Intersection, Universally Quantified,
and Reference Types

Mariangiola Dezani-CiancaglihiPaola Giannirfiand Simona Ronchi Della Rocta

1 Dipartimento di Informatica, Univ. di Torino, Italy — wwwidinito.it™
2 Dipartimento di Informatica, Univ. del Piemonte Orientdtaly — www.di.unipmn.it

Abstract. The aim of this paper is to understand the interplay betwatarsection,
universally quantified, and reference types. Putting fogygthe standard typing rules for
intersection, universally quantified, and reference typess to loss of subject reduc-
tion. The problem comes from the invariance of the referappe constructor and the
rules of intersection and/or universal quantification étation, which are subsumption
rules. We propose a solution in which types have a kind sayimgther the type is (or
contains in the case of intersection) a reference type orlnigrsection elimination is
limited to intersections not containing reference types| the reference type construc-
tor can only be applied to closed types. The type assignnsestiown to be safe, and
when restricted to pur@-calculus, as expressive as the full standard type assignme
system with intersection and universally quantified types.

Introduction

This paper deals with the problem of understanding the plagrbetween types built
using intersection, universal quantification, and refeestype constructors. Reference
types, [7] and [15], are an essential tool for typing memopations and the operations
of reading and writing in memory. Parametric polymorphisgnumiversally quantified
types, introduced by Girard in [5] and Reynolds in [12], emtes the expressivity of
typing in a uniform way. Intersection types, introduced2h, fallow for discrete poly-
morphism, increase the typability, and in particular giiersmal account to overload-
ing. Putting together these type constructs is useful fpinty in a significant way a
programming language with imperative features. It is walbkn that reference types
must be invariant, since they represent both reading artshgyof values, and therefore
they should be both covariant and contra-variant [10] [dE2f. On the other hand, the
standard intersection and universal quantifier elimimatyping rules are subsumption
rules, since the intersection of two types is contained th bgpes, and the instantiation
of a universally quantified variable specializes the type.

As already remarked in [3] a naive typing with reference antersection types may
lead to loss of subject reduction as the following exampteash We can derive type
Pos for the term

(AX.(AyIX)(x:=0))refl
by assuming typaef Pos ARef Nat for the variablex. In factref 1 has typ&ef Pos A
RefNat since 1 is botlPos andNat. By intersection elimination we can use:

** Work partially supported by MIUR PRIN’06 EOS DUE, and MIUR RRD7 CONCERTO
projects. The funding bodies are not responsible for anythetemight be made of the results
presented here.

— the typeRef Nat for x in the typing ofx := 0 getting the typ&nit;
— the typeRef Pos for x in the typing of k getting the typeos.
Reducing this term starting from the empty memory, with thit-by-value strategy we
get
(Ax.(AyIX) (x:=0)) ref150 —

and 0 does not have the types. Note that this term evaluates to 1 in the memory
(I = 1) under the call-by-name reduction strategy. So the sousdsfegping depends
on the evaluation strategy used.

This example is a transcription of an example in [3]. The Sotugiven in [3] is
discussed in the conclusion, where it is compared with cop@sal.

A variant of this examples shows that also a naive use of usallg quantified types
may lead to loss of subject reduction. Consider the term:

M= ((Ax.(Ay.IX) (x:=Az0)) (ref(Az2)) 1

We can derive typ@os for this term by assuming typ# .Ref (t — t) for the variable
X. In fact, (ref (Azz)) can be given typ&t.Ref (t — t) and therefore alsBef (Pos —
Pos). By forall elimination we can use:

— the typeRef (Nat — Nat) for x in the typing ofx:= A z0 getting the typ&nit;

— the typeRef (Pos — Pos) for xin the typing of k getting the typ@os — Pos.
Reducing this term starting from the empty memory, with thk-by-value strategy we
get

ME0 — (Ax(AyIx) (x:=Az0)))18 (l=Az2)
— (Ay) (1:=220)) 14 (1 =Az2)
— ((AyIH()) 18 (1 =Az0)
— 11t (1=Az20)
— (Az0) 14 (I =Az0)
— 04 (1=Az20)

and 0 does not have the types. Note that using the call-by-name reduction strategy
we get 1.

As suggested by the above examples, a memory location tyfesftPos ARef Nat
must contain values which are bdths andNat, i.e. values of typ@os ANat. For the
case of quantified types a memory location typetfblef (t — t) must contain a func-
tion of typeVvt.t — t. This can be better expressed by typing the memory locatitn w
the typeRef (Pos A Nat) in the first case anHef (Vt.t — t) in the second. Therefore,
when a value is assigned to it it must have tppe in the first case andt.t — t in the
second.

Building on this idea we propose a type system for-aalculus with assignment
statements and reference/dereference constructorssdntons and universally quan-
tified types are assigned to terms, via introduction rulasebmination of intersection
is limited to non reference types, and thef type constructor can only be applied to

closed types. We show safety, i.e. subject reduction angrpss, of our type system.
Lastly we observe that no expressive power is lost in corsparnwith the original sys-
tems of universally quantified types [5], intersection tyf#, and both intersection and
universally quantified types [8].

A strongly related paper is [4] which proposes a differepetassignment system
with both reference and intersection types. We will compgheepresent solution and
that one discussed in the paper [4] in the conclusion.

Outline of the paper. Section 1 presents the syntax and reduction rules of theitagey
Types with their relevant properties are introduced in i®ac2, and Section 3 defines
the type assignment system and proves its safety. We candlu&ection 4, by com-
paring our approach with the ones of [3] and [4], and outlinrossible directions for
further work.

1 Syntax and Reduction Rules

The languagéimp We are working with is a simplification of the language in [8hich
in its turn belongs to the ML-family, the difference being thck of theet construction
and of the binary strings. It is well know that thet constructor is syntactic sugar [10]
[Section 11.5] and in presence of intersection or univirsgalantified types does not in-
crease the typability of the language, since with eithesrgection or universally quan-
tified types we can type the translationlef in pureA -calculus [1], [6]. The only data
types ofAimp are the numerals, that is enough for discussing the typiollems shown
in the introduction.
Terms ofAimp are defined by the following grammar:
M =n|x|AXM|MM | fixx.M
[|[refM|IM|M:=M|()
if M then M else M| MopM | ...
n :=0]1]2]...
op =+ x|...
wherex ranges over a countable set of variables, brahges over a countable set of
locations Free and bound variables are defined as usual. A term isicifiseloes not
contain free variables. The set of closed terms is denote’qonlay
The syntactical constructs with an imperative operatidreddaviour are the loca-
tions, denoting memory addresses, and the operatdrs!, and =, denoting the op-
erations of allocation, dereferencing, and assignmemselbehaviour is given below.
The set of values is the subset/y, defined as follows:
Vi=n|[AxM]I | ()
The value () is the result of the evaluation of an assignmehtse purpose is the
side-effect of changing the store. The store is modeled asta issociation between
locations and values:
pi=0lp(=V)
OnAimp we consider a call-by-value reduction semantics. The djp@a semantics is
given by defining reductions inside evaluations contektst, tas usual, are terms with
ahole, [], specifying which subterm must be reduced.
E=[]|EM|V E |ref&|1E|E=M|V =8|
if #thenMelseM|& op M |nop &

3

ETAXM)V] E K — EMN /X 2 B
EfixxM] § u — E[M[fixxM/X]] § U (fixR)
ElrefV]{ — &Nt u,(I1=V) |fresh(refR)
ST, (1=V) e EN E i, =V) (locR)
El=VItm(=V) —&Olmi=V) (iR
&[if OthenMelse N]f 4 — &M] { u (ifZR)
&lif nthenMelseN]f u — &INJtu n#£0 (ifPR)
E0+0gu — &0t u (+ZZR
E0+1tp — &[]t (+ZOR)

Fig. 1. Reduction Rules

As one can see the evaluation is left to right and for an apfitio we evaluate both
terms. The reduction semantics is given by the sets of rnlEqi 1 whergN/x] is the
capture free substitution afwith N, andu is a store.

2 Types and Type Theory

Types,T, g, p, are defined by the following syntax:

1,0,p0 == Pos|Nat|Unit|t|T—T|TAT|Vt:K.T|RefT

K m=S|R
wheret belongs to a countable set of type variables (ranged ovériy,w). Kinds
(ranged over by) say whether the type is (or contains in the case of inteisgch
reference type. Theimple kindS is the kind of types which are constants, arrows or
intersections of two types both of kil The reference kindR is the kind of types
which are references, or intersections of two types at asbf them being of kini.
An universally quantified type inherits the kind from the éypbtained by erasing the
quantification.

The type of natural and positive numbers is denoted reyadgtdy Nat andPos,
Unit is the type of assignments afgyl The arrow constructor, — o, is the type of
functions from typer to type g, and intersectiont A g, is the type of expressions
that have both type and typeo. Universal quantification specifies the kind of the
bound variable, since the variable can be replaced only lypea of the same kind.
Finally Ref 1 is the type of a reference to a value of typeMe assume the following
precedence relation between construgitef, A, —. As usual— associates to the
right. We usevt : K.T as an abbreviation forty : K1....Vtn : Kn.T, wheren > 0.

The set of free type variables of a typ&V (1), is defined in the usual way. A term
without occurrences of free type variables is sdaked

A kind environmenf\ is an association between type variables and kinds, defined
as follows:

AFPos::S AFNat::S AFUnit::S At:kKFEtiK

AFTiK IV(T)=0 Art:k AFT k' ATk AFT K At:kbFTiK

AFRefT:R AFT—T S AFTAT kYK AVt KTK

Fig. 2. Kind Assignment

4

T=TAT OANT=TAC (TAO)AT =TA(OAT)
(c—-1)AN(0—-T)=0—T1AT Ref (TAO)=RefTARefO
Ytk W kK T=W K VKT
VK. T =W K T[t/t]

ViKT=T

Vt:K(T—>O0)=T—>Vt:K.O
Vt:K.(TAO)=TAVL:K.O

tgIVv(r) =

Fig. 3. The Congruences on Types

A:=0]|At:K tZdomA)
wheredomis the environment domain.
We useA,T : K as an abbreviation for the kind environment; : K1,tn : Kn, Where
n>0.

AtypeTt has kindk w.r.t. A if the judgmentA F 1 :: k can be derived from the rules
in Fig . 2. Note that only closed types can be arguments diélietype constructor. As
we can see from the rules of Fig. 2 the kind of an arrow is alv&gad the kind of an
intersection iR if at least one of its types has ki since we define:

KY K = S ifk=k'=S
~ |R otherwise

We abbreviaté - 11 :: K1...,A F T i Ky, Wwheren > 0, byA T 0 K.

In the following we will only consider types to which a kindrcae assigned from
a suitable environment.

On types, we define a congruence relatien,identifying types that denote the
same property of terms. The relatienis the minimal equivalence relation which is a
congruence and which satisfies the axioms given in Fig. 3aRig intersection we
have idempotence, commutativity, associativity, disttitn of intersection on the right
side of arrows with the same left side, and distributiorRef over intersection. For
quantified types we have commutativity of quantificatiarngonversion, the fact that
quantifying on a variable not free in a type is irrelevantl éime standard distribution
rules for quantifiers on arrow and intersection connectiWes consider types modulo
=, so we writeA;¢ Ti, and A1<ij<n Ti for denotingty A --- A Ty, wherel = {1,...,n},
and none of the;, 1< i < n, is an intersection.

Itis easy to check thatiA F 7 :: Kk andT = 0, thenA |- ¢ :: k. It is important to
notice thaRef 7 has a kind implieq is closed, so in particulart.Ref T = Ref T.

In the following it is handy to single out the types whose topuatification is mean-
ingless.

Definition 1. A typer is V-top-freeif there are no tk, ando such thatt =Wt : k.o
andte V(o).

For exampleYyt.Nat is V-top-free, sinc&'t.Nat = Nat. InsteadNat — Vt.t is notV-top-
free, sinceNat — vt.t = vt.Nat — t.
A preorder relatior< is defined on types through the rules shown in Fig. 4. Rule

AFTANOD::S AbVt:kT:K AbFo:ik
A F Pos < Nat (pog —— (AE
AFTAO<T AVt k.T<T[O/t]

AT <T Abo<d AFT<T Ato<d At:kF1<0
(—) (A) (V)
AT —0<T >0 AFTAho<TAO AFVt K. TSVt K.O

AFTIK AFT<p AFp<o =7 A+T <0 od=0
—— (id) (trans) (congr)
AFT<T Ar1<0 A-T1<0

Fig. 4. The Preorder Relation on Types

(po9 says that a positive is also a natural. RuleE)and {E) are the elimination rules.
Note that for eliminating intersection we require that theeisection does not contain
reference types. This is a crucial restriction, along wlith tacts thaRef can only be
applied to closed types and there is no rule for applyinonsideRef, to get subject
reduction. Ruleg—), (A), and(V) extend< to the specific constructor, and they are
standard. Rul¢id), and(trans), make< a preorder, and rul@eongr) makes< a partial
order when we identify congruent types.

Note thatA + 1 :: Kk andT = o imply bothA - 7 < g andA F o < 1. On the other
sideAF 1t < ogimpliesAt 1:: kK andA + o :: k for somexk.

Weakening holds for kind environmentsin all the considguddements, i.eA - 7 :: kK
impliesA,t: k1 kif t domA) and similarly forA -1 < g.

By induction on the definition o we can show that the preorder is preserved by
replacing type variables by types of the same kinds.

Lemmal. At:k+T1<0,andAlp:kimplyAt t[p/t] < alp/t].

The next technical lemma is the key tool for proving the satjeduction property
in case the used reduction rule is fRerule. It states that if a quantified intersection of
arrows is less than the arraw— o, then there are instances of domains and co-domains
of some arrows in the intersection which are related by teengler tor ando.

Lemma2. If AFWE: K. A (Ti — 6i) < T — 0, whereg; (i € 1) ando areV-top-free,
then there arép, and JC I, such that:
—AFpDIK,
- AFT<T1[p/f] (j €J), and
- AF Ajeyoilp/fl <o
Proof. By induction on the definition of. In order to prove the result for rulgrans)
we show the more general assert that follows:
If T=VU:K.Ajq (i — i) whereg; (i € |) areV-top-free, andA + 17 < g, then there
arev,k’, J, 7}, V-top-freeoj (j € J), p such that:
- 0=W:K. \jes(T] — o)
- AV:K'Fp:K,and
— forall j € J there is H C | with:
o AV:K'F 1] < 13[p/U] for allh € Hj, and
o AV:K'F Apen; on[p/l < 0.

The proof is by induction on the derivation gf. We only consider the most difficult
case, that is when the statement is the consequent oftrales). Let A - 7 < 7’ and
A+ 1 < o be the premises of the application of r@teans).

By induction hypothesis on < 1’ there arew, k”, L, 1", V-top-freeq]’ (I € L), p’
such that:
(@) U =VW: K7 N\ (T — ')
(b) A,w:k"Fp':: K, and
(c) foralll € L there isH/ C | with:

(c.1) A,w: K"+ 1" < T[p’/U] for allh € H/, and

(€2) A,W:K"F Apewy onlp’/T] < of'.

By induction hypothesis on’ < ¢ there arev, K/, J, Tj,
such that:
(@) o=W: K_ﬂ\jej_(rj(— a])
(b") Av:k'+p”:: k", and
(¢') forall j € JthereisH C L with:

(c.1) A,v: K+ 1) < 11/[p" /W] for all h € HI', and

(c.2) AV K F Abery ai/[p" /W] < .

Note that we can assume that the sets of variailesandw are fresh and pairwise
disjoint. Definep = p/[p” /W] andHj = UkeHj” He (j €J). Itis easy to verify that:

v-top-freea; (j € J), p”

— A,V: K’ p K (from Lemma 1, weakeningb) and(b')), and
— Hj Cl.
Moreover(c.1) and(b’) imply by Lemma 1 and weakening that
AV K - 1'[p" /W) < T[p’ /U] [p” /W] for allh € H].
Note thatty[p’/U][0” /W] = Th[p/U] for all h € Hj sincew cannot occur int,. So by
(c'.1), and transitivity of< we get for allj € J:
AV: K"+ 1) < th[p/U] for all h € H;.
Similarly from(c.2), (b’), Lemma 1 and weakening we get
A,V K'F Anewy 0n[p/U] < of'[p”/w] for all | € L.
This together with(c'.2), using rule(A), transitivity of <, and the congruence/ o =
o implies for allj € J:
A,V K'E Anen; On[P/T] < o. O

3 The Typing System

The typing system proves judgements of the shape:
A TEM:T
whereA is a kind environment; andl” are astore environmerdnd atype environment
respectivelyM is a term andr is a type. Store and type environments are defined as
follows:
Zu=0|Z1:1 | ¢ dom(X) T is a closed type
Fa=0|r,x:t x ¢ dom(Il).
A store (type) environment iwell formedwith respect to a kind environment
if all its predicates have a kind, i.e, (I) issuch thatifi : 1€ > (x: 1€) then

n+#0

A;5;I F0:Nat (Nat) %(Pos) A;Z T E () 1Unit (Unit())
A2 Fn:Pos
A Z M x:TEx: T (var) A;Zl:T;F H1:RefT (loc)
A TEM:T IV(T)=0 A; 5T FM:RefT
(Refl) L (RefE)
A2 -refM :RefT AT HFIM: T
A2 x:TEFM: o NZTEM:T—0 AZ,TEN:T
(—1) (—E)
A ZTEFAXM:T— 0 A;Z;T-MN:o
At K ZTEM:T tgz?V(ZJ')() A FTEMiTt A2 TEM:o
VI Al
A2, T MVt KT A2, TEFM:TAD ()
ANZTEM: T AFT<0O A2 TEFM:RefT A 2T =N:T
(<) (Unit)
A TEM:o A;2; =M :=N:Unit
A2 M X:TEM:T A 2T EM:Nat A2 FTENp:t AT FNoT
(fix) (if)
A2 EfixxM T A; 2 +if M thenNj elseNp: T

Fig. 5. The Typing Rules for Terms

A F 1 k for some kindk. When we write a typing judgemedt; >; - M : T we
always assume that and/l™ are well formed with respect 4.

The typing rules, givenin Fig. 5, are standard. We omit tipénty rules dealing with
arithmetic operators which are obvious. Note that the elation rules of both andv
are particular cases of ru{e).

It is easy to verify that strengthening and weakening fottadl environments are
admissible rules. Fig. 6 shows these rules, whe&téM) is the set of locations and
FV (M) is the set of free variables occurringhih

The proof that deductions remain valid under the substitutif type variables by
types respecting kinds by induction on deductions is stahda

Proposition 1. If Ajt i k;2;F M :TtandA | o :: k, then
A Z[o/t]; I [o/t]E M : 1[g/t].

The type system enjoys a Generation Lemma, which relateshthpes of terms
with the shapes of their possible derivations. We omit theials points concerning
numerals and operators on numerals.

Lemma 3 (Generation).LetA; ;" M : 1. ThenA F 1 > Vi : K. Aig T, for some |,
f, K, V-top-freer; (i € 1), and the followings hold, whe#®’ = AT : k:
1. M = ximplies thatx o € I' for someo such thato < t;
2. M = Ax.Pimplies that there are;, p; (i €1), such that:
(@) 1 =g — p;, and
(b) Az x:0FP:pi(iel);
3. M = PNimplies that there are; (i € |) such that:

At kK2, FTEM:T tg_iﬂV(Z,l',r)(AZTEM:T t€ V(1)
A

)
A2 TEM:T At k;Z;T-M:t
AS T, FTEMT 1 €.2(M) A;Z;r =Mt 1 ¢dom(2)
s%) AFo:k forsomek W(a):w(wz)
AZrEM:T AZl:oTEM:T
A;5Fx:TFM:iT x¢ ZV(M) A5 MMt xgdom()
(s) At ok forsomek
ASTEM:T (wr)

A2 M xioFM:T

Fig. 6. Admissible Rules
@ A Z;FT=P:gi—r1(iel),and
(b) A Z;FEN:g (iel);
4. M = fixxNimpliesthatd’;Z;F ,x:iFN:T (i €);
5. M = | impliesthatl: o € X, for some closed such thaRef o = T;
6.
7.

M = IN implies thatd’; Z; - N:Ref 1 (i €1);
M = refN implies that there are closed such that:
(@) 1y =Refaqj, and
(b) A;Z;F EN:gi (iel);
8. M = P:= Nimpliest =Unit, and for some closed we haved’; ;I -P:Ref 0
andA’;Z;F =N: o,
9. M = () impliesT =Unit;
10. M= if Pthen N else N’ implies thatA’;>; - P :Nat andA’;Z; = N : 1
andA; 5 F =Nt (i el).
Proof. For all points, the proof is by induction on derivations. W#l wonsider only
the case in which the last rule applied id), and we will show it for Points 2, 3 and 5.
All the other cases are simpler.
2. If the last applied rule is:
A5 T EAXP:T A5 EAXP: T

(A1)

NS T FAXPITAT o
by inductionA 7 > VI 1 K. Ai¢ (61 — pi), andA = T > W' 1 K. Ajes(0] — pf),
andAT:K; > x: 0 -P:pj, forielandA,t: k’;Z;I,x: o FP: pj, for j € J.
By the monotonicity o< with respect to\ we get

TAT >2VEIK. Nie (00 =) AV K Ajes (0] — pj)
and, since types are considered modalave can assume thiandt’ are disjoint,
sowe hava AT > VI K 1 K. (Aigi (Gi — pi) A Ajea(a] — pj)). Moreover, by
the admissible ruléwA), we obtainA T : K.t : k; 2,1 ,x: i - P: g, fori el and
ARk Z T x ojFPpj, forjed.
3. Ifthe last used rule is:
AZ,TEPN:T A Z;FEPN:T

NS TEPNITAT o

then by inductionA + 1 > VI K. \igTiandA F 1T/ > W' : K" Njes rJf, and:

(A1)

9

ATKZTFPio—1 and AT:KZIEN:ig (i€l)
AV:iKNZITEPioj—1) and At:k;Z [=N:oj (jeJ).
Then, by(wA): L
ATKUVIK,ZTEPio—1 and AT:KUIK,ZTEN:g (i€l)
AT KV K ZMTEPioj—1) and ALK VK ZTEN:io] (i€d).
The proof follows fromA = T AT/ > VE: KA : K. (Aig) Ti A \iea T}), Since we can
assume thatandt’ are disjoint.
5. If the last applied rule is:
A TR AT LT
NS L TAT

by inductionT = Ref 0 and1’ = Ref ¢’, and the proof follows from the fact that
Ref 0 ARef 0’ =Ref (OAC'). O

(A1)

Note that, without reference types, Points 3 and 4 of presiemmma hold with
| a singleton set. The restriction on ruleE) is reflected in the necessity of hav-
ing sets of types of cardinality bigger than 1. For examptenf{x : (Nat — Nat) A
(Nat — RefNat),y: Nat,z: (Nat — Nat) A (RefNat — Nat — Nat)} we can de-
rive z(xy) : Nat A (Nat — Nat), but there are no types, > such that from the same
environment we can derive: 1, — T, andxy: 1. Instead we have 0;0x: (o —
o)N(o—T1)y:0,2:(0—>0)AN(T—0—0)}Fz:0NT—0A(0—T) and
0;0;{x: (0 —o)AN(0—T1),y:0,2: (0= 0)AN(T—0—0)}bFx:0AT for all
0,1 of kind S. Similarly we can derive 0;#y : (Ref Nat — RefNat) A (Ref (Nat —
Nat) — Ref (Nat — Nat))} F fixx.yX: Ref (Nat A (Nat — Nat)), but we cannot de-
rive 0;0;{x:Ref (Nat A (Nat — Nat)),y: (Ref Nat — RefNat) A (Ref (Nat — Nat) —
Ref (Nat — Nat))} I yX: Ref (Nat A (Nat — Nat)).

The typing system enjoys the standard Substitution Prgglet can be proved by
induction on derivations.

Lemma 4 (Substitution).If A;Z; ,x: T-M:candA;>; -N:1,thenA;>;l +
MI[N/X] : O.

In order to prove subject reduction for our type system wealieshow that typing
is preserved under the replacement of a type by a smallemahe itype environment.
Lemmab. LetA;Z; [, x:o-M:tandAF o' <o.ThenA;Z; [, x:0'-FM:T.

Theagreemenbetween a store environment and a store is defined as us(@Dgf®
nition 13.5.1].

Definition 2. We say that a store environmentgrees with a stor@ (notationz +)
if:

— (I=V)euimpliesl: 1€ X andA;2;0F V : 1 for somer;

—l:1eXimplies(l =V) e pandA; ;0 V : 1 forsome V.
Now we can prove subject reduction.
Theorem 1 (Subject Reduction)A;Z;Ff FM:tandX+puand Mg u — N ¢ p’
implyA;>";F FN:oandX’ I u' forsomeX’ D 5.

10

Proof. M u — N p’ implies thatM = &[M’] andN = &[N’], for some evaluation
contexts. The proofis given by induction ofi. We consider the most interesting cases
for & =[] since the induction cases are straightforward.

If the rule applied igSy), thenM = (Ax.P)V, andN = P[V /x]. From Lemma 3(3), for
somet, K, |, g; andV-top-freer; (i € 1),

(1) ARVE: K AT <T,

2) AT K2 T EAXP: g — 1 (i€l),

) ALK, Z;T=V:ig(iel), _ _
From Lemma 3(2), and Poir2), for all i € |, there arev(), k(), H;, oj('>, and TJ-('>
(j € Hi) such thabj(i) — rj“) is V-top-free and

(@) AR FWO k0. Aoy (0] — r”) <0 — T,

(b) AF: 'V kD5 x: a()I—P r (j € Hy).

Note thataj(i) () V-top-free |mpI|esr V-top-free. Then Lemma 2 and Poi(#)

imply that there ar@ , andJ; C H;, such that:
(@) AE:REpD k0 (iel),
(

B) Af: k-G <o >[A0 (j €), and
)AtKl—/\JGJI

(o] < 1,
From Pointgb), (a) and Proposmon 1, for all € J;, we derive
AfKZI'xo[/V]FPT[/v]
and by Point8), and Lemma 5 we get
AR Z 0P o0 Vi),
Applying rules(Al), (<) by Point () we derive
AT K Z, M x.0FP:T
which by Lemma 4, and Point (3), implies thaff : K; Z; 7 FP[V/x : 1 foralli €.
With multiple applications of rul¢Al) we getA,T: K; ;T FPV/X : Aig Ti, and then
applying many times rulévl) (note that we can assurbieZ 7V (Z,I") since we take
types module=s) we derived; X; I = PV /x| : VI : K. Aig Ti- Finally from Point (1) and
rule (<) we concludej; =;I - PV /x| : 1.
If the rule applied isf{xR), thenM = fixx.P, andN = P[fixx.P/x]. From Lemma
3(4),forsome, K, I, i (icl),wegetA -V K. A\igg i <TtandA,t:K; 2, ,x: T FP:T
(i €1). Therefore, ruléfix) of Fig. 5 impliesA,T: k; 2; - £ixx.P: 1 (i € I). From
the Substitution Lemma 4 we derivei : k; ;I + P[fixx.P/X : 7i (i € I). Applying
(Al)'s, (VI)’'s, and(<) we conclude); =; I + P[fixX.P/X] : T.
If the rule applied istefR), thenM = refV,N =1, andy’ = u, (I =V). From Lemma
3(7),forsome, K, I, closedr; (icl),wegetA -Vt : K. AigRef T <tandA; Z;F V1
(iel). LetX =Z2,1: Aig Ti, we have that; 2'; T | : Ref A\, Ti. Therefore, since;
are closed, we have thegf A\ T = VI : K. A\ic Ref Ti. Applying rule(<) we conclude
A; 2T Hl:t. FromEZFpandA; 57 Vi Aig T we also geE’ - '
If the rule applied iglocR), then result derives directly from the fact ttiat- .
If the rule applied iunitR), thenM =1 :=V,u=p" (I=V’'),andN= (), ' = u”, (I = V).
From Lemma 3(8)7 = Unit, and for some closed we haveA; ;I 1 :Ref g, and
A;Z;T =V 0. ThetypingruleUnit()) givesA; ;I () :Unit. FromA; Z;I" - | :Ref 0,

A._
—

11

and Lemma 3(5), : 0’ € = for somed’, andRef 0 = Ref ¢’, which implieso = o’.
FromZX I u in order to shows + i’ we have only to prove that; ;" -V : ¢/, which
is immediate sincé; ;' +V:oando=0d. O

Remark 1.Note that the proof of subject reduction for the case of r@8lg éxtends
without modifications to ruleff). Moreover, it is easy to check that the proof works for
arbitrary contexts. So we can conclude that subject redluétir our type assignment
system holds independently from the used reduction styateg

In order to prove the progress of our type system we need arftaiéorm Lemma
which can be proved in a standard way, see [10], by analyhi@dyping rules and the
syntax of values.

Lemma 6 (Canonical Forms).

1. A;Z;0FV :PosimpliesVe {1,2,...}.

2. A;Z;0FV : Nat impliesVe {0,1,2,...}.

3. A;Z;0FV :Unit impliesV= ().

4. A; 50V 1 — oimpliesV=AxM.

5. A; %0V :RefTimpliesV=Iland|: g € X for someo.

Theorem 2 (Progress)Let M e /\i?np. ThenA;Z;0+ M : g implies that either M is a
value or for all such that> p we have that Mt © — N £ u’ for some Nu'.

Proof. The proof is by induction on the derivatian /™ - M : 1.

If the last applied rule i$— 1), (Unit()), (1oc), (Nat), or (Pos), thenM is a value.

If the last applied rule i$fix), thenM is immediately reducible.

If the last applied rule i$— E), thenM is NP, andA;>;0-N: 17— p, andA; ;0
P:t.

If N is a value, then by the Canonical Form Lemma 6} Ax.Q. If alsoP is a value,
rule (By) applies. Otherwise, by induction hypothesisay>; 0+ P : 1, for all u such
that> - p we have thaP § u — P’ § u’ for someP’ andp’. Therefore, for somé’, R
andR, we getP = £[R] andP’ = £[R/]. Consider the evaluation conteft= (Ax.Q)&.
We have tha&”’[Rj =M and&”’[Rl g u — &'[R] ¢ p'.

If N is not a value, by induction hypothesis An>;0+ N : t — p, for all 4 such that
5 u we have thaN § u — N’ # i’ for someN’ and u’. Therefore, for somé’, R
andR, we getN = &[R] andN’ = £[R/]. Consider the evaluation conteft= & P. We
have thats”[R = M and&’[R § u — &'[R] ¢ 1'.

If the last applied rule i$Unit) thenM isN := P, andA; >;0F N:Ref T andA; Z; 0+
P:t.

If N is a value, from the Canonical Form Lemma 6(8)= |, andl : o € X, for some
o. Moreover, from + p, we have thafl =V) € u for someV. If also P is a value,
then rule(unitR) is applicable. Otherwise, P is not a value, we apply the induction
hypothesis toA; >;0 - P : 1, and derive that for ali such that> - yu we have that
Pt u— P ' for someP’ andy’. Therefore, for somé’, RandR/, we getP = &[R]
andP’ = &[R]. Consider the evaluation conteft = | := &. We have that”’[Rj =M
and&’[Ri# u — &'[R] 1 W'

If N is not a value, by induction hypothesis dan>;0+ N : Ref 1, for all u such that
2+ u we have thalN § u — N’ # i’ for someN’ and u’. Therefore, for some’, R

12

andR/, we getN = &[R] andN’ = &[R/]. Consider the evaluation conte&t = & := P.
We have tha&”’[Rj =M and&”’[Rl g u — &'[R] ¢ p'.

The proof for the case®ef E), (Refl), (if), and(+) are similar.

For rules(Al), (V1) and(<) the result follows directly by induction. O

Let us restrict the language to the purecalculus. Then our type assignment system
preserves the typability power of intersection types, itegives types to all and only
the strongly normalizing terms. As far as the expressiveguas/ concerned, we can
compare our system with System F [5], in its type assignmergion [9], with the
intersection type assignment system of [11], and with ttstesy defined in [8], where
both intersection and universally quantified types arequres et denote derivability
in the type assignment version of system F [9] a&pdn the intersection type assign-
ment system of [11]. The system in [8] can give types to alingrsince it contains
the universal typeo, and a rule that assigm to all terms. Let us consider a restriction
of this system, obtained from it by erasing both the tgp@nd the related rule, for
whose derivability we usepz. In order to prove that our system preserves the expres-
sive power of-f, p andryz, we define a decorating functiakeg transforming every
type in [8] non containing occurrences @fin a type of our system, in the following
way:

dedqT op 0) =dedT) opdeqa) (ope€{—,A}) deqvt.t) =Vt: St
The functiondeccan be obviously applied also to the set of System F typesaaticbt
set of intersection types, which are proper subsets of {estin [8].

Theorem 3. Let M be a term of the purg-calculus,o a type,I” a type environment
andA the kind environment which gives kiBdo all the type variables occurring io
andrl.

1. If vz M: g, thenA; 0; - M : dedo).

2. Ifr e M : g, thenA;0;l =M :dedo).

3. Ifr =pM: o, thenA;0; =M :dedo).

4. M is typable in the system of Fig. 5 if and only if it is strngormalizing.
Proof. Point 1 is immediate, since the rules-qfiz are a proper subset of our rules, and
also the< relation on types is the same, when reference types are est.

Points 2 and 3 follow from Point 1, since the rulestef and oft-p are a proper
subsets of the rules 6fyz.

For Point 4 since all strongly normalising terms are typablthe system of [11]
we get from Point 3 that all strongly normalising terms angalyle in our system. The
vice versa can be proved by a standard use of the compuabititinique as done in
[11]. O

4 Conclusion

In this paper we discuss how to combine intersection, usalr quantified and refer-
ence types in a meaningful way. The naive use of interseatioruniversally quantified
types is unsound in presence of references, as shown in §@hathe introduction of
this paper. Davies and Pfenning solve the problem by résigiboth the definition of
the preorder relatiort between types, and the type assignment system. In the greord
relation< between types they do not have the standard rules:

13

(=A) (T—=0)A(T—p)<T—0Ap
(—V) WVtt—o<1—Vto t£€IV(T)

The type assignment system is restricted in such a way tkaintersection and the
universal quantification can be introduced just in case tilgest is a value. Then the
subject reduction property holds, for a call-by-value &thn semantics of terms. As
already noticed in [4], while in this way they solve the prrl described in the in-
troduction, in the system there are unsound typings. Intfectermx := x+ 1 can be
typed in their system, extended with the standard typing fort the sum, through the
following derivation:

A;0;x:Nat ARef Nat - X: Nat ARef Nat

(<)
A;0;x: Nat ARef Nat - X : Nat ARef Nat A;0;X: Nat ARef Nat I x: Nat

(<) (+)
A;0;x:Nat ARef Nat F X: Ref Nat A;0;x:Nat ARef Nat - X+ 1 :Nat

(Unit)
A;0;x: Nat ARefNat F X:=X+1:Unit

In [4] a different solution is proposed, for a system withereince and intersection
types only, which does restrict neither the definition of theelation between types
nor the type assignment system rules. In this system themgotde intersections be-
tween reference and non-reference types, so, for exatiyle\ Ref Nat is not a type.
Syntactically, this is realized through a partial intetg®t operator/, which applied
to two non-reference types returns their intersection,agplied to two reference types
commutes with th&ef constructor pushing the operator inside #wf . The system
is shown to be sound and no expressive power is lost in cosgrawith the original
system [2] [11] of intersection types when we restrict totdrens of purei -calculus.

In this paper, we consider a system with intersection, usalyy quantified and ref-
erence types. Our aim is to design a sound system having @limastrictions. The
solution adopted to avoid unsoundness is different frorh [gjtand [4], and leads to a
more elegant system. The only restriction we impose on tigothat theRef construc-
tor can be applied only to closed types. So the quantificatioreference types becomes
meaningless, sinc#.Ref T is equivalent tRef 7. Regarding intersection types we do
not have restrictions. In particular, we may have inteieacbetween reference and
non-reference types. With a notion of kind and a kind assigmwe keep track of po-
tential reference types. The soundness is reached byrgprttie definition oK relation
between types in the rule for intersection elimination,atthinay only be applied if the
intersection does not contain reference types. For oustyydes(— A) and(— V) hold
in both directions. As a results, our system enjoys subgehiction independently from
the reduction strategy. In fact the critical tefAx. (Ay.!x)(x:= 0))ref 1, showed in the
introduction, in our system has only types equivalentde, which is the type of both
0 and 1, so the typing is preserved under any reduction gtrakdoreover unsound
terms as the one shown before cannot be typed (but their s@rsnsx :=!x+ 1 and
refX:= X+ 1 are typable).

When restricted to the pure functional part of the languagetyping system has a
stronger typability power than the system of [3]. As an exEngonsider the strongly
normalizing pureA-term (Axy.(Azz2)(xy))(At.t) which is typable in our system (see
Theorem 3(4)), while it is not typable in the system of [3].rEgping this term it
is necessary to introduce an intersection between two sivatlens whose subject is

14

xy, and in the system of [3] this is not possible, since thisaubtis not a value. More
precisely, ifo; = (Nat — Nat) A ((Nat — Nat) — Nat — Nat) andg, = Nat A (Nat —
Nat), it is easy to verify thaht.t has typeo; andAz.zzhas typeo, — Nat. Therefore,
in order to type the above term we need to dedv®;{x: 01,y : 02} F xy: g2, which
requires the application of rulg\l) to xy.

The system we define is clearly undecidable, as the subtyitsalj is undecid-
able also when restricted to the types of System F, as provEBi. Moreover, type
inference for the systems of [5] and [11] is undecidable, ravqd in [14] and [11],
respectively. Therefore, the present system cannot beopeabfor real programming.
The interest of this paper is merely foundational, sincexileres the difficulties in
putting together different type constructs, and formaliaesound proposal which en-
hances previous solutions. A future work will be to tailor @mger subsystem of our
typing system, possibly using bidirectional type checlasgproposed in [3], with the
property of being decidable while preserving a good exjiregmower.

AcknowledgementsWe gratefully acknowledge fruitful discussions with Frapien-
ning and Betti Venneri. We also thank the referees for thainments.

References

1. M. Coppo. An Extended Polymorphic Type System for Apgiliealanguages. In P. Dem-
binski, editor, MFCS’8Q volume 88 ofLNCS pages 194-204. Springer-Verlag, 1980.

2. M. Coppo and M. Dezani-Ciancaglini. An Extension of thesBd unctionality Theory for
the A-calculus.Notre Dame Journal of Formal Logi@1(4):685-693, 1980.

3. R. Davies and F. Pfenning. Intersection Types and Cortipntd Effects. In P. Wadler,
editor, ICFP’00, volume 35(9) ofSIGPLAN Noticespages 198-208. ACM Press, 2000.

4. M. Dezani-Ciancaglini and S. Ronchi Della Rocca. Intetisea and Reference Types. In
E. Barendsen, V. Capretta, H. Geuvers, and M. Niqui, edit®eflections on Type Theory,
Lambda Calculus, and the Mingages 77-86. Radboud University Nijmegen, 2007.

5. J.-Y. Girard. Interprétation Fonctionnelle et Elimination des Coupside I'Arithmétique
d’Ordre Supérieur Thése d’'Etat, Université de Paris VII, 1972.

6. D. Leivant. Polymorphic Type Inference. In A. Demers and@éitelbaum, editorf OPL'83
pages 88-98. ACM Press, 1983.

7. J. M. LucassenTypes and Effects: Towards the Integration of Functional &mperative
Programming Ph. d. thesis, Massachusets Institute of Technology,.1987

8. I. Margaria and M. Zacchi. Principal Typing in¥&\-Discipline. Journal of Logic and
Computation5(3):367-381, 1995.

9. J. Mitchell. Polymorphic Type Inference and Containménformation and Computatign
76(2/3):211-249, 1988.

10. B. C. PierceTypes and Programming LanguagégIT Press, 2002.

11. G. Pottinger. A Type Assignment for the Strongly NormaltileA -terms. In R. Hindley and
J. P. Seldin, editorsfo H. B. Curry: Essays on Combinatory Logic, Lambda Calcualnd
Formalism pages 561-577. Academic Press, London, 1980.

12. J. C. Reynolds. Towards a Theory of Type Structure. Imécks, editorColloque sur la
Programmationvolume 19 ofLNCS pages 408-425. Springer-Verlag, 1974.

13. J. Tiuryn and P. Urzyczyn. The Subtyping Problem for 8deDrder Types Is Undecidable.
Information and Computatiqri79(1):1-18, 2002.

14. J. B. Wells. Typability and Type Checking in System F ageifzalent and Undecidable.
Annals of Pure and Applied Logi®8(1-3):111-156, 1999.

15. A. K. Wright and M. Felleisen. A Syntactic Approach to &$oundnesdnformation and
Computation115:38-94, 1994.

15

