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Abstract. The aim of this paper is to understand the interplay between intersection,
universally quantified, and reference types. Putting together the standard typing rules for
intersection, universally quantified, and reference typesleads to loss of subject reduc-
tion. The problem comes from the invariance of the referencetype constructor and the
rules of intersection and/or universal quantification elimination, which are subsumption
rules. We propose a solution in which types have a kind sayingwhether the type is (or
contains in the case of intersection) a reference type or not. Intersection elimination is
limited to intersections not containing reference types, and the reference type construc-
tor can only be applied to closed types. The type assignment is shown to be safe, and
when restricted to pureλ -calculus, as expressive as the full standard type assignment
system with intersection and universally quantified types.

Introduction
This paper deals with the problem of understanding the interplay between types built
using intersection, universal quantification, and reference type constructors. Reference
types, [7] and [15], are an essential tool for typing memory locations and the operations
of reading and writing in memory. Parametric polymorphism of universally quantified
types, introduced by Girard in [5] and Reynolds in [12], enhances the expressivity of
typing in a uniform way. Intersection types, introduced in [2], allow for discrete poly-
morphism, increase the typability, and in particular give aformal account to overload-
ing. Putting together these type constructs is useful for typing in a significant way a
programming language with imperative features. It is well known that reference types
must be invariant, since they represent both reading and writing of values, and therefore
they should be both covariant and contra-variant [10] [page198]. On the other hand, the
standard intersection and universal quantifier elimination typing rules are subsumption
rules, since the intersection of two types is contained in both types, and the instantiation
of a universally quantified variable specializes the type.

As already remarked in [3] a naive typing with reference and intersection types may
lead to loss of subject reduction as the following example shows. We can derive type
Pos for the term

(λx.(λy.!x)(x := 0))ref1

by assuming typeRefPos∧RefNat for the variablex. In factref1 has typeRefPos∧
RefNat since 1 is bothPos andNat. By intersection elimination we can use:
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– the typeRefNat for x in the typing ofx := 0 getting the typeUnit;
– the typeRefPos for x in the typing of !x getting the typePos.

Reducing this term starting from the empty memory, with the call-by-value strategy we
get

(λx.(λy.!x) (x := 0)) ref1 ♯ /0 −→ (λx.(λy.!x) (x := 0)) l ♯ (l = 1)
−→ (λy.!l) (l := 0) ♯ (l = 1)
−→ (λy.!l) () ♯ (l = 0)
−→ !l ♯ (l = 0)
−→ 0 ♯ (l = 0)

and 0 does not have the typePos. Note that this term evaluates to 1 in the memory
(l = 1) under the call-by-name reduction strategy. So the soundness of typing depends
on the evaluation strategy used.

This example is a transcription of an example in [3]. The solution given in [3] is
discussed in the conclusion, where it is compared with our proposal.

A variant of this examples shows that also a naive use of universally quantified types
may lead to loss of subject reduction. Consider the term:

M = ((λx.(λy.!x) (x := λz.0)) (ref(λz.z))) 1

We can derive typePos for this term by assuming type∀t.Ref(t → t) for the variable
x. In fact,(ref(λz.z)) can be given type∀t.Ref(t → t) and therefore alsoRef(Pos→
Pos). By forall elimination we can use:

– the typeRef(Nat→ Nat) for x in the typing ofx := λz.0 getting the typeUnit;
– the typeRef(Pos→ Pos) for x in the typing of !x getting the typePos→ Pos.

Reducing this term starting from the empty memory, with the call-by-value strategy we
get

M ♯ /0 −→ ((λx.(λy.!x) (x := λz.0)) l) 1 ♯ (l = λz.z)
−→ ((λy.!l) (l := λz.0)) 1 ♯ (l = λz.z)
−→ ((λy.!l)()) 1 ♯ (l = λz.0)
−→ !l 1 ♯ (l = λz.0)
−→ (λz.0) 1 ♯ (l = λz.0)
−→ 0 ♯ (l = λz.0)

and 0 does not have the typePos. Note that using the call-by-name reduction strategy
we get 1.

As suggested by the above examples, a memory location typed by RefPos∧RefNat
must contain values which are bothPos andNat, i.e. values of typePos∧Nat. For the
case of quantified types a memory location typed by∀t.Ref(t → t) must contain a func-
tion of type∀t.t → t. This can be better expressed by typing the memory location with
the typeRef(Pos∧Nat) in the first case andRef(∀t.t → t) in the second. Therefore,
when a value is assigned to it it must have typePos in the first case and∀t.t → t in the
second.

Building on this idea we propose a type system for aλ -calculus with assignment
statements and reference/dereference constructors. Intersections and universally quan-
tified types are assigned to terms, via introduction rules, but elimination of intersection
is limited to non reference types, and theRef type constructor can only be applied to
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closed types. We show safety, i.e. subject reduction and progress, of our type system.
Lastly we observe that no expressive power is lost in comparison with the original sys-
tems of universally quantified types [5], intersection types [2], and both intersection and
universally quantified types [8].

A strongly related paper is [4] which proposes a different type assignment system
with both reference and intersection types. We will comparethe present solution and
that one discussed in the paper [4] in the conclusion.
Outline of the paper.Section 1 presents the syntax and reduction rules of the language.
Types with their relevant properties are introduced in Section 2, and Section 3 defines
the type assignment system and proves its safety. We conclude, in Section 4, by com-
paring our approach with the ones of [3] and [4], and outlining possible directions for
further work.

1 Syntax and Reduction Rules

The languageΛimp we are working with is a simplification of the language in [3],which
in its turn belongs to the ML-family, the difference being the lack of thelet construction
and of the binary strings. It is well know that thelet constructor is syntactic sugar [10]
[Section 11.5] and in presence of intersection or universally quantified types does not in-
crease the typability of the language, since with either intersection or universally quan-
tified types we can type the translation oflet in pureλ -calculus [1], [6]. The only data
types ofΛimp are the numerals, that is enough for discussing the typing problems shown
in the introduction.

Terms ofΛimp are defined by the following grammar:
M ::= n | x | λx.M | MM | fixx.M

l | refM |!M | M := M | ()
if M then M else M | MopM | . . .

n ::= 0 | 1 | 2 | . . .
op ::= + | × | . . .

wherex ranges over a countable set of variables, andl ranges over a countable set of
locations. Free and bound variables are defined as usual. A term is closed if it does not
contain free variables. The set of closed terms is denoted byΛ0

imp.
The syntactical constructs with an imperative operationalbehaviour are the loca-

tions, denoting memory addresses, and the operatorsref , !, and :=, denoting the op-
erations of allocation, dereferencing, and assignment, whose behaviour is given below.
The set of values is the subset ofΛimp defined as follows:

V ::= n | λx.M | l | ()

The value ( ) is the result of the evaluation of an assignment,whose purpose is the
side-effect of changing the store. The store is modeled as a finite association between
locations and values:

µ ::= /0 | µ ,(l = V)

OnΛimp we consider a call-by-value reduction semantics. The operational semantics is
given by defining reductions inside evaluations contexts, that, as usual, are terms with
a hole, [ ], specifying which subterm must be reduced.

E ::= [ ] | E M |V E | refE |!E | E := M |V := E |
if E then M else M | E op M | n op E
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E [(λx.M) V] ♯ µ −→ E [M[V/x]] ♯ µ (βv)
E [fixx.M] ♯ µ −→ E [M[fixx.M/x]] ♯ µ (fixR)
E [refV] ♯ µ −→ E [l ] ♯ µ,(l = V) l fresh(refR)
E [!l ] ♯ µ,(l = V) −→ E [V] ♯ µ,(l = V) (locR)
E [l := V] ♯ µ,(l = V ′) −→ E [()] ♯ µ,(l = V) (unitR)
E [if 0 then M else N] ♯ µ −→ E [M] ♯ µ (ifZR)
E [if n then M else N] ♯ µ −→ E [N] ♯ µ n 6= 0 (ifPR)
E [0 + 0] ♯ µ −→ E [0] ♯ µ (+ZZR)
E [0 + 1] ♯ µ −→ E [1] ♯ µ (+ZOR)
. . .

Fig. 1. Reduction Rules

As one can see the evaluation is left to right and for an application we evaluate both
terms. The reduction semantics is given by the sets of rules in Fig. 1 where[N/x] is the
capture free substitution ofx with N, andµ is a store.

2 Types and Type Theory

Types,τ, σ , ρ , are defined by the following syntax:
τ,σ ,ρ ::= Pos | Nat | Unit | t | τ → τ | τ ∧ τ | ∀t : κ .τ | Refτ
κ ::= S | R

wheret belongs to a countable set of type variables (ranged over byt,u,v,w). Kinds
(ranged over byκ) say whether the type is (or contains in the case of intersection) a
reference type. Thesimple kindS is the kind of types which are constants, arrows or
intersections of two types both of kindS. The reference kindR is the kind of types
which are references, or intersections of two types at leastone of them being of kindR.
An universally quantified type inherits the kind from the type obtained by erasing the
quantification.

The type of natural and positive numbers is denoted respectively by Nat andPos,
Unit is the type of assignments and(). The arrow constructor,τ → σ , is the type of
functions from typeτ to type σ , and intersection,τ ∧ σ , is the type of expressions
that have both typeτ and typeσ . Universal quantification specifies the kind of the
bound variable, since the variable can be replaced only by a type of the same kind.
Finally Refτ is the type of a reference to a value of typeτ. We assume the following
precedence relation between constructs:∀, Ref , ∧, →. As usual→ associates to the
right. We use∀t : κ.τ as an abbreviation for∀t1 : κ1. . . .∀tn : κn.τ, wheren≥ 0.

The set of free type variables of a type,T V(τ), is defined in the usual way. A term
without occurrences of free type variables is saidclosed.

A kind environment∆ is an association between type variables and kinds, defined
as follows:

∆ ⊢ Pos :: S ∆ ⊢ Nat :: S ∆ ⊢ Unit :: S ∆ ,t : κ ⊢ t :: κ

∆ ⊢ τ :: κ T V(τ) = /0

∆ ⊢ Refτ :: R

∆ ⊢ τ :: κ ∆ ⊢ τ ′ :: κ ′

∆ ⊢ τ → τ ′ :: S

∆ ⊢ τ :: κ ∆ ⊢ τ ′ :: κ ′

∆ ⊢ τ ∧ τ ′ :: κ �κ ′

∆ ,t : κ ⊢ τ :: κ ′

∆ ⊢ ∀t : κ.τ :: κ ′

Fig. 2. Kind Assignment
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τ ≡ τ ∧ τ σ ∧ τ ≡ τ ∧σ (τ ∧σ)∧ τ ′ ≡ τ ∧ (σ ∧ τ ′)

(σ → τ)∧ (σ → τ ′) ≡ σ → τ ∧ τ ′ Ref (τ ∧σ) ≡ Refτ ∧Refσ

∀t : κ.∀t ′ : κ ′.τ ≡ ∀t ′ : κ ′.∀t : κ.τ

t 6∈ T V(τ) ⇒















∀t ′ : κ.τ ≡ ∀t : κ.τ[t/t ′]
∀t : κ.τ ≡ τ
∀t : κ.(τ → σ) ≡ τ →∀t : κ.σ
∀t : κ.(τ ∧σ) ≡ τ ∧∀t : κ.σ

Fig. 3. The Congruence≡ on Types

∆ ::= /0 | ∆ ,t : κ t 6∈ dom(∆)

wheredomis the environment domain.
We use∆ ,t : κ as an abbreviation for the kind environment∆ ,t1 : κ1, ...,tn : κn, where
n≥ 0.

A typeτ has kindκ w.r.t. ∆ if the judgment∆ ⊢ τ :: κ can be derived from the rules
in Fig . 2. Note that only closed types can be arguments of theRef type constructor. As
we can see from the rules of Fig. 2 the kind of an arrow is alwaysS and the kind of an
intersection isR if at least one of its types has kindR, since we define:

κ �κ ′ =

{

S if κ = κ ′ = S,

R otherwise.

We abbreviate∆ ⊢ τ1 :: κ1 . . . ,∆ ⊢ τn :: κn, wheren≥ 0, by∆ ⊢ τ :: κ .
In the following we will only consider types to which a kind can be assigned from

a suitable environment.
On types, we define a congruence relation,≡, identifying types that denote the

same property of terms. The relation≡ is the minimal equivalence relation which is a
congruence and which satisfies the axioms given in Fig. 3. Regarding intersection we
have idempotence, commutativity, associativity, distribution of intersection on the right
side of arrows with the same left side, and distribution ofRef over intersection. For
quantified types we have commutativity of quantification,α-conversion, the fact that
quantifying on a variable not free in a type is irrelevant, and the standard distribution
rules for quantifiers on arrow and intersection connectives. We consider types modulo
≡, so we write

∧

i∈I τi , and
∧

1≤i≤n τi for denotingτ1 ∧ ·· · ∧ τn, whereI = {1, . . . ,n},
and none of theτi , 1≤ i ≤ n, is an intersection.

It is easy to check that if∆ ⊢ τ :: κ andτ ≡ σ , then∆ ⊢ σ :: κ . It is important to
notice thatRefτ has a kind impliesτ is closed, so in particular∀t.Refτ ≡ Refτ.

In the following it is handy to single out the types whose top quantification is mean-
ingless.

Definition 1. A typeτ is ∀-top-freeif there are no t,κ , andσ such thatτ ≡ ∀t : κ .σ
and t∈ T V(σ).

For example,∀t.Nat is ∀-top-free, since∀t.Nat≡ Nat. InsteadNat→∀t.t is not∀-top-
free, sinceNat→∀t.t ≡ ∀t.Nat→ t.

A preorder relation≤ is defined on types through the rules shown in Fig. 4. Rule
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∆ ⊢ Pos≤ Nat (pos)
∆ ⊢ τ ∧σ :: S

(∧E)
∆ ⊢ τ ∧σ ≤ τ

∆ ⊢ ∀t : κ.τ :: κ ′ ∆ ⊢ σ :: κ
(∀E)

∆ ⊢ ∀t : κ.τ ≤ τ[σ/t]

∆ ⊢ τ ′ ≤ τ ∆ ⊢ σ ≤ σ ′

(→)
∆ ⊢ τ → σ ≤ τ ′ → σ ′

∆ ⊢ τ ≤ τ ′ ∆ ⊢ σ ≤ σ ′

(∧)
∆ ⊢ τ ∧σ ≤ τ ′∧σ ′

∆ ,t : κ ⊢ τ ≤ σ
(∀)

∆ ⊢ ∀t : κ.τ ≤ ∀t : κ.σ

∆ ⊢ τ :: κ
(id)

∆ ⊢ τ ≤ τ

∆ ⊢ τ ≤ ρ ∆ ⊢ ρ ≤ σ
(trans)

∆ ⊢ τ ≤ σ

τ ≡ τ ′ ∆ ⊢ τ ′ ≤ σ ′ σ ′ ≡ σ
(congr)

∆ ⊢ τ ≤ σ

Fig. 4. The Preorder Relation≤ on Types

(pos) says that a positive is also a natural. Rules (∧E) and (∀E) are the elimination rules.
Note that for eliminating intersection we require that the intersection does not contain
reference types. This is a crucial restriction, along with the facts thatRef can only be
applied to closed types and there is no rule for applying≤ insideRef , to get subject
reduction. Rules(→), (∧), and(∀) extend≤ to the specific constructor, and they are
standard. Rule(id), and(trans), make≤ a preorder, and rule(congr) makes≤ a partial
order when we identify congruent types.

Note that∆ ⊢ τ :: κ andτ ≡ σ imply both∆ ⊢ τ ≤ σ and∆ ⊢ σ ≤ τ. On the other
side∆ ⊢ τ ≤ σ implies∆ ⊢ τ :: κ and∆ ⊢ σ :: κ for someκ .

Weakening holds for kind environments in all the consideredjudgements, i.e.∆ ⊢ τ :: κ
implies∆ , t : κ ⊢ τ :: κ if t 6∈ dom(∆) and similarly for∆ ⊢ τ ≤ σ .

By induction on the definition of≤ we can show that the preorder is preserved by
replacing type variables by types of the same kinds.

Lemma 1. ∆ , t : κ ⊢ τ ≤ σ , and∆ ⊢ ρ :: κ imply∆ ⊢ τ[ρ/t] ≤ σ [ρ/t].

The next technical lemma is the key tool for proving the subject reduction property
in case the used reduction rule is theβv-rule. It states that if a quantified intersection of
arrows is less than the arrowτ →σ , then there are instances of domains and co-domains
of some arrows in the intersection which are related by the preorder toτ andσ .

Lemma 2. If ∆ ⊢ ∀t : κ .
∧

i∈I (τi → σi)≤ τ → σ , whereσi (i ∈ I) andσ are∀-top-free,
then there areρ , and J⊆ I, such that:

– ∆ ⊢ ρ :: κ,
– ∆ ⊢ τ ≤ τ j [ρ/t] ( j ∈ J), and
– ∆ ⊢

∧

j∈J σ j [ρ/t] ≤ σ .

Proof. By induction on the definition of≤. In order to prove the result for rule(trans)
we show the more general assert that follows:
If τ ≡ ∀u : κ .

∧

i∈I (τi → σi) whereσi (i ∈ I) are∀-top-free, and∆ ⊢ τ ≤ σ , then there
arev, κ ′, J, τ ′j , ∀-top-freeσ ′

j ( j ∈ J), ρ such that:

– σ ≡ ∀v : κ ′.
∧

j∈J(τ ′j → σ ′
j)

– ∆ ,v : κ ′ ⊢ ρ :: κ , and
– for all j ∈ J there is Hj ⊆ I with:

• ∆ ,v : κ ′ ⊢ τ ′j ≤ τh[ρ/u] for all h ∈ H j , and

• ∆ ,v : κ ′ ⊢
∧

h∈H j
σh[ρ/u] ≤ σ ′

j .
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The proof is by induction on the derivation of≤. We only consider the most difficult
case, that is when the statement is the consequent of rule(trans). Let ∆ ⊢ τ ≤ τ ′ and
∆ ⊢ τ ′ ≤ σ be the premises of the application of rule(trans).

By induction hypothesis onτ ≤ τ ′ there arew, κ ′′, L, τ ′′l , ∀-top-freeσ ′′
l (l ∈ L), ρ ′

such that:
(a) τ ′ ≡ ∀w : κ ′′.

∧

l∈L(τ ′′l → σ ′′
l )

(b) ∆ ,w : κ ′′ ⊢ ρ ′ :: κ, and
(c) for all l ∈ L there isH ′

l ⊆ I with:
(c.1) ∆ ,w : κ ′′ ⊢ τ ′′l ≤ τh[ρ ′/u] for all h∈ H ′

l , and
(c.2) ∆ ,w : κ ′′ ⊢

∧

h∈H′
l
σh[ρ ′/u] ≤ σ ′′

l .

By induction hypothesis onτ ′ ≤ σ there arev, κ ′, J, τ ′j , ∀-top-freeσ ′
j ( j ∈ J), ρ ′′

such that:
(a′) σ ≡ ∀v : κ ′.

∧

j∈J(τ ′j → σ ′
j)

(b′) ∆ ,v : κ ′ ⊢ ρ ′′ :: κ ′′, and
(c′) for all j ∈ J there isH ′′

j ⊆ L with:

(c′.1) ∆ ,v : κ ′ ⊢ τ ′j ≤ τ ′′h [ρ ′′/w] for all h∈ H ′′
j , and

(c′.2) ∆ ,v : κ ′ ⊢
∧

h∈H′′
j

σ ′′
h [ρ ′′/w] ≤ σ ′

j .

Note that we can assume that the sets of variablesu, v, andw are fresh and pairwise

disjoint. Defineρ = ρ ′[ρ ′′/w] andH j =
⋃

k∈H′′
j
H ′

k ( j ∈ J). It is easy to verify that:

– ∆ ,v : κ ′ ⊢ ρ :: κ (from Lemma 1, weakening,(b) and(b′)), and
– H j ⊆ I .

Moreover(c.1) and(b′) imply by Lemma 1 and weakening that
∆ ,v : κ ′ ⊢ τ ′′l [ρ ′′/w] ≤ τh[ρ ′/u][ρ ′′/w] for all h∈ H ′

l .
Note thatτh[ρ ′/u][ρ ′′/w] = τh[ρ/u] for all h ∈ H j sincew cannot occur inτh. So by
(c′.1), and transitivity of≤ we get for all j ∈ J:

∆ ,v : κ ′ ⊢ τ ′j ≤ τh[ρ/u] for all h∈ H j .
Similarly from (c.2), (b′), Lemma 1 and weakening we get

∆ ,v : κ ′ ⊢
∧

h∈H′
l
σh[ρ/u] ≤ σ ′′

l [ρ ′′/w] for all l ∈ L.

This together with(c′.2), using rule(∧), transitivity of≤, and the congruenceσ ∧σ ≡
σ implies for all j ∈ J:

∆ ,v : κ ′ ⊢
∧

h∈H j
σh[ρ/u] ≤ σ ′

j . �

3 The Typing System

The typing system proves judgements of the shape:

∆ ;Σ ;Γ ⊢ M : τ
where∆ is a kind environment,Σ andΓ are astore environmentand atype environment
respectively,M is a term andτ is a type. Store and type environments are defined as
follows:

Σ ::= /0 | Σ , l : τ l 6∈ dom(Σ) τ is a closed type
Γ ::= /0 | Γ ,x : τ x 6∈ dom(Γ ).

A store ( type ) environment iswell formedwith respect to a kind environment∆
if all its predicates have a kind, i.e.,Σ ( Γ ) is such that ifl : τ ∈ Σ ( x : τ ∈ Γ ) then
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∆ ;Σ ;Γ ⊢ 0 : Nat (Nat)
n 6= 0

(Pos)
∆ ;Σ ;Γ ⊢ n : Pos

∆ ;Σ ;Γ ⊢ () : Unit (Unit())

∆ ;Σ ;Γ ,x : τ ⊢ x : τ (var) ∆ ;Σ , l : τ;Γ ⊢ l : Refτ (loc)

∆ ;Σ ;Γ ⊢ M : τ T V(τ) = /0
(Ref I)

∆ ;Σ ;Γ ⊢ refM : Refτ

∆ ;Σ ;Γ ⊢ M : Refτ
(RefE)

∆ ;Σ ;Γ ⊢!M : τ

∆ ;Σ ;Γ ,x : τ ⊢ M : σ
(→ I)

∆ ;Σ ;Γ ⊢ λx.M : τ → σ

∆ ;Σ ;Γ ⊢ M : τ → σ ∆ ;Σ ;Γ ⊢ N : τ
(→ E)

∆ ;Σ ;Γ ⊢ MN : σ

∆ ,t : κ;Σ ;Γ ⊢ M : τ t 6∈ T V(Σ ,Γ )
(∀I)

∆ ;Σ ;Γ ⊢ M : ∀t : κ.τ

∆ ;Σ ;Γ ⊢ M : τ ∆ ;Σ ;Γ ⊢ M : σ
(∧I)

∆ ;Σ ;Γ ⊢ M : τ ∧σ

∆ ;Σ ;Γ ⊢ M : τ ∆ ⊢ τ ≤ σ
(≤)

∆ ;Σ ;Γ ⊢ M : σ

∆ ;Σ ;Γ ⊢ M : Refτ ∆ ;Σ ;Γ ⊢ N : τ
(Unit)

∆ ;Σ ;Γ ⊢ M := N : Unit

∆ ;Σ ;Γ ,x : τ ⊢ M : τ
(fix )

∆ ;Σ ;Γ ⊢ fixx.M : τ

∆ ;Σ ;Γ ⊢ M : Nat ∆ ;Σ ;Γ ⊢ N1 : τ ∆ ;Σ ;Γ ⊢ N2 : τ
(if)

∆ ;Σ ;Γ ⊢ if M then N1 else N2 : τ

Fig. 5.The Typing Rules for Terms

∆ ⊢ τ :: κ for some kindκ . When we write a typing judgement∆ ;Σ ;Γ ⊢ M : τ we
always assume thatΣ andΓ are well formed with respect to∆ .

The typing rules, given in Fig. 5, are standard. We omit the typing rules dealing with
arithmetic operators which are obvious. Note that the elimination rules of both∧ and∀
are particular cases of rule(≤).

It is easy to verify that strengthening and weakening for allthe environments are
admissible rules. Fig. 6 shows these rules, whereL (M) is the set of locations and
FV(M) is the set of free variables occurring inM.

The proof that deductions remain valid under the substitution of type variables by
types respecting kinds by induction on deductions is standard.

Proposition 1. If ∆ , t : κ ;Σ ;Γ ⊢ M : τ and∆ ⊢ σ :: κ , then
∆ ;Σ [σ/t];Γ [σ/t] ⊢ M : τ[σ/t].

The type system enjoys a Generation Lemma, which relates theshapes of terms
with the shapes of their possible derivations. We omit the obvious points concerning
numerals and operators on numerals.

Lemma 3 (Generation).Let ∆ ;Σ ;Γ ⊢ M : τ. Then∆ ⊢ τ ≥ ∀t : κ .
∧

i∈I τi , for some I,
t, κ , ∀-top-freeτi (i ∈ I), and the followings hold, where∆ ′ = ∆ ,t : κ :
1. M = x implies that x: σ ∈ Γ for someσ such thatσ ≤ τ;
2. M = λx.P implies that there areσi , ρi (i ∈ I), such that:

(a) τi = σi → ρi, and
(b) ∆ ′;Σ ;Γ ,x : σi ⊢ P : ρi (i ∈ I);

3. M = PN implies that there areσi (i ∈ I) such that:
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∆ ,t : κ;Σ ;Γ ⊢ M : τ t 6∈ T V(Σ ,Γ ,τ)
(s∆ )

∆ ;Σ ;Γ ⊢ M : τ

∆ ;Σ ;Γ ⊢ M : τ t 6∈ T V(Σ ,Γ ,τ)
(w∆ )

∆ ,t : κ;Σ ;Γ ⊢ M : τ

∆ ;Σ , l : τ ′;Γ ⊢ M : τ l 6∈ L (M)
(sΣ )

∆ ;Σ ;Γ ⊢ M : τ

∆ ;Σ ;Γ ⊢ M : τ l 6∈ dom(Σ )
∆ ⊢ σ :: κ for someκ T V(σ) = /0

(wΣ )
∆ ;Σ , l : σ ;Γ ⊢ M : τ

∆ ;Σ ;Γ ,x : τ ′ ⊢ M : τ x 6∈ FV(M)
(sΓ )

∆ ;Σ ;Γ ⊢ M : τ

∆ ;Σ ;Γ ⊢ M : τ x 6∈ dom(Γ )
∆ ⊢ σ :: κ for someκ

(wΓ )
∆ ;Σ ;Γ ,x : σ ⊢ M : τ

Fig. 6. Admissible Rules

(a) ∆ ′;Σ ;Γ ⊢ P : σi → τi (i ∈ I), and
(b) ∆ ′;Σ ;Γ ⊢ N : σi (i ∈ I);

4. M = fixx.N implies that∆ ′;Σ ;Γ ,x : τi ⊢ N : τi (i ∈ I);
5. M = l implies that l: σ ∈ Σ , for some closedσ such thatRefσ ≡ τ;
6. M = !N implies that∆ ′;Σ ;Γ ⊢ N : Refτi (i ∈ I);
7. M = refN implies that there are closedσi such that:

(a) τi = Refσi , and
(b) ∆ ;Σ ;Γ ⊢ N : σi (i ∈ I);

8. M = P := N impliesτ ≡ Unit, and for some closedσ we have∆ ′;Σ ;Γ ⊢P : Refσ
and∆ ′;Σ ;Γ ⊢ N : σ ;

9. M = () impliesτ ≡ Unit;
10. M= if P then N else N′ implies that∆ ′;Σ ;Γ ⊢ P : Nat and ∆ ′;Σ ;Γ ⊢ N : τi

and∆ ′;Σ ;Γ ⊢ N′ : τi (i ∈ I).

Proof. For all points, the proof is by induction on derivations. We will consider only
the case in which the last rule applied is(∧I), and we will show it for Points 2, 3 and 5.
All the other cases are simpler.
2. If the last applied rule is:

∆ ;Σ ;Γ ⊢ λx.P : τ ∆ ;Σ ;Γ ⊢ λx.P : τ ′
(∧I)

∆ ;Σ ;Γ ⊢ λx.P : τ ∧ τ ′
by induction∆ ⊢ τ ≥ ∀t : κ.

∧

i∈I (σi → ρi), and∆ ⊢ τ ′ ≥ ∀t ′ : κ ′.
∧

j∈J(σ ′
j → ρ ′

j),

and∆ , t : κ;Σ ;Γ ,x : σi ⊢ P : ρi , for i ∈ I and∆ ,t ′ : κ ′;Σ ;Γ ,x : σ ′
j ⊢ P : ρ ′

j , for j ∈ J.
By the monotonicity of≤ with respect to∧ we get

τ ∧ τ ′ ≥ ∀t : κ .
∧

i∈I (σi → ρi)∧∀t ′ : κ ′.
∧

j∈J(σ ′
j → ρ ′

j)

and, since types are considered modulo≡, we can assume thatt andt ′ are disjoint,
so we haveτ ∧τ ′ ≥ ∀t : κ .∀t ′ : κ ′.(

∧

i∈I (σi → ρi)∧
∧

j∈J(σ ′
j → ρ ′

j)). Moreover, by

the admissible rule(w∆), we obtain∆ ,t : κ,t ′ : κ ′;Σ ;Γ ,x : σi ⊢ P : ρi , for i ∈ I and
∆ ,t : κ ,t ′ : κ ′;Σ ;Γ ,x : σ ′

j ⊢ P : ρ ′
j , for j ∈ J.

3. If the last used rule is:
∆ ;Σ ;Γ ⊢ PN : τ ∆ ;Σ ;Γ ⊢ PN : τ ′

(∧I)
∆ ;Σ ;Γ ⊢ PN : τ ∧ τ ′

then by induction,∆ ⊢ τ ≥ ∀t : κ .
∧

i∈I τi and∆ ⊢ τ ′ ≥ ∀t ′ : κ ′.
∧

j∈J τ ′j , and:
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∆ ,t : κ ;Σ ;Γ ⊢ P : σi → τi and ∆ ,t : κ ;Σ ;Γ ⊢ N : σi (i ∈ I )
∆ ,t ′ : κ ′;Σ ;Γ ⊢ P : σ ′

j → τ ′j and ∆ ,t ′ : κ ′;Σ ;Γ ⊢ N : σ ′
j ( j ∈ J).

Then, by(w∆):
∆ ,t : κ ,t ′ : κ ′;Σ ;Γ ⊢ P : σi → τi and ∆ ,t : κ,t ′ : κ ′;Σ ;Γ ⊢ N : σi (i ∈ I )
∆ ,t : κ ,t ′ : κ ′;Σ ;Γ ⊢ P : σ ′

j → τ ′j and ∆ ,t : κ ,t ′ : κ ′;Σ ;Γ ⊢ N : σ ′
j (i ∈ J).

The proof follows from∆ ⊢ τ ∧τ ′ ≥ ∀t : κ .∀t ′ : κ ′.(
∧

i∈I τi ∧
∧

i∈J τ ′j ), since we can

assume thatt andt ′ are disjoint.
5. If the last applied rule is:

∆ ;Σ ;Γ ⊢ l : τ ∆ ;Σ ;Γ ⊢ l : τ ′
(∧I)

∆ ;Σ ;Γ ⊢ l : τ ∧ τ ′
by inductionτ ≡ Refσ andτ ′ ≡ Refσ ′, and the proof follows from the fact that
Refσ ∧Refσ ′ ≡ Ref(σ ∧σ ′). �

Note that, without reference types, Points 3 and 4 of previous lemma hold with
I a singleton set. The restriction on rule(∧E) is reflected in the necessity of hav-
ing sets of types of cardinality bigger than 1. For example from {x : (Nat → Nat)∧
(Nat → RefNat),y : Nat,z : (Nat → Nat)∧ (RefNat → Nat → Nat)} we can de-
rive z(xy) : Nat∧ (Nat→ Nat), but there are no typesτ1,τ2 such that from the same
environment we can derivez : τ1 → τ2 and xy : τ1. Instead we have /0; /0;{x : (σ →
σ)∧ (σ → τ),y : σ ,z : (σ → σ)∧ (τ → σ → σ)} ⊢ z : σ ∧ τ → σ ∧ (σ → τ) and
/0; /0;{x : (σ → σ)∧ (σ → τ),y : σ ,z : (σ → σ)∧ (τ → σ → σ)} ⊢ x : σ ∧ τ for all
σ ,τ of kind S. Similarly we can derive /0; /0;{y : (RefNat→ RefNat)∧ (Ref(Nat→
Nat) → Ref(Nat→ Nat))} ⊢ fixx.yx : Ref(Nat∧ (Nat→ Nat)), but we cannot de-
rive /0; /0;{x : Ref(Nat∧(Nat→ Nat)),y : (RefNat→ RefNat)∧(Ref(Nat→ Nat)→
Ref(Nat→ Nat))} ⊢ yx : Ref(Nat∧ (Nat→ Nat)).

The typing system enjoys the standard Substitution Property, that can be proved by
induction on derivations.

Lemma 4 (Substitution). If ∆ ;Σ ;Γ ,x : τ ⊢ M : σ and∆ ;Σ ;Γ ⊢ N : τ, then∆ ;Σ ;Γ ⊢
M[N/x] : σ .

In order to prove subject reduction for our type system we need to show that typing
is preserved under the replacement of a type by a smaller one in the type environment.

Lemma 5. Let∆ ;Σ ;Γ ,x : σ ⊢ M : τ and∆ ⊢ σ ′ ≤ σ . Then∆ ;Σ ;Γ ,x : σ ′ ⊢ M : τ.

Theagreementbetween a store environment and a store is defined as usual [10] [Defi-
nition 13.5.1].

Definition 2. We say that a store environmentΣ agrees with a storeµ (notationΣ ⊢ µ)
if:

– (l = V) ∈ µ implies l : τ ∈ Σ and∆ ;Σ ; /0⊢V : τ for someτ;
– l : τ ∈ Σ implies(l = V) ∈ µ and∆ ;Σ ; /0⊢V : τ for some V.

Now we can prove subject reduction.

Theorem 1 (Subject Reduction).∆ ;Σ ;Γ ⊢ M : τ and Σ ⊢ µ and M ♯ µ −→ N ♯ µ ′

imply∆ ;Σ ′;Γ ⊢ N : σ andΣ ′ ⊢ µ ′ for someΣ ′ ⊇ Σ .
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Proof. M ♯ µ −→ N ♯ µ ′ implies thatM = E [M′] andN = E [N′], for some evaluation
contextE . The proof is given by induction onE . We consider the most interesting cases
for E = [ ] since the induction cases are straightforward.
If the rule applied is(βv), thenM = (λx.P)V, andN = P[V/x]. From Lemma 3(3), for
somet, κ , I , σi and∀-top-freeτi (i ∈ I ),
(1) ∆ ⊢ ∀t : κ.

∧

i∈I τi ≤ τ,
(2) ∆ ,t : κ ;Σ ;Γ ⊢ λx.P : σi → τi (i ∈ I ),
(3) ∆ ,t : κ ;Σ ;Γ ⊢V : σi (i ∈ I ),

From Lemma 3(2), and Point(2), for all i ∈ I , there arev(i), κ (i), Hi , σ (i)
j , andτ(i)

j

( j ∈ Hi ) such thatσ (i)
j → τ(i)

j is ∀-top-free and

(a) ∆ ,t : κ ⊢ ∀v(i) : κ (i).
∧

j∈Hi
(σ (i)

j → τ(i)
j ) ≤ σi → τi ,

(b) ∆ ,t : κ,v(i) : κ (i);Σ ;Γ ,x : σ (i)
j ⊢ P : τ(i)

j ( j ∈ Hi).

Note thatσ (i)
j → τ(i)

j ∀-top-free impliesτ(i)
j ∀-top-free. Then Lemma 2 and Point(a)

imply that there areρ (i), andJi ⊆ Hi , such that:

(α) ∆ , t : κ ⊢ ρ (i) :: κ (i) (i ∈ I),

(β ) ∆ , t : κ ⊢ σi ≤ σ (i)
j [ρ (i)/v(i)] ( j ∈ Ji), and

(γ) ∆ ,t : κ ⊢
∧

j∈Ji
τ(i)

j [ρ (i)/v(i)] ≤ τi .
From Points(b), (α), and Proposition 1, for allj ∈ Ji , we derive

∆ , t : κ;Σ ;Γ ,x : σ (i)
j [ρ (i)/v(i)] ⊢ P : τ(i)

j [ρ (i)/v(i)]
and by Point (β ), and Lemma 5 we get:

∆ , t : κ;Σ ;Γ ,x : σi ⊢ P : τ(i)
j [ρ (i)/v(i)].

Applying rules(∧I), (≤) by Point (γ) we derive
∆ ,t : κ;Σ ;Γ ,x : σi ⊢ P : τi

which by Lemma 4, and Point (3), implies that∆ ,t : κ;Σ ;Γ ⊢ P[V/x] : τi for all i ∈ I .
With multiple applications of rule(∧I) we get∆ ,t : κ ;Σ ;Γ ⊢ P[V/x] :

∧

i∈I τi , and then
applying many times rule(∀I) (note that we can assumet 6∈ T V(Σ ,Γ ) since we take
types modulo≡) we derive∆ ;Σ ;Γ ⊢ P[V/x] : ∀t : κ.

∧

i∈I τi . Finally from Point (1) and
rule (≤) we conclude∆ ;Σ ;Γ ⊢ P[V/x] : τ.
If the rule applied is (fixR), then M = fixx.P, and N = P[fixx.P/x]. From Lemma
3(4), for somet, κ, I , τi (i ∈ I ), we get∆ ⊢∀t : κ .

∧

i∈I τi ≤ τ and∆ ,t : κ;Σ ;Γ ,x : τi ⊢ P : τi

(i ∈ I ). Therefore, rule(fix) of Fig. 5 implies∆ ,t : κ;Σ ;Γ ⊢ fixx.P : τi (i ∈ I ). From
the Substitution Lemma 4 we derive∆ ,t : κ ;Σ ;Γ ⊢ P[fixx.P/x] : τi (i ∈ I ). Applying
(∧I)’s, (∀I)’s, and(≤) we conclude∆ ;Σ ;Γ ⊢ P[fixx.P/x] : τ.
If the rule applied is (refR), thenM = refV, N = l , andµ ′ = µ ,(l = V). From Lemma
3(7), for somet, κ, I , closedτi (i ∈ I ), we get∆ ⊢ ∀t : κ.

∧

i∈I Refτi ≤ τ and∆ ;Σ ;Γ ⊢V : τi

(i ∈ I ). Let Σ ′ = Σ , l :
∧

i∈I τi , we have that∆ ;Σ ′;Γ ⊢ l : Ref
∧

i∈I τi . Therefore, sinceτi

are closed, we have thatRef
∧

i∈I τi ≡∀t : κ.
∧

i∈I Refτi . Applying rule(≤) we conclude
∆ ;Σ ′;Γ ⊢ l : τ. FromΣ ⊢ µ and∆ ;Σ ;Γ ⊢V :

∧

i∈I τi we also getΣ ′ ⊢ µ ′.
If the rule applied is(locR), then result derives directly from the fact thatΣ ⊢ µ .
If the rule applied is(unitR), thenM = l :=V, µ = µ ′′,(l =V ′), andN = (), µ ′ = µ ′′,(l = V).
From Lemma 3(8),τ ≡ Unit, and for some closedσ we have∆ ;Σ ;Γ ⊢ l : Refσ , and
∆ ;Σ ;Γ ⊢V : σ . The typing rule (Unit()) gives∆ ;Σ ;Γ ⊢ () : Unit. From∆ ;Σ ;Γ ⊢ l : Refσ ,
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and Lemma 3(5),l : σ ′ ∈ Σ for someσ ′, andRefσ ≡ Refσ ′, which impliesσ ≡ σ ′.
FromΣ ⊢ µ in order to showΣ ⊢ µ ′ we have only to prove that∆ ;Σ ;Γ ⊢V : σ ′, which
is immediate since∆ ;Σ ;Γ ⊢V : σ andσ ≡ σ ′. �

Remark 1.Note that the proof of subject reduction for the case of rule (βv) extends
without modifications to rule (β ). Moreover, it is easy to check that the proof works for
arbitrary contexts. So we can conclude that subject reduction for our type assignment
system holds independently from the used reduction strategy.

In order to prove the progress of our type system we need a Canonical Form Lemma
which can be proved in a standard way, see [10], by analyzing the typing rules and the
syntax of values.

Lemma 6 (Canonical Forms).
1. ∆ ;Σ ; /0⊢V : Pos implies V∈ {1,2, . . .}.
2. ∆ ;Σ ; /0⊢V : Nat implies V∈ {0,1,2, . . .}.
3. ∆ ;Σ ; /0⊢V : Unit implies V= ().
4. ∆ ;Σ ; /0⊢V : τ → σ implies V= λx.M.
5. ∆ ;Σ ; /0⊢V : Refτ implies V= l and l : σ ∈ Σ for someσ .

Theorem 2 (Progress).Let M∈ Λ0
imp. Then∆ ;Σ ; /0 ⊢ M : σ implies that either M is a

value or for allµ such thatΣ ⊢ µ we have that M♯ µ −→ N ♯ µ ′ for some N,µ ′.

Proof. The proof is by induction on the derivationΣ ;Γ ⊢ M : τ.
If the last applied rule is(→ I), (Unit()), (loc), (Nat), or (Pos), thenM is a value.
If the last applied rule is(fix), thenM is immediately reducible.
If the last applied rule is(→ E), thenM is NP, and∆ ;Σ ; /0 ⊢ N : τ → ρ , and∆ ;Σ ; /0 ⊢
P : τ.
If N is a value, then by the Canonical Form Lemma 6(4),N = λx.Q. If alsoP is a value,
rule (βv) applies. Otherwise, by induction hypothesis on∆ ;Σ ; /0 ⊢ P : τ, for all µ such
thatΣ ⊢ µ we have thatP ♯ µ −→ P′ ♯ µ ′ for someP′ andµ ′. Therefore, for someE , R
andR′, we getP= E [R] andP′ = E [R′]. Consider the evaluation contextE ′ = (λx.Q)E .
We have thatE ′[R] = M andE ′[R] ♯ µ −→ E ′[R′] ♯ µ ′.
If N is not a value, by induction hypothesis on∆ ;Σ ; /0 ⊢ N : τ → ρ , for all µ such that
Σ ⊢ µ we have thatN ♯ µ −→ N′ ♯ µ ′ for someN′ andµ ′. Therefore, for someE , R
andR′, we getN = E [R] andN′ = E [R′]. Consider the evaluation contextE ′ = E P. We
have thatE ′[R] = M andE ′[R] ♯ µ −→ E ′[R′] ♯ µ ′.
If the last applied rule is(Unit) thenM is N := P, and∆ ;Σ ; /0⊢ N : Refτ and∆ ;Σ ; /0⊢
P : τ.
If N is a value, from the Canonical Form Lemma 6(5),N = l , andl : σ ∈ Σ , for some
σ . Moreover, fromΣ ⊢ µ , we have that(l = V) ∈ µ for someV. If also P is a value,
then rule(unitR) is applicable. Otherwise, ifP is not a value, we apply the induction
hypothesis to∆ ;Σ ; /0 ⊢ P : τ, and derive that for allµ such thatΣ ⊢ µ we have that
P ♯ µ −→ P′ ♯ µ ′ for someP′ andµ ′. Therefore, for someE , RandR′, we getP= E [R]
andP′ = E [R′]. Consider the evaluation contextE ′ = l := E . We have thatE ′[R] = M
andE ′[R] ♯ µ −→ E ′[R′] ♯ µ ′.
If N is not a value, by induction hypothesis on∆ ;Σ ; /0 ⊢ N : Refτ, for all µ such that
Σ ⊢ µ we have thatN ♯ µ −→ N′ ♯ µ ′ for someN′ andµ ′. Therefore, for someE , R
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andR′, we getN = E [R] andN′ = E [R′]. Consider the evaluation contextE ′ = E := P.
We have thatE ′[R] = M andE ′[R] ♯ µ −→ E ′[R′] ♯ µ ′.
The proof for the cases(RefE), (Ref I), (if), and(+) are similar.
For rules(∧I), (∀I) and(≤) the result follows directly by induction. �

Let us restrict the language to the pureλ -calculus. Then our type assignment system
preserves the typability power of intersection types, i.e., it gives types to all and only
the strongly normalizing terms. As far as the expressive power is concerned, we can
compare our system with System F [5], in its type assignment version [9], with the
intersection type assignment system of [11], and with the system defined in [8], where
both intersection and universally quantified types are present. Let⊢F denote derivability
in the type assignment version of system F [9] and⊢P in the intersection type assign-
ment system of [11]. The system in [8] can give types to all terms, since it contains
the universal typeω , and a rule that assignω to all terms. Let us consider a restriction
of this system, obtained from it by erasing both the typeω and the related rule, for
whose derivability we use⊢MZ. In order to prove that our system preserves the expres-
sive power of⊢F , ⊢P and⊢MZ, we define a decorating functiondec, transforming every
type in [8] non containing occurrences ofω in a type of our system, in the following
way:

dec(τ op σ) = dec(τ) op dec(σ) (op ∈ {→,∧}) dec(∀t.τ) = ∀t : S.τ
The functiondeccan be obviously applied also to the set of System F types and to the
set of intersection types, which are proper subsets of the types in [8].

Theorem 3. Let M be a term of the pureλ -calculus,σ a type,Γ a type environment
and∆ the kind environment which gives kindS to all the type variables occurring inσ
andΓ .
1. If Γ ⊢MZ M : σ , then∆ ; /0;Γ ⊢ M : dec(σ).
2. If Γ ⊢F M : σ , then∆ ; /0;Γ ⊢ M : dec(σ).
3. If Γ ⊢P M : σ , then∆ ; /0;Γ ⊢ M : dec(σ).
4. M is typable in the system of Fig. 5 if and only if it is strongly normalizing.

Proof. Point 1 is immediate, since the rules of⊢MZ are a proper subset of our rules, and
also the≤ relation on types is the same, when reference types are not present.

Points 2 and 3 follow from Point 1, since the rules of⊢F and of⊢P are a proper
subsets of the rules of⊢MZ.

For Point 4 since all strongly normalising terms are typablein the system of [11]
we get from Point 3 that all strongly normalising terms are typable in our system. The
vice versa can be proved by a standard use of the computability technique as done in
[11]. �

4 Conclusion

In this paper we discuss how to combine intersection, universally quantified and refer-
ence types in a meaningful way. The naive use of intersectionand universally quantified
types is unsound in presence of references, as shown in [3] and in the introduction of
this paper. Davies and Pfenning solve the problem by restricting both the definition of
the preorder relation≤ between types, and the type assignment system. In the preorder
relation≤ between types they do not have the standard rules:
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(→∧) (τ → σ)∧ (τ → ρ) ≤ τ → σ ∧ρ
(→∀) ∀t.τ → σ ≤ τ →∀t.σ t 6∈ T V(τ)

The type assignment system is restricted in such a way that the intersection and the
universal quantification can be introduced just in case the subject is a value. Then the
subject reduction property holds, for a call-by-value reduction semantics of terms. As
already noticed in [4], while in this way they solve the problem described in the in-
troduction, in the system there are unsound typings. In factthe termx := x+ 1 can be
typed in their system, extended with the standard typing rule for the sum, through the
following derivation:

∆ ; /0;x : Nat∧RefNat ⊢ x : Nat∧RefNat

(≤)
∆ ; /0;x : Nat∧RefNat ⊢ x : RefNat

∆ ; /0;x : Nat∧RefNat ⊢ x : Nat∧RefNat

(≤)
∆ ; /0;x : Nat∧RefNat ⊢ x : Nat

(+)
∆ ; /0;x : Nat∧RefNat ⊢ x+1 : Nat

(Unit)
∆ ; /0;x : Nat∧RefNat ⊢ x := x+1 : Unit

In [4] a different solution is proposed, for a system with reference and intersection
types only, which does restrict neither the definition of the≤ relation between types
nor the type assignment system rules. In this system there cannot be intersections be-
tween reference and non-reference types, so, for example,Nat∧RefNat is not a type.
Syntactically, this is realized through a partial intersection operator,∩, which applied
to two non-reference types returns their intersection, andapplied to two reference types
commutes with theRef constructor pushing the operator inside theRef . The system
is shown to be sound and no expressive power is lost in comparison with the original
system [2] [11] of intersection types when we restrict to theterms of pureλ -calculus.

In this paper, we consider a system with intersection, universally quantified and ref-
erence types. Our aim is to design a sound system having minimal restrictions. The
solution adopted to avoid unsoundness is different from both [3] and [4], and leads to a
more elegant system. The only restriction we impose on typesis that theRef construc-
tor can be applied only to closed types. So the quantificationon reference types becomes
meaningless, since∀t.Refτ is equivalent toRefτ. Regarding intersection types we do
not have restrictions. In particular, we may have intersection between reference and
non-reference types. With a notion of kind and a kind assignment we keep track of po-
tential reference types. The soundness is reached by limiting the definition of≤ relation
between types in the rule for intersection elimination, which may only be applied if the
intersection does not contain reference types. For our types rules(→∧) and(→∀) hold
in both directions. As a results, our system enjoys subject reduction independently from
the reduction strategy. In fact the critical term(λx.(λy.!x)(x := 0))ref1, showed in the
introduction, in our system has only types equivalent toNat, which is the type of both
0 and 1, so the typing is preserved under any reduction strategy. Moreover unsound
terms as the one shown before cannot be typed (but their soundversionsx :=!x+1 and
refx := x+1 are typable).

When restricted to the pure functional part of the language,our typing system has a
stronger typability power than the system of [3]. As an example, consider the strongly
normalizing pureλ -term (λxy.(λz.zz)(xy))(λ t.t) which is typable in our system (see
Theorem 3(4)), while it is not typable in the system of [3]. For typing this term it
is necessary to introduce an intersection between two subderivations whose subject is
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xy, and in the system of [3] this is not possible, since this subterm is not a value. More
precisely, ifσ1 = (Nat→ Nat)∧((Nat→ Nat)→ Nat→ Nat) andσ2 = Nat∧(Nat→
Nat), it is easy to verify thatλ t.t has typeσ1 andλz.zzhas typeσ2 → Nat. Therefore,
in order to type the above term we need to derive∆ ; /0;{x : σ1,y : σ2} ⊢ xy : σ2, which
requires the application of rule(∧I) to xy.

The system we define is clearly undecidable, as the subtypingitself is undecid-
able also when restricted to the types of System F, as proved in [13]. Moreover, type
inference for the systems of [5] and [11] is undecidable, as proved in [14] and [11],
respectively. Therefore, the present system cannot be proposed for real programming.
The interest of this paper is merely foundational, since it explores the difficulties in
putting together different type constructs, and formalizes a sound proposal which en-
hances previous solutions. A future work will be to tailor a proper subsystem of our
typing system, possibly using bidirectional type checkingas proposed in [3], with the
property of being decidable while preserving a good expressive power.
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