply
12) {c ′ : η} � Σ11 \ c ,
which gives by η 6= ε.end and Lemma A.5(6a), for some Σ′

11:
13) Σ11 = Σ′

11, c
′ : η.

13) and 9) imply by Lemma A.5(4a)
14) Σ′

11◦Σ12 defined.
11) and 13) imply by Lemma A.5(5)

15) {c :!(η)} � Σ′

11.
Using rules Null, WeakES we obtain:

16) ∆ ; Γ ; {c : ε} ⊢ null : t ′

1.
By 15), 14), and Lemma A.5(7a) and (6b) respectively we have:

17) Σ′

11[c 7→ ε]◦Σ12 defined,
18) {c : ε} � Σ′

11[c 7→ ε].
From 18), 16), and using Lemma 5.3(1) we obtain:

19) ∆ ; Γ ; Σ′

11[c 7→ ε] ⊢ null : t ′

1.
From 8), 19), 17) and Lemma 5.6, we obtain:

20) ∆ ; Γ ; Σ′

11[c 7→ ε]◦Σ12 ⊢ E1[null] : t 1.
From 5), Lemma 5.5 and Lemma A.2(5) we get for some Σ21, Σ22, t

′

2, η
′ 6=

ε.end:



21) ∆ ; Γ ; Σ21 ⊢ c .receiveS (x ){e } : t ′

2

22) ∆ ; Γ, z : t ′

2 ; Σ22 ⊢ E2[z ] : t 2,
23) Σ2 = Σ21◦Σ22,
24) t ′

2 = Object ,
25) {c :?(X <:η′)} � Σ21,
26) ∆, X <: η′ ; Γ \ x ; {x : X} ⊢ e : t ′.
With a proof similar to that of 20) we can show:

27) ∆ ; Γ ; Σ21[c 7→ ε]◦Σ22 ⊢ E2[null] : t 2.

The aim of the next steps is to type e [c
′
/x ] and show that the type of c used

to type c .sendS (c ′) is dual to that used to type c .receiveS (x ){e }, and that the
parallel composition of the session environments used to type E1[null], E2[null],
and e [c

′
/x ] is the same as Σ.

13) and 9) imply by Lemma A.5(4b)
28) Σ11◦Σ12 = {c ′ : η}||Σ′

11◦Σ12.
6), 9), 23) and 28) imply:

29) Σ′

11◦Σ12||Σ21◦Σ22 defined.
From 29), 15), 25) by Lemma A.5(9a) we get:

30) !(η) 1?(X <:η′),
which implies by definition of 1:

31) η <: η′.
From 26) and 31) using Lemma A.6(4) we obtain:

32) ∆ ; Γ ; {c ′ : η} ⊢ e [c
′
/x ] : t ′.

Again from 29), 15), 25) by Lemma A.5(9b) we get:
33) Σ′

11[c 7→ ε]◦Σ12||Σ21[c 7→ ε]◦Σ22 = Σ′

11◦Σ12||Σ21◦Σ22.
6), 9), 28), 23), and 33) imply:

34) Σ = {c ′ : η}||Σ′

11[c 7→ ε]◦Σ12||Σ21[c 7→ ε]◦Σ22.

The case concludes by applying rules Par and Start to 20), 27), 32) by taking
into account 34) and 2).

Rule ComSCaseSuccess-R.

Then, we have that:
0) P = E1[c .sendCase (o ){C1 ⊲ e 1; · · · ;Cn ⊲ e n}] |

E2[c .receiveCase (x ){C ′

1 ⊲ e ′

1; · · · ;C ′

m ⊲ e ′

m}],
1) h′ = h,
2) Γ ; Σ ⊢ h,
3) P ′ = E1[e i] |E2[e k[o/x ]], h,
4) h(o ) = (C , . . . ) and C <: Ci and ∀j < i(C 6<: Cj), where i ∈ {1, . . . , n},

and C <: C ′

k and ∀l < k(C 6<: C ′

l ), where k ∈ {1, . . . , m}.
From premises, 0) and Lemma A.3(2) and A.3(1) we obtain for some Σ1, Σ2, t 1, t 2:

5) Σ = Σ1||Σ2,
6) ∆; Γ ; Σ1 ⊢ E1[c .sendCase (o ){C1 ⊲ e 1; · · · ;Cn ⊲ e n}] : t 1,
7) ∆; Γ ; Σ2 ⊢ E2[c .receiveCase (x ){C ′

1 ⊲ e ′

1; · · · ;C ′

m ⊲ e ′

m}] : t 2.
4) and 2) imply

8) Γ (o ) = C .



From 6), 7) applying Lemma 5.5, there exist Σ11, Σ12, Σ21, Σ22, t ′

1, t ′

2 so
that:

9) Σ1 = Σ11◦Σ12, Σ2 = Σ21◦Σ22,
10) ∆; Γ ; Σ11 ⊢ c .sendCase (o ){C1 ⊲ e 1; · · · ;Cn ⊲ e n} : t ′

1,
11) ∆; Γ, y : t ′

1; Σ12 ⊢ E1[y ] : t 1,
12) ∆; Γ ; Σ21 ⊢ c .receiveCase (x ){C ′

1 ⊲ e ′

1; · · · ;C ′

m ⊲ e ′

m} : t ′

2,
13) ∆; Γ, z : t ′

2; Σ22 ⊢ E2[z ] : t 2.

The aim of the next steps is to find types for e i, and E1[e i].

From 10), 8), and Lemmas A.2(6) and A.1(4), we obtain for some Σ0, Σ′

11,
ρ1, . . . , ρn:

14) ∆; Γ ; Σ0 ⊢ o : C ′ for some C ′ such that C <: C ′,
15) ∅ � Σ0,
16) ∆; Γ ; Σ′

11, c : ρj ⊢ e j : t ′

1 ∀j ∈ {1, ..., n},
17) Σ0◦Σ′

11, c : !LC1.ρ1, . . . ,Cn.ρnM � Σ11.
15) and 17) imply by Lemma A.5(3) and transitivity of �:

18) Σ′

11, c : !LC1.ρ1, . . . ,Cn.ρnM � Σ11,
and then by Lemma A.5(7b) and A.5(7a) and 9)

19) Σ′

11, c : ρi � Σ11[c 7→ ρi],
20) Σ11[c 7→ ρi]◦Σ12 is defined.
From 16) and 19) we get by Lemma 5.3(1):

21) ∆; Γ ; Σ11[c 7→ ρi] ⊢ e i : t ′

1,
which together with 11), 20) implies by Lemma 5.6:

22) ∆; Γ ; Σ11[c 7→ ρi]◦Σ12 ⊢ E1[e i] : t 1.

The aim of the next steps is to show that the type of c used to type e i is dual
to that used to type e ′

k, and to find types for e ′

k[o/x ] and E2[e
′

k[o/x ]].

From 12), and Lemma A.2(7), we obtain for some Σ′

21, t ′

2, ρ′1, . . . , ρ
′

m:
23) ∆, Xl <: C ′

l ; Γ, x : Xl; Σ
′

21, c : ρ′l ⊢ e ′

l : t ′

2 ∀l ∈ {1, ..., m},
24) Σ′

21, c :?L(X1 <:C ′

1).ρ
′

1, . . . , (Xm <:C ′

m).ρ′mM � Σ21.
Because of 18), 24), being Σ11◦Σ12||Σ21◦Σ22 defined, and by Lemma A.5(9a)
we obtain that:

25) !LC1.ρ1, . . . ,Cn.ρnM 1?L(X1 <:C ′

1).ρ
′

1, . . . , (Xm <:C ′

m).ρ′mM.
Therefore, by definition of the duality relation:

26) ρj 1 ρ′l[Cj g Cl/Xl] ∀j ∈ {1, ..., n} and ∀l ∈ {1, ..., m}.
4) and 8) imply by rules Oid and Sub (notice that Ci g C ′

k 6= ⊥ by 4)):
27) ∆; Γ ; ∅ ⊢ o : Ci g C ′

k.
Similarly to previous case we can derive:

28) Σ21[c 7→ ρ′k[Ci g C ′
k/Xk]]◦Σ22 defined,

29) ∆, Xk <: C ′

k; Γ, x : X ; Σ21[c 7→ ρ′k] ⊢ e ′

k : t ′

2.
Applying Lemma A.6(3) to 29), 27), 26), and 4), taking into account that
Xk can occur only in ρ′k we derive:

30) ∆; Γ ; Σ21[c 7→ ρ′k[Ci g C ′
k/Xk]] ⊢ e ′

k[o/x ] : t ′

2,
which together with 13), 28) implies by Lemma 5.6:

31) ∆; Γ ; Σ21[c 7→ ρ′k[Ci g C ′
k/Xk]]◦Σ22 ⊢ E2[e

′

k[o/x ]] : t 2.
From 26), 9), 19), 24), 5) by Lemma A.5(9b) we obtain that:



32) Σ11[c 7→ ρk]◦Σ12 || Σ21[c 7→ ρ′k[Ci g C ′
k/Xk]]◦Σ22 = Σ11◦Σ12 || Σ21◦Σ22 =

Σ.

The case concludes by applying rules Par and Start to 22), 31), and taking into
account 32) and 1), 2).

Rule ComSWhile-R.

Then, we have that:
0) P = E1[c .sendWhile (e ){C1 ⊲ e 1; · · · ;Cn ⊲ e n}{D1 ⊲d 1; · · · ;Dm ⊲d m}] |

E2[c .receiveWhile (x ){C ′

1 ⊲ e ′

1; · · · ;C ′

n′ ⊲ e ′

n′}{D ′

1 ⊲ d ′

1; · · · ;D ′

m′ ⊲ d ′

m′}],
1) h′ = h,
2) Γ ; Σ ⊢ h,
3) P ′ = E1[ê ] | E2[ě ],
where we are using the shorthands:

4) ê = c .sendCase (e ){C1 ⊲ e
♮
1; · · · ;Cn ⊲ e ♮

n,D1 ⊲ d 1; · · · ;Dm ⊲ d m},
5) ě = c .receiveCase (x ){C ′

1 ⊲ e ♭
1; · · · ;C ′

n′ ⊲ e ♭
n′ ,D ′

1 ⊲ d ′

1; · · · ;D ′

m′ ⊲ d ′

m′},

6) e
♮
i ≡ e i; c .sendWhile (e ){C1 ⊲ e 1; · · · ;Cn ⊲ e n}{D1 ⊲ d 1; · · · ;Dm ⊲ d m},

7) e ♭
k = e ′

k;
c .receiveWhile (x ){C ′

1 ⊲ e ′

1; · · · ;C ′

n′ ⊲ e ′

n′}{D ′

1 ⊲ d ′

1; · · · ;D ′

m′ ⊲ d ′

m′}.
From premises, 0) and Lemma A.3(2), and A.3(1) we obtain for some Σ1, Σ2, t 1, t 2:

8) Σ = Σ1||Σ2,
9) ∆; Γ ; Σ1 ⊢

E1[c .sendWhile (e ){C1 ⊲e 1; · · · ;Cn ⊲e n}{D1 ⊲d 1; · · · ;Dm ⊲d m}] : t 1,
10) ∆; Γ ; Σ2 ⊢

E2[c .receiveWhile (x ){C ′

1⊲e ′

1; · · · ;C ′

n′ ⊲e ′

n′}{D ′

1⊲d ′

1; · · · ;D ′

m′⊲d ′

m′}] : t 2.
From 9), 10) applying Lemma 5.5, there exist Σ11,Σ12, Σ21, Σ22, t ′

1, t ′

2 so
that:

11) Σ1 = Σ11◦Σ12, Σ2 = Σ21◦Σ22,
12) ∆; Γ ; Σ11 ⊢

c .sendWhile (e ){C1 ⊲ e 1; · · · ;Cn ⊲ e n}{D1 ⊲ d 1; · · · ;Dm ⊲ d m} : t ′

1,
13) ∆; Γ, y : t ′

1; Σ12 ⊢ E1[y ] : t 1,
14) ∆; Γ ; Σ21 ⊢

c .receiveWhile (x ){C ′

1⊲e ′

1; · · · ;C ′

n′ ⊲e ′

n′}{D ′

1⊲d ′

1; · · · ;D ′

m′ ⊲d ′

m′} : t ′

2,
15) ∆; Γ, z : t ′

2; Σ22 ⊢ E2[z ] : t 2.

The aim of the next steps is to find types for ê , and E1[ê ].

From 12), and Lemma A.2(8), we obtain for some π1, . . . , πn+m, t ′

1:
16) {c : !L(C1.π1, . . . ,Cn.πn)∗,D1.πn+1, . . . ,Dm.πn+mM} � Σ11,
17) ∆; Γ ; ∅ ⊢ e : C ,
18) ∆; Γ ; {u : πi} ⊢ e i : t ′

1 and Ci <: C for all i ∈ {1, . . . , n},
19) ∆; Γ ; {u : πn+j} ⊢ d j : t ′

1 and Dj <: C for all j ∈ {1, . . . , m}.
We will be using π̂ as a shorthand defined as follows:

20) π̂ =!LC1.π
♮
1, . . . ,Cn.π♮

n,D1.πn+1, . . . ,Dm.πn+mM, where

21) π♮
i = πi.!L(C1.π1, . . . ,Cn.πn)∗,D1.πn+1, . . . ,Dm.πn+mM for i ∈ {1, . . . , n}.

By application of type rules Null, SendCase, Seq, SendWhile on 17)
and 18), and using the shorthands 4) and 20) we obtain:



22) ∆; Γ ; {c : π̂} ⊢ ê : t ′

1.
By application of Lemma A.5(6b) on 16) we get that:

23) {c : π̂} � Σ11[c 7→ π̂],
which together with 22) implies by Lemma 5.3(1)

24) ∆; Γ ; Σ11[c 7→ π̂] ⊢ ê : t ′

1.
Applying Lemma A.5(7a) to 16) and 11) we have that:

25) Σ11[c 7→ π̂]◦Σ12 is defined.
Therefore applying Lemma 5.6 on 13), 24) and 25) we obtain:

26) ∆; Γ ; Σ11[c 7→ π̂]◦Σ12 ⊢ E1[ê ] : t 1.

The aim of the next steps is to find types for ě and E2[ě ].

By arguments similar to those used to get 16) and 18), we obtain from 14)
for some π′

1, . . . , π
′

n′+m′ , t ′

2:
27) ?L((X1 <:C ′

1).π
′

1, . . . , (Xn′ <:C ′

n′).π′

n′)∗,
(Y1 <:D ′

1).π
′

n′+1, . . . , (Ym′ <:D ′

m′).π′

n′+m′M � Σ21,
28) ∆; Γ ; {u : π′

k} ⊢ e ′

k : t ′

2 for all k ∈ {1, . . . , n′},
29) ∆; Γ ; {u : πn′+l} ⊢ d l : t ′

2 for all l ∈ {1, . . . , m′}.
We use the shorthand

30) π̌ =?L(X1 <: C ′

1).π
♭
1, . . . , (Xn′ <: C ′

n′).π♭
n′ ,

(Y1 <: D ′

1).π
′

n′+1, . . . , (Ym′ <: D ′

m′).π′

n′+m′M, where

31) π♭
k = π′

k.?L((X1 <:C ′

1).π
′

1, . . . , (Xn′ <:C ′

n′).π′

n′)∗,
(Y1 <:D ′

1).π
′

n′+1, . . . , (Ym′ <:D ′

m′).π′

n′+m′M for k ∈ {1, . . . , n′}.
Then, by arguments similar to those used to get 26), we obtain that:

32) ∆; Γ ; Σ21[c 7→ π̌]◦Σ22 ⊢ E2[ě ] : t 2.

The aim of the next steps is to show that the type of c used to type ê is dual to
that used to type ě , and that the parallel composition of the session environments
used to type E1[ê ] and E2[ě ] is the same as Σ.

Because of 16), 27), being Σ11◦Σ12||Σ21◦Σ22 defined, and by Lemma A.5(9a)
we obtain that:

33) !L(C1.π1, . . . ,Cn.πn)∗,D1.πn+1, . . . ,Dm.πn+mM ⊲⊳
?L((X1 <:C ′

1).π
′

1, . . . , (Xn′ <:C ′

n′).π′

n′ )∗, (Y1 <:D ′

1).π
′

n′+1, . . . , (Ym′ <:D ′

m′).π′

n′+m′M,
which implies, by definition of the duality relation:

34) π̂ 1 π̌.
Therefore, by Lemma A.5(9b) and using 11), 16), 27), 8) we obtain that:

35) Σ11[c 7→ π̂]◦Σ12 || Σ21[c 7→ π̌]◦Σ22 = Σ11◦Σ12 || Σ21◦Σ22 = Σ.

The case concludes by applying rules Par and Start to 26), 32), and taking into
account 35) and 1), 2).


