
On Progress for Structured Communications⋆

Mariangiola Dezani-Ciancaglini1, Ugo de’ Liguoro1, and Nobuko Yoshida2

1 Dipartimento di Informatica, Università di Torino
2 Department of Computing, Imperial College London

Abstract. We propose a new typing system for theπ-calculus with sessions,
which ensures the progress property, i.e. once a session hasbeen initiated, typable
processes will never starve at session channels. In the current literature progress
for session types has been guaranteed only in the case of nested sessions, disal-
lowing more than two session channels interfered in a singlethread. This was a
severe restriction since many structured communications need combinations of
sessions. We overcome this restriction by inferring the order of channel usage,
but avoiding any tagging of channels and names, neither explicit nor inferred.
The simplicity of the typing system essentially relies on the session typing disci-
pline, where sequencing and branching of communications are already structured
by types. The resulting typing enjoys a stronger progress property than that one in
the literature: it assures that for each well-typed processP which contains an open
session there is an irreducible processQ such that the parallel compositionP|Q
is well-typed too and it always reduces, also in presence of interfered sessions.

1 Introduction

Structuring communication to ensure safe interaction of concurrent systems is a central
issue in the theory and practice of concurrent and mobile computing. Communication
has indeed evolved into a growing number of complex activities, including several kinds
of transactions as well as the offer and fruition of servicesthrough a large gamma of
systems and networks. In this scenario computation consists in exchanging messages
between loosely coupled parties, whose number and identitymight also change dy-
namically. A case in point is delegation of activities to third parties in a client/server
interaction, which often occurs transparently to the client.

Existing programming languages and standards, while adding communication prim-
itives and syntactical tools to rule interaction, still leave to the programmer much of the
responsibility in guarantying that the sequence of messages is well structured and that
e.g. the client of a service will complete all needed transactions without getting into
some unwanted state. The lack of structuring principles is also a defect of theoretical
calculi such as theπ-calculus: the economy of its syntax and semantics is an advantage
for the elegance of the theory, but a drawback when controlling and disciplining specific
kinds of behaviour.

A solution proposed by [2, 9, 10, 12, 21] consists in adding primitives to creatses-
sions to the π-calculus. A session is an abstraction of a series of communications
⋆ Work partially supported by EPSRC GR/T04724, GR/T03208, GR/T03215, IST2005-015905

MOBIUS, FP6-2004-510996 Coordination Action TYPES, and MURST PRIN’05 project
“Logical Foundations of Distributed Systems and Mobile Code”.

2 Mariangiola Dezani-Ciancaglini, Ugo de’ Liguoro, and Nobuko Yoshida

through a private channel between two processes. It is created by a connection over
a session channel (we callshared), that binds a channel name which, after connection,
is substituted by a fresh private name (thelive channel) in such a way that both privacy
and duality are guaranteed, in the sense of the presence of input/output, branching/se-
lection and delegation actions with the same live channel assubject (as it is checked by
basic session type systems).

A central motivation for developing sessions and related type systems is to model
safe hand-shake communications. In such a context privacy is not the unique desirable
property of sessions, whereas compliance should be also guaranteed, namely that any
session does not get stuck into some blocking state. To explain this safety issue, let us
consider the following simple process with sessions, written in aπ-calculus dialect that
admits sequential composition (the semicolon):

P1 = a(x).(x!〈3〉;x?(z).x!〈Apple〉;P′
1)

This is a server process that first accepts the session communication through a shared
channela, and then performs a series of communication via the live channel which will
replacex: it first outputs an integer, second inputs an integer, then outputs a string, and
continue asP′

1. This behaviour is abstracted in the type system of [12] as the session
type !int.?int.!string.

A client process intended to interact with the server above will have the following
communication pattern:

Q1 = a(x).(x?(z).x!〈5+z〉;x?(z′).Q′
1)

This process requests the session communication througha and then performs the dual
actions throughx, typed by ?int.!int.?string. Once the session is established, and pro-
vided that only the two connected parties interact together, the communication over the
live channel replacingx alwaysproceedsat least up to the transmission of the string
(and to the end of the session ifx does not occur inP′

1 nor inQ′
1), since their communi-

cation patterns are dual and private.
The main limitation of the approach is that two parties are assumed to interact in

one session, and that these should not overlap. On the contrary in the case of e.g. Web
Services communications [22], we need to establish more than one session between two
or even multiple peers. In such a case, the safety is easily destroyed by the interleaving
of two or more sessions. The simplest example is as follows:

P2 = a(x).b(y).(x!〈3〉;x?(z).y!〈Apple〉;P′
2) Q2 = a(x).b(y).(y?(z′).x?(z′′).x!〈5〉;Q′

2)

where the live channels replacingx andy create a circular dependency, causing dead-
lock. However in the session type systems from the literature, the latter processes are
typable since the two sessions, one forx and the other fory, are correctly structured if
taken in isolation. Thus progress of communications on livechannels cannot be guar-
anteed when two or more sessions are mixed.

In the present work, we enhance existing session type systems to check progress
with respect to live channels belonging to several sessions, while keeping the full ses-
sion constructions, such as branching/selection, delegation and replication. The calcu-
lus is equipped with the construct forsequencingby which complex synchronisation
behaviours such as joining and forking processes can be modelled. In spite of this

2 A Calculus for Structured Communications 3

extension, we show that a great simplification w.r.t. existing type systems for partial
deadlock-freedom is achieved by relativising progress to session structured processes,
avoiding any tagging of channels and names, neither explicit nor inferred. Our type
system enjoys a progress property tailored to the soundnessof session execution: for
each well-typed processP which contains live channels there is an irreducible process
Q such that the parallel compositionP|Q is well-typed too and it always reduces. The
main technical difficulties for progress come from the two central features of theπ-
calculus: one is name hiding and passing, which can stop communications forever, and
the other is process replication, which can destroy the bilinearity of communications.
Related work The present paper moved from the desire to remove the limitations aris-
ing from strictly nested sessions in [6, 8], where a similar progress property has been
established in the case of an object-oriented, class-basedlanguage with communication
primitives for sessions and with concurrency disciplined by the use of spawning com-
mands. That result has been obtained under the condition that overlapping sessions can
only be nested and that the inner sessions have been ended before the outer ones may
proceed. Such a restriction is abandoned here; moreover we leave aside any particular
paradigm of programming languages, and consider an extension of the fullπ-calculus
with the session primitives of [12].

A tight relation exists with work by Kobayashi and his colleagues on partial deadlock-
freedom. We were inspired by [15–18,23] in considering the relation between channel
names induced by their use. However there are both technicaland conceptual differ-
ences.

First we do not decorate types by multiplicities, namely we do not record levels of
capabilities/obligations. Usages e.g. in [18], as well as “types” in the general frame-
work of [14], are far more concrete behavioral descriptionsthan session types; hence
the usages make sense as internal machinery of an automatic testing procedure, not as
interfaces or abstract protocols for the user, we are looking for.

Second the structure of session types allows us to get a significant analysis without
any form of tagging (neither by the user, nor by the typing system) and by means of a
syntax directed type system, where the number of rules only depends on the richness
of the language syntax. This is coherent with the aim of usingsession primitives and
session types directly as the basis for programming language design, rather than as a
tool to perform some form of static analysis. We leave for a future work to analyse rela-
tionships with the encodings of session types into functional and process linear typing
systems [11, 19].
Paper structure Section 2 describes the syntax and the reduction rules of ourcal-
culus, and Section 3 discusses the type system. The featuresof well-typed processes
are the subject of Section 4. The full definitions and proofs can be found athttp:
//www.di.unito.it/∼dezani/dly.pdf.

2 A Calculus for Structured Communications

2.1 Process Syntax

Theπ-calculus with sessions we consider is an extension of the calculus studied in
[12], by means ofsequencing, which allows to get forks and joins of processes [1]. The
syntax is reported in Table 1.

4 Mariangiola Dezani-Ciancaglini, Ugo de’ Liguoro, and Nobuko Yoshida

For channels we use names and variables, the latter in place of bound names in
accept/request and receive guarded processes. We further distinguish among two sorts
of channel names: shared and live.Shared channels(called simply “names” in [12]),
ranged over bya,b, . . . are used to open sessions, so that they can be either public or
private;live channels(the “channels” of [12]), written askp,kq

1, . . . are instead used only
within open sessions, as it becomes clear in the definition ofthe operational semantics,
so that their intended use (enforced by the reduction relation and the type system) is
within the scope of theν operator. Thepolarity p∈ {+,−} in apices ofkp represents
the two end points created by the session initialisation. This notion is originally intro-
duced in [10] to assure subject reduction (see [24] for the detailed discussion).

We writea(x).P anda(x).P for theacceptandrequestprimitives of [12]. Instead of
the recursive agents, we usepermanent accept, written⋆a(x).P, and for shared channels
only, to model a server providing for a service to an unbounded number of clients. In
case ofa(x).P, ⋆a(x).P anda(x).P the identifiera represents the public interaction point
over which a session may commence. We say thata is thesubjectof the (permanent)
accept/request process. The bound variablex represents the actual channel over which
the session communications will take place, to be replaced by a live channel when the
session has been opened and the connection established.

Constants and expressions of ground types (booleans and integers) are also added to
model data, which are sent and received by means of the prefixesκ!〈e〉 andκ?(x).P. We
writeκ ⊳ l .P for selection, which chooses an available branch, andκ ⊲ {l1 : P1[] . . . []ln : Pn}
for branching, which offers alternative interaction patterns; these arethe same as in

(Shared Channels) (Live Channels)
c ::= x,y,z variable

|| a,b name
κ ::= x,y,z variable

|| kp polarised name

(Values) (Expressions)

v ::= a shared channel name
|| true,false boolean
|| n integer

e ::= v value
|| x,y,z variable
|| e+e sum
|| not(e) not
|| . . .

(Processes) (Prefixed processes)

P ::= 0 inaction
|| T prefixed process
|| P ; Q sequencing
|| P|Q parallel
|| (νa)P shared channel hiding
|| (νk)P live channel hiding

T ::= c(x).P accept
|| ⋆c(x).P permanent accept
|| c(x).P request
|| κ!〈e〉 data send
|| κ?(x).P data receive
|| κ⊳ l .P selection
|| κ⊲{l1 : P1[] . . . []ln : Pn} branching
|| κ!〈〈κ′〉〉 session send
|| κ?((x)).P session receive
|| if ethen P else Q if-then-else

Table 1.Syntax

2 A Calculus for Structured Communications 5

[12].
We useκ!〈〈κ′〉〉 (session send) andκ?((x)).P (session receive) for throw and catch

primitives of [12] respectively. These are calledhigher-order session communication
primitivessince live channelκ′ is passed via live channelκ. This mechanism enables to
represent complex but safe delegations without interference by any third party.

In data and session sending, data and session receive, branching and selection, we
call the channelκ thesubjectof the prefixed process.

The essential difference with the calculus in [12] is the adding of sequencing, writ-
tenP ;Q, meaning thatP is executed beforeQ. This syntax allows for complex forms
of synchronisation asP can include any parallel composition of arbitrary processes.

The precedence of the operators building processes is (fromthe strongest) “⊳,⊲,{}”,
“ .”, “; ” and “ | ”. Moreover we convene that “.” associates to the right. For example,
κ ⊳ l .κ?(x).P;Q| R means((κ ⊳ l .(κ?(x).P));Q) | R. We often omit0 and write(νab)(P)
for (νa)((νb)(P)), etc. The bindings for channels and variables are standard and we
write fn(P), fv(P) and bn(P) for free channels, free variables and bound channels re-
spectively.

We say that the following pairs of prefixed processes aredual: {a(x).P, a(x).Q},
{⋆a(x).P, a(x).P}, {kp!〈e〉, kp?(x).P}, {kp ⊳ l i.P, kp ⊲ {l1 : Q1[] . . . []ln : Qn}} where
i ∈ {1, . . . ,n}, and {kp!〈〈κ〉〉, kp?((x)).Q}.

2.2 Operational Semantics

We formalise the operational semantics of the calculus by a one-step reduction re-
lation → , defined in Table 2, up to the standard structural equivalence≡ plus the rule
0;P≡ P.

The reduction rules are based on those of theπ-calculus with the session primitives
[10, 12], taking into account the behaviour of sequencing. By the interplay between par-
allel composition and sequencing it is handy to introduce evaluation contexts.

Evaluation contextsare defined by:

E [] := [] || E [];P || E [] |P || (νa)E [] || (νk)E []

[CON] E1[a(x).P] | E2[a(y).Q] → (νk)(E1[P{k+/x}] | E2[Q{k−/y}]) (k fresh)

[CONR] E1[⋆a(x).P] | E2[a(y).Q] → (νk)(E1[P{k+/x}| ⋆a(x).P] | E2[Q{k−/y}])

(k fresh)

[COMV] E1[kp!〈e〉] | E2[kp?(x).Q] → E1[0] | E2[Q{v/x}] (e↓ v)

[L ABEL] E1[kp ⊳ l i .P] | E2[kp ⊲{l1 : Q1[] . . . []ln : Qn}] → E1[P] | E2[Qi] (1≤ i ≤ n)

[COMS] E1[kp!〈〈kq
1〉〉] | E2[kp?((x)).Q] → Q{kq

1/x}|E1[0] | E2[0] (k1 6∈ bn(E1[]) &

bn(E2[])∩ fn(Q) = /0)

[I F1] if ethen P1 else P2 → P1 (e↓ true)

[I F2] if ethen P1 else P2 → P2 (e↓ false)

[EVAL] P→ P′ ⇒ E [P] → E [P′]

[STR] P≡ P′ P′ → Q′ Q′ ≡ Q ⇒ P→ Q

Table 2.Reduction

6 Mariangiola Dezani-Ciancaglini, Ugo de’ Liguoro, and Nobuko Yoshida

We say that a processesP is a head subprocessof a processQ if Q ≡ E [P] for some
evaluation contextE []. Examining the reduction rules it is easy to check that all prefixed
processes (but in case of if-branching) in head positions reduce only if a dual subprocess
is in head position too.

Rules [CON] and [CONR] are session initiation rules where two polarised fresh
names are created, then restricted because the leading parts P{k+/x} and Q{k−/y}
now share the channelk to start private interactions viak. In rule [CONR], we write
directly the effect of the replication of the accept/request action, and we do not postulate
⋆a(x).P ≡ ⋆a(x).P|a(x).P: hence replication is triggered only in presence of a dual
session request, a property which simplifies the soundness of the typing system.

Rule [COMV] sends data (e↓ v means that the expressione evaluates to the value
v). Rule[LABEL] selects thei-th branch.

In rule [COMS] the process which receives the live channel is put in parallel with
the evaluation contexts. Notice that this does not happen inthe other rules. This rule
allows for a safe form of delegation: indeed the process thatreceives the live channel
must proceed, even if it is put in a context of overlapping sessions, as it happens e.g. in
Example 4.3 of [12] (Fpt server). This is not guaranteed by the “standard” version of
the rule below:

E1[kp!〈〈kq
1〉〉] | E2[kp?((x)).Q] → E1[0] | E2[Q{kq

1/x}] (kq
1 6∈ bn(E1[])

In fact by using this rule the process

a(x).b(y).(y?((z)).z!〈5〉);x?(t).0|a(x′).b(y′).y′!〈〈x′〉〉

reduces to(νk)(k−!〈5〉;k+?(t).0) which is stuck, while its intended meaning should be
thaty?((z)).z!〈5〉 completes and eventually 5 is communicated alongk and replaced tot.

Notice that “;” is essential in order to identify which process must be executed in
parallel with the contexts. The example above shows that – without the sequencing
operator – we would be not able both to preserve progress and to require that a live
channel is received before a communication on other live channels is executed. This is
necessary e.g. for modelling a real estate agent who wants tobe delegated by the owner
before showing the house to potential buyers.

Rule [COMS] subsumesthe channel passing rule named[PASS] in [12], since the
standard version of this rule and[PASS] coincide if we ignore the sequencing. All other
reduction rules are as usual.

3 Typing System for Progress Communication

The type system discussed in this section is designed to guarantee linearity of live chan-
nels, communication error freedom and progress.

3.1 Types

The full syntax of types is given in Table 3.Partial session types, ranged over byσ, rep-
resent sequences of communications, whereε is the empty communication, andσ1.σ2

consists of the communications inσ1 followed by those inσ2. We putε.σ = σ.ε = σ
and we consider partial session types modulo this equality.The types !t and ?t express

3 Typing System for Progress Communication 7

(direction) † ::= ! || ?

(select/branch) ‡ ::=⊕ || &

(partial session type) σ ::= ε || †t || †s || σ.σ || ‡{l1 : σ1, . . . , ln : σn}

(ended session type) s ::= σ.end || ‡{l1 : s1, . . . , ln : sn}

(running session type)τ ::= σ || s

(standard type) t ::= [s] || bool || int || . . .

Table 3.Types

respectively the sending and reception of a value of typet. The types !s and ?s repre-
sent the exchange of a live channel, and therefore of an active session, with remaining
communications determined by the ended session types.

The selection type⊕{l1 : σ1, . . . , ln : σn} represents the transmission of a labell i
chosen in the set{l1, . . . , ln} followed by the communications described byσi . The
branching type&{l1 : σ1, . . . , ln : σn} represents the reception of a labell i chosen in
the set{l1, . . . , ln} followed by the communications described byσi .

An ended session types is a partial session type concatenated either withend or
with a selection or branching whose branches in turn are bothended session types. It
expresses a sequence of communications with its termination, i.e. no further communi-
cations on that channel are allowed at the end.

A running session type, τ, ranges over both partial and ended session types.
A shared session type[s] is the type of shared channels, and has one or more end-

points, denoted byend. Standard typest are either shared session types or ground types.
Each running session typeτ has a correspondingdual, denotedτ, which is obtained

as follows:

– ?=! ! =? ⊕ = & & = ⊕ ε = ε
– †t = †t †s = †s σ1.σ2 = σ1.σ2 ‡{l1 : σ1, . . . , ln : σn} = ‡{l1 : σ1, . . . , ln : σn}

– σ.end = σ.end ‡{l1 : s1, . . . , ln : sn} = ‡{l1 : s1, . . . , ln : sn}.

Note that duality is an involution:τ = τ.

3.2 Motivating the Design of the Type System

This subsection discusses the key ideas behind the type system introduced in § 3.4 with
some examples, focusing on progress.

Example 3.1 (Circularity of channels).As we explained in the Introduction, the order
of session channels should be taken into account. Recall theprocessesP2 andQ2 from
the Introduction:

P2 = a(x).b(y).(x!〈3〉;x?(z).y!〈Apple〉;P′
2) Q2 = a(x).b(y).(y?(z′).x?(z′′).x!〈5〉;Q′

2)

These processes use the channels bound bya andb in reverse order, hence they lead to
a deadlock. This is prevented by the type systems, which allows instead to composeP2

e.g. with
Q′′

2 ≡ a(x).b(y).(x?(z′).x!〈5〉;y?(z′′).Q′
2)

8 Mariangiola Dezani-Ciancaglini, Ugo de’ Liguoro, and Nobuko Yoshida

For a similar reason, we prohibit processes which have self-circularity of a shared chan-
nel like:

P3 ≡ a(x).a(y).(x!〈3〉;y!〈5〉) |a(z).a(t).(t?(t ′).z?(w).0)

which reduces to the deadlock process(νkk1)(k+!〈3〉;k+
1 !〈5〉 |k−1 ?(t ′).k−?(w).0).

On the other hand, we want to allow self-circularity of live channels. Fortunately we
can profit of the expressiveness of the session types to simplify our type system: since
sequences of communications arealready structuredby types, we do not have to con-
sider the ordering between the same live channels. For example P4 ≡ kp!〈3〉;kp?(y).0
andP5 ≡ a(x).(x!〈3〉;x?(y).0) shall be typable according to our system.

Example 3.2 (Sequencing and live channels).It is a well known constraint for the lin-
early typedπ-calculi to disallow live channels that occur in repeated processes. For ex-
ample,P6 ≡ ⋆a(x).k+!〈3〉 in parallel withP7≡ a(y).0|a(z).0 reduces toP6 |k+!〈3〉 |k+!〈3〉.
This can be easily avoided using a standard technique. However, the sequencing oper-
ator requires more careful analysis for preserving progress. Let us consider a slightly
different processP8 ≡ ⋆a(x).0;k+!〈3〉 which doesnot destroy linearity, but progress.
For example,P7 | P8 reduces toP8 where the linearity ofk+ is preserved, butk+!〈3〉 is
blocked forever.

Example 3.3 (Bound shared channels).A bound shared channel which does not have a
dual to start a session can block the communication on live channels forever, as inP9 ≡
(νa)(a(x).k+!〈3〉) |k−?(y).0. The problem does not arise if the shared channela is free,
since we can always compose with a dual process, as inP10≡ a(x).k+!〈3〉|k−?(y).0|a(z).0.

Example 3.4 (Shared channel passing).Shared channels can be sent only if their dual
processes can communicate without waiting other communications to succeed. For ex-
ample, consider the processes:

P11 ≡ a(t).t!〈b〉 |a(x).c(y).x?(z).z(q).q?(w).y?(w′).0 P12 ≡ c(s).b(r).(s!〈3〉; r!〈4〉)

ThenP11 | P12 reduces to(νkbkc)(k
+
b ?(w).k+

c ?(t).0|k−c !〈3〉;k−b !〈4〉) which is a dead-
lock. A safe process is the parallel composition ofP11 andP′

12≡ c(s).b(r).(r!〈4〉;s!〈3〉).

Example 3.5 (Session channel passing).Live channels can be sent only if the receiving
process does not contain live channels, as shown by the process:

P13≡ a(x).b(y).x!〈〈y〉〉 |a(t).b(z).t?((t ′)).(t ′!〈3〉;z?(w).0)

which reduces to the deadlock process(νkb)(k
+
b !〈3〉;k−b ?(w).0). A similar, but sound

process isP′
13≡ a(x).b(y).x!〈〈y〉〉|a(t).b(z).(t?((t ′)).t ′!〈3〉;z?(w).0), wherez?(w).0 is not

in the body oft?((t ′)).

3.3 Typing Judgements

The typing judgements for expressions and processes are of the shape:

Γ ⊢ e:t Γ;S ;B ⊢ P : ∆ []C

where we define:
Γ ::= /0 || Γ,x:t || Γ,a: [s] S ::= /0 || S ,a B ::= /0 || B ,a
∆ ::= /0 || ∆,κ :τ || ∆,⋄ C ::= /0 || C ,λ || C ,λ ≺ λ′

3 Typing System for Progress Communication 9

Γ is thestandard environmentwhich associates variables to types and shared channel
names to shared session types;S (resp.B) is the set ofshared channel nameswhich
can besent(resp.bound); ∆ is thesession environmentwhich associates live channels
to running session types, and it can also contain the specialsymbol⋄. The session en-
vironment∆ represents the open communication protocols of a process; the occurrence
of ⋄ in ∆ is used to prevent that any process sequentially composed with the term to
which⋄ has been assigned, might contain any occurrence of free livechannels (see the
definition of∆ ·∆′ in Table 5).C is thechannel relation, which is intended to give in-
formation about the ordering in the usage of channels. InC the metavariableλ ranges
over shared and live channels. A well-formed channel relation is irreflexive w.r.t. shared
channel names, and cannot contain cycles (see the next subsection).

3.4 Type System

Table 4 defines the type system. We omit the typing rules for expressions which are
standard and identical with [24]. For typing processes, we use the auxiliary operators
defined in Table 5. We list the key points of the typing rules for processes.

Session Initiation As discussed in the examples, accept/request processes whose sub-
jects are going to be bound or sent require particular care. The most liberal typing rules
areAccandReqwhere the shared channel can neither be bound nor sent. The resulting
session environment is obtained by erasing the type of the bound channelx and the re-
sulting channel relation is obtained by replacingx by a to prevent the circular ordering
between names.

If the shared channel is a permanent accept, or when it can be bound but not sent,
we cannot allow live channels in the continuation processes(see Examples 3.2 and 3.3).
In rulesAccB, ReqB, andAcc⋆, the satisfaction of this condition is enforced by requir-
ing that the session environment of the body process only contains the current channel
and by typing the whole process with the session environment{⋄}. Notice that session
environments containing⋄ cannot be composed with session environments containing
channels by the definition of∆ ·∆′ given in Table 5.

If the shared channel can be sent but it cannot be bound we needto require that
all communications on that channel can be executed without requiring other channels
to communicate (Examples 3.4). This can be achieved by asking that the channel is
minimal in the current channel relation, i.e. usingC
x (defined in Table 5) in the con-
clusion. We askC
x to be the channel relation in the conclusion of rulesAccS, ReqS,
andAcc⋆S, convening that the rules cannot be applied if it is undefined.

RulesAccBSandReqBSput the above restrictions together, and are used to type
shared channels which can be both bound and sent. In rulesAcc⋆S, AccBSandReqBS
the subject can also be a variable, which will be replaced by achannel name which
surely can be sent and possibly can be bound.

Session CommunicationThese rules add relevant information to session environments
and to channel relations. RuleSndchecks that only shared channels in the setS are sent.
The resulting session environment is{κ : t}, whereκ is the subject of the sent process
andt is the type of the sent expression. The resulting channel relation contains the name
(without polarity) of the subject, where we defineℓ(κ) = k if κ = kp andℓ(κ) = κ oth-
erwise.

10 Mariangiola Dezani-Ciancaglini, Ugo de’ Liguoro, and Nobuko Yoshida

Rule Rcvuses the composition operator defined in Table 5 between session envi-
ronments, which extends that one between running session types. In this way we can

Γ ⊢ a: [s] Γ;S ;B ⊢ P : ∆,x:s []C a 6∈ S ∪B
Acc

Γ;S ;B ⊢ a(x).P : ∆ []C {a/x}

Γ ⊢ a: [s] Γ;S ;B ⊢ P : ∆,x:s []C a 6∈ S ∪B
Req

Γ;S ;B ⊢ a(x).P : ∆ []C {a/x}

Γ ⊢ a: [s] Γ;S ;B ⊢ P : {x:s} []C a 6∈ S
AccB

Γ;S ;B ⊢ a(x).P : {⋄} []C {a/x}

Γ ⊢ a: [s] Γ;S ;B ⊢ P : {x:s} []C a 6∈ S
ReqB

Γ;S ;B ⊢ a(x).P : {⋄} []C {a/x}

Γ ⊢ a: [s] Γ;S ;B ⊢ P : {x:s} []C a 6∈ S
Acc⋆

Γ;S ;B ⊢ ⋆a(x).P : {⋄} []C {a/x}

Γ ⊢ c: [s] Γ;S ;B ⊢ P : {x:s} []C
Acc⋆S

Γ;S ;B ⊢ ⋆c(x).P : {⋄} []C
x

Γ ⊢ a: [s] Γ;S ;B ⊢ P : ∆,x:s []C a 6∈ B
AccS

Γ;S ;B ⊢ a(x).P : ∆ []C
x

Γ ⊢ a: [s] Γ;S ;B ⊢ P : ∆,x:s []C a 6∈ B
ReqS

Γ;S ;B ⊢ a(x).P : ∆ []C
x

Γ ⊢ c: [s] Γ;S ;B ⊢ P : {x:s} []C
AccBS

Γ;S ;B ⊢ c(x).P : {⋄} []C
x

Γ ⊢ c: [s] Γ;S ;B ⊢ P : {x:s} []C
ReqBS

Γ;S ;B ⊢ c(x).P : {⋄} []C
x

Γ ⊢ e:t if e= a thena∈ S
Snd

Γ;S ;B ⊢ κ!〈e〉 : {κ :!t} []{ℓ(κ)}

Γ,x:t;S ;B ⊢ P : ∆ []C
Rcv

Γ;S ;B ⊢ κ?(x).P : {κ :?t} ·∆ []pre({ℓ(κ)},C)

Γ;S ;B ⊢ P : ∆,κ :τi []C (1≤ i ≤ n)
Sel

Γ;S ;B ⊢ κ⊳ l i .P : ∆,κ :⊕{l1 : τ1, . . . , ln : τn} []pre({ℓ(κ)},C)

Γ;S ;B ⊢ Pi : ∆,κ :τi []C i (i = 1, . . . ,n)
Bra

Γ;S ;B ⊢ l1 : P1[] . . . []ln : Pn : ∆,κ :&{l1 : τ1, . . . , ln : τn} []pre({ℓ(κ)},∪1≤i≤nC i)

s 6= ε.end
CSnd

Γ;S ;B ⊢ κ!〈〈κ′〉〉 : {κ :!s,κ′ :s} []{ℓ(κ), ℓ(κ′), ℓ(κ) ≺ ℓ(κ′)}

Γ;S ;B ⊢ P : {x:s} []{x} s 6= ε.end
CRcv

Γ;S ;B ⊢ κ?((x)).P : {κ :?s} []{ℓ(κ)}

Γ ⊢ e:bool Γ;S ;B ⊢ Pi : ∆ []C (i = 1,2)
If

Γ;S ;B ⊢ if ethen P1 else P2 : ∆ []C

Γ;S ;B ⊢ P : ∆ []C Γ;S ;B ⊢ Q : ∆′ []C ′

Seq
Γ;S ;B ⊢ P;Q : ∆ ·∆′ []pre(C ,C ′)

Γ;S ;B ⊢ P : ∆ []C Γ;S ;B ⊢ Q : ∆′ []C ′

Par
Γ;S ;B ⊢ P|Q : ∆∪∆′ []C ∪C ′

Γ,a: [s];S ;B ⊢ P : ∆ []C a∈ B
HidingS

Γ;S \a;B \a⊢ (νa)P : ∆ []C \a

Γ;S ;B ⊢ P: ∆,kp :τ,kp :τ []C
HidingL

Γ;S ;B ⊢ (νk)P: ∆ []C \k

Inact
Γ;S ;B ⊢ 0 : /0 [] /0

Γ;S ;B ⊢ P : ∆ []C κ 6∈ dom(∆)
Weak1

Γ;S ;B ⊢ P : ∆,κ :ε []C

Γ;S ;B ⊢ P : ∆,κ :ε []C
Weak2

Γ;S ;B ⊢ P : ∆,κ :ε.end []C

Table 4.Typing Rules

3 Typing System for Progress Communication 11

prefix by ?t the possible communications on channelκ prescribed by∆. In the obtained
channel relation all channels inC are bigger thanℓ(κ) by the definition ofpre(C ,C ′)
given in Table 5.

In rulesSelandBra all τi are either partial session types or ended session types –
this is guaranteed by the syntax of conditional session types (see Table 3).

The conditionτ 6= ε.end in rulesCSndandCRcvallows to exchange only live chan-
nels which are not consumed, a reasonable requirement for a good programming disci-
pline. Example 3.5 justifies the requirement thatx is the only live channel ofP.

Compositional and Structural Rules RuleSeqtakes into account that all communi-
cations inP must be executed before the communications inQ. Instead in rulePar the
communications inP andQ can be executed in any order, and for this reason we take
the unions of session environments and channel relations, with the proviso that∆∪∆′

is defined only if dom(∆)∩dom(∆′) = /0. In the rules for restrictions we useC \λ de-
fined in Table 3, whileS \a is simply the setS without a and similarly forB \a. The
weakening rules are standard and necessary to type branching processes.

We assume that the typing rules are applicable only ifall channel relations in the
conclusion of typing rules do not contain cycles and do not relate a shared channel with
itself: such channel relations are said to be well-formed. The firstcondition disallows
a cycle between two names, while the second condition disallowsa≺ a, but it allows
bothk≺ k andx≺ x in channel relations. These conditions are justified below through
Example 3.1.

3.5 Justifying Examples

We end this section by briefly explaining why the negative examples given in § 3.2
cannot be typed, while the positive ones are typable. For thechannel relations, we only

Composition for Running Session Types and Session Environments

τ · τ′ =

{

τ.τ′ if τ is a partial session type andτ′ is a running session type
⊥ otherwise.

∆ ·∆′ =















∆ if ⋄ ∈ ∆ and ∆′ ⊆ {⋄};
∆\∆′ ∪ ∆′ \∆ ∪ {κ :∆(κ) · ∆′(κ) | κ∈dom(∆)∩dom(∆′)}∪{⋄ || ⋄ ∈ ∆′}

if ⋄ 6∈ ∆ and ∀κ∈dom(∆)∩dom(∆′) : ∆(κ) · ∆′(κ) 6= ⊥;
⊥ otherwise.

Operators for Channel Relations

C \λ = {λ1 ≺ λ2 || λ1 ≺ λ2 ∈ C & λ1 6= λ & λ2 6= λ}∪{λ′ || λ′ ∈ C & λ′ 6= λ}

C
x =

{

C \x if x is minimal inC

⊥ otherwise.

pre(C ,C ′) = (C ∪C ′∪{λ ≺ λ′ || λ ∈ C & λ′ ∈ C ′})∗

whereC ∗ is the transitive closure ofC andλ is minimal inC if 6 ∃λ′ ≺ λ ∈ C .

Table 5.Operators for Types and Environments

12 Mariangiola Dezani-Ciancaglini, Ugo de’ Liguoro, and Nobuko Yoshida

write the order of the channels, omitting the set of channels.

Example 3.1:The channel relation ofP2 andQ′′
2 is {a≺ b}, while the channel relation

of Q2 is {b≺ a}. ThereforeP2 |Q2 creates a cyclic relation, which is not well-formed.
Hence it is untypable. On the other hand,P2 |Q′′

2 is typable. Similarly,P3 is not typable
since{a≺ a} is not a well-formed channel relation, whileP4 andP5 are typable since
{k≺ k} and{x≺ x} are well-formed channel relations.

Example 3.2:The processP6 cannot be typed since RulesAcc⋆ andAcc⋆S require the
session environment of the body of the repeated accept to contain only x as subject,
while the session environment ofk+!〈3〉 containsk+ as subject. The processP8 is unty-
pable since⋆a(x).0 must be typed by the session environment{⋄} (see rulesAcc⋆ and
Acc⋆S), and we cannot sequentially compose{⋄} with k+!〈3〉 by the definition of “·”
(used in ruleSeq).

Example 3.3:The argument of Example 3.2 shows thata(x).k+!〈3〉 cannot be typed by
rulesReqBandReqBS, henceP9 is untypable, whileP10 is typable since we can apply
rulesReqandReqS.

Example 3.4:The processP12 cannot be typed by using rulesReqSandReqBS, sincer
is not minimal in its channel relation{s≺ r}. Instead the processP′

12 is typable using
rulesReqSandReqBS.

Example 3.5:The processt?((t ′)).(t ′!〈3〉;z?(w).0) in P13 cannot be typed, since rule
CRcvrequires the session environment of the body of the receive to contain onlyt ′ as
subject. RuleCRcvallows to typet?((t ′)).t ′!〈3〉 instead, henceP′

13 is typable.

4 Subject Reduction and Progress

This section discusses the features of our type system. It naturally splits into two parts:
subject reduction and progress. Proofs are given in outline, by stating the needed lem-
mas.

4.1 Subject Reduction

The basic property of substitutivity of values and live channels to variables within deriv-
able typing judgments is easily checked by induction on derivations:

Lemma 4.1 (Substitution Lemma).
1. If Γ,x:t;S ;B ⊢ P: ∆ []C andΓ ⊢ v:t, thenΓ;S ;B ⊢ P{v/x} : ∆ []C .
2. If Γ;S ;B ⊢ P: ∆,x:τ []C and k fresh, thenΓ;S ;B ⊢ P{kp/x} : ∆,kp :τ []C {kp/x}.

Subject Equivalence, namely the invariance of typing judgments w.r.t. structural equiv-
alence is proved straightforwardly by case analysis of the applied equivalence law.

Lemma 4.2 (Subject Equivalence).If Γ;S ;B ⊢ P: ∆ []C and P≡ Q, thenΓ;S ;B ⊢ Q:
∆ []C .

Subject Reduction, namely the invariance of derivable typing judgments w.r.t. reduc-
tion, does not hold literally, since session types are shortened by reduction and the
channel relation becomes a subrelation of the original one.However a weaker state-
ment, which suffices for the present purposes, can be established modulo inclusion of

4 Subject Reduction and Progress 13

channel relations and of prefixing of session environments,called below evaluation or-
der.

Definition 4.3 (Inclusion). The inclusion between channel relationsC ⋐ C ′ holds if
λ ∈ C impliesλ ∈ C ′ andλ ≺ λ′ ∈ C impliesλ ≺ λ′ ∈ C ′, for all λ,λ′.

One might think of an orderingC as a graph(V,E) whereV is the set of channels inC ,
andE is just the relation≺; thereforeC ⋐ C ′ holds if and only ifC is a subgraph ofC ′.

The partial order among pairs of session environments defined next reflects the dif-
ference between two running session types before and after one step reduction.

Definition 4.4 (Evaluation Order).

1. ⊑ is defined as the smallest partial order on running session types such that:ε ⊑ τ;
ε.end⊑ s; σi ⊑ ‡{l1 : σ1, . . . , ln : σn}; si ⊑ ‡{l1 : s1, . . . , ln : sn}; andσ ⊑ σ′ implies
σ · τ ⊑ σ′ · τ.

2. ⊑ is extended to session environments as follows:∆ ⊑ ∆′ if ⋄ ∈ ∆ implies⋄ ∈ ∆′;
and kp :τ ∈ ∆ implies kp :τ′ ∈ ∆′ andτ ⊑ τ′.

Before stating Subject Reduction, we recall the important notion of balanced session
environments [10]. A session environment∆ is balancedif kp : τ andkp : τ′ ∈ ∆ imply
τ′ = τ. The need of restricting to balanced session environments is illustrated by the
processkp

1!〈true〉 | kp
1?(x).kp

2!〈x+1〉, which would be typable by unbalanced session
environments, whereas it reduces tokp

2!〈true+1〉 leading to a run-time error.

Theorem 4.5 (Subject Reduction).

1. If Γ ⊢ e:t and e↓ v, thenΓ ⊢ v:t.
2. If Γ;S ;B ⊢ P: ∆ []C , where∆ is balanced, and P→ Q, thenΓ;S ;B ⊢ Q: ∆′ []C ′, for

some∆′,C ′ such that∆′ is balanced,∆′ ⊑ ∆ andC ′ ⋐ C .

The main part of the theorem, namely (2), says that after a session has begun the re-
quired communications are always executed in the expected order specified by channel
orderingsC ′ ⋐ C and session environments∆′ ⊑ ∆.

4.2 Progress

This subsection discusses the main result of this paper, i.e. that typable processes which
contain live channels can always execute, unless there are either accept or request head
subprocesses with free subjects waiting for the dual processes. We formalise this prop-
erty as follows:

Definition 4.6 (Progress).A process P has theprogress propertyif P →∗ P′ implies
that either P′ does not contain live channels or P′ |Q→ for some Q such that P′ |Q is
well-typed and Q6→.

A processP has the progress property if it is not blocked, and a process is blocked if it
is some “bad” normal form. In our setting this means that someopen session is incom-
plete. This might happen because some internal communication cannot occur and the
obstacle cannot be removed either by internal or by externalcommunications, namely
by communications relative to other sessions. This is why wedo not consider any ir-
reducible process as blocked, rather we say that even an irreducibleP has the progress

14 Mariangiola Dezani-Ciancaglini, Ugo de’ Liguoro, and Nobuko Yoshida

property whenever it is able to interact in parallel with some Q such thatP|Q is well-
typed: we askQ itself to be irreducible to ensure thatP actually participates in the
reduction step.

The goal of this section is to show that any process representing a state in the run-
ning of some well-typed “program”, has the progress property. Put together with Subject
Reduction, this implies the safety of well-typed programs w.r.t. execution. By analogy
with the theory of sequential languages, programs are closed processes; moreover they
do not contain live channels, since the latters only appear while running. We call closed
typable processes without live channelsinitial .

Definition 4.7 (Initial Processes).A process P isinitial if Γ;S ;B ⊢ P : /0 []C for some
Γ not containing variables and someC , with a deduction which does not use rule
HidingL.

Notice that initial processes cannot contain free live channels since the session environ-
ment is empty, nor bound live channels since to type them ruleHidingL is needed.

As in the case of type systems for partial deadlock-freedom,we have first to estab-
lish a relation between the ordering in the usage of channels, especially the live ones,
and their formal counterpart in our system, namely channel relations. To make this pre-
cise we define the auxiliary notion of precedence between prefixed subprocesses.

Definition 4.8 (Precedence).Theprecedence relationbetween prefixed processes in-
side a process is defined by: T precedes T′ in P if P contains either T= C′[T ′] or
C[T];C′[T ′], where C[],C′[] denote arbitrary contexts.

The main lemma states that in a process obtained by reducing an initial process a live
channel which is minimal in the channel relation can only be preceded by an accept/re-
quest on a free channel.

Lemma 4.9. Let P0 be initial and P0 →∗ (ν~a~k)P andΓ;S ;B ⊢ P : ∆ []C be derivable
and let T be a subprocess of P with subject kp and let k be minimal inC , then either P
contains as head subprocess an accept or request on a free channel, or P contains T as
head subprocess.

Proof. (Sketch)The proof is a consequence of the following properties:

(P1) If P0 is initial andP0 →
∗ P andT precedesT ′ in P andkp is the subject ofT, then

kp cannot be the subject ofT ′.
(P2) If T precedesT ′ in a typableP and the subject ofT ′ is a free live channel, then

the subject ofT is neither an accept/request on a bound channel nor a permanent
accept.

(P3) Let P be typable with channel orderC and letT precedeT ′ in P. If kp is the subject
of T and kq

1 is the subject ofT ′ and bothk and k1 are free inP, then we have
k≺ k1 ∈ C .

Property (P1) can be shown by induction on reduction.
Property (P2) is guaranteed by the use of⋄ in the type system. If the subject ofT ′

is a free live channel, then the session environment for typing a process which contains
T ′ cannot be empty. By the hypothesisP contains eitherT = C[T ′] or C[T];C′[T ′]. In
both cases, ifT is an accept/request on a bound channel or a permanent accept, thenT

4 Subject Reduction and Progress 15

must be typed by one of the rulesAccB, ReqB, Acc⋆, AccBS, ReqBS, Acc⋆S. These rules
prescribe the session environment of the body ofT only contains the channel variable
bound byT and the session environment ofT itself to be{⋄}. So ifT =C[T ′] the thesis
follows immediately, otherwise it follows from the definition of “·” and the typing rule
Seq.

For property (P3) notice that by the hypothesisP contains eitherT = C[T ′] or
C[T];C′[T ′]. In the former case, sincekp is the subject ofT, we know thatk ∈ C ;
similarly, sincekq

1 is the subject ofT ′, we know thatk1 ∈ C ′, for someC ′ such that
C = pre(k,C ′), sinceC[T ′] is the conclusion of one rule amongRcv, Sel, Bra(not of
Sendor CSendbecause no prefix could occur inside). This implies thatk1 ≺ k ∈ C as
desired. The caseP containsC[T];C′[T ′] is similar and easier.

A key notion in showing progress is the natural correspondence between communica-
tion patterns and shapes of session types.

Definition 4.10. Define∝ between prefixed processes and partial/ended session types,
as follows:

κ!〈e〉 ∝!t κ?(x).P ∝?t
κ ⊳ l i.P ∝ ⊕{l1 : σ1, . . . , ln : σn} κ ⊲ {l1 : P1[] . . . []ln : Pn} ∝ &{l1 : σ1, . . . , ln : σn}
κ ⊳ l i.P ∝ ⊕{l1 : s1, . . . , ln : sn} κ ⊲ {l1 : P1[] . . . []ln : Pn} ∝ &{l1 : s1, . . . , ln : sn}

κ!〈〈κ′〉〉 ∝!s κ?((x)).P ∝?s

where i∈ {1, . . . ,n}.

Then, by analysis of deductions using standard generation lemmas, we have:

Lemma 4.11. If P is typable with a session environment∆ such that∆(kp) = τ 6∈
{ε,ε.end}, then P contains at least one prefix with subject kp. Moreover if T is the
prefix with subject kp which precedes in P all other prefixes with subject kp, then either
T ∝ τ or τ = σ.τ′ and T∝ σ.

Since ruleHidingL only restricts dual live channels with dual session types, we only
get session environments which are balanced if we start frominitial processes.

Lemma 4.12. If P0 is initial and P0 →
∗ (ν~a~k)P, then there existΓ,S ,B ,∆,C such that

Γ;S ;B ⊢ P: ∆ []C and∆ is balanced.

We eventually come to the Progress Theorem: for each processP obtained by reducing
an initial process ifP contains an open session, then there is an irreducible processQ
such that the parallel compositionP|Q is well-typed too and it always reduces, also in
presence of interleaved sessions.

Theorem 4.13 (Progress).All initial processes have the progress property.

Proof. Let P0 be initial andP0 →
∗ P. If P does not contain live channels orP→ P′ there

is nothing to prove. No head prefixed process inP is an if-then-else statement: otherwise
P would reduce, sinceP is closed (beingP0 closed) and any closed boolean value is
eithertrue or false. If one head prefixed subprocess inP is an accept/request on a
free channela, thena must be in the domain of the standard environmentΓ used to type
P0 andP. Let Γ(a) = [s] and a head prefixed subprocess inP ona be an accept process.

16 Mariangiola Dezani-Ciancaglini, Ugo de’ Liguoro, and Nobuko Yoshida

β(ε,x) = (0, /0)
β(ε.end,x) = (0, /0)
β(!bool.τ,x) = (x!〈true〉;p1(β(τ,x)),p2(β(τ,x)))
. . .
β(![s].τ,x) = ((νb)x!〈b〉;p1(β(τ,x)),p2(β(τ,x))) b fresh
β(?t.τ,x) = (x?(y).p1(β(τ,x)),p2(β(τ,x))) y fresh
β(!s.τ,x) = (x!〈〈y〉〉;p1(β(τ,x)),p2(β(τ,x))∪{y:s}) y fresh
β(?s.τ,x) = (x?((y)).p1(β(τ,x)),p2(β(τ,x))) y fresh
β(⊕{l1 : σ1, . . . , ln : σn}.τ,x) = (x⊳ l1.p1(β(σ1,x));p1(β(τ,x)),p2(β(σ1,x))∪p2(β(τ,x)))
β(&{l1 : σ1, . . . , ln : σn}.τ,x) = (x⊲{l1 : p1(β(σ1,x))[] . . . []ln : p1(β(σn,x))};p1(β(τ,x)),∆)

where∆ =
S

1≤i≤np2(β(σi ,x))∪p2(β(τ,x))
β(⊕{l1 : s1, . . . , ln : sn},x) = (x⊳ l1.p1(β(s1,x)),p2(β(s1,x)))
β(&{l1 : s1, . . . , ln : sn},x) = (x⊲{l1 : p1(β(s1,x))[] . . . []ln : p1(β(sn,x))},

S

1≤i≤np2(β(si ,x)))

where(,) is a pair constructor andp1(), p2() are standard projections.

Table 6.Mappingβ

Then we can buildQ as a request process ona which offers in the given order all the
communications prescribed bys according to the relation∝. Notice that ifs prescribes
to send live channels, then the body ofQ must contain pairs of accept/request which
produce these live channels. We can choose fresh names as subjects of these pairs of
accept/request and put them in parallel, the accepts followed by all the communications
prescribed bys. More precisely, first we define in Table 6 the mappingβ from a session
type and a channel variable to a pair of a process and a sessionenvironment. Second we
define the mappingα from a session type and a channel variable to a process as follows:

α(s,x) = (νb1 . . .bn)(b1(y1). . . .bn(yn).p1(β(s,x)) |b1(y1).α(s1,y1) | . . . |bn(yn).α(sn,yn))
if p2(β(s,x)) = {y1 :s1, . . . ,yn :sn} andb1, . . . ,bn are fresh.

Let Γ(a) = [s]: then we can takeQ = a(x).α(s,x) if P is an accept on the channela, or
Q= a(x).α(s,x) if P is a request on the channela. If P0 is initial thenΓ;S ;B ⊢ P0 : /0 []C
for someΓ,S ,B ,C . By Theorem 4.5(2) we getΓ;S ;B ⊢ P: /0 []C ′ for someC ′ ⋐ C . It
is easy to verify by induction on the construction ofQ thatΓ;S ;B ⊢ Q: ∆ []C ′′ for some
C ′′ ⋐ C ′ and∆, where∆ = /0 if p2(β(s,x)) = /0 and∆ = {⋄} otherwise. SinceC ′′ ⋐ C ′

implies thatC ′∪C ′′ is well-formed, we concludeΓ;S ;B ⊢ P|Q: ∆ []C ′∪C ′′.
OtherwiseP does not contain as head subprocess an accept or a request on afree

shared channel, butP contains live channels. LetP≡ (ν~a~k)Q, where~a includes the set
of all shared channels which are subjects of the head prefixedprocesses inP and~k is
the set of all live channels which occur inP. By Lemma 4.12, we know thatΓ;S ;B ⊢
Q: ∆ []C for someΓ,S ,B ,∆ andC . Let k be a minimal live channel inC . This implies
kp : τ ∈ ∆ for someτ such thatτ 6∈ {ε,ε.end}. By Lemma 4.12∆ is balanced and then
kp :τ ∈ ∆. By Lemma 4.11 the channelskp andkp must occur inP. By Lemma 4.9 there
are two head prefixed processes inP with subjectskp and itskp, respectively. Notice
that kp andkp have dual types, so that by Lemma 4.11 they are the subject of dual
communication actions: it follows thatP reduces.

5 Conclusion and Future Works 17

5 Conclusion and Future Works

This paper proposed the first session typing system for the progress property on inter-
leaving sessions, which are not necessarily nested. The resulting typing system ensures
a strong progress property for a calculus allowing creationof new names and full con-
currency, significantly enlarging the approach taken in [6,8]. In spite of the richness of
the calculus, the typing system is based on the intuitive idea of channel causality with-
out additional information on the syntax of the original session types.

For simplicity, we use the replications rather than the recursive agents [12] for repre-
senting infinite behaviours. We conjecture that our approach can be smoothly extended
to recursive agents and recursive types. Since our typing system uses standard types,
it can be easily integrated with subtyping [10], bounded session polymorphism [9] and
correspondence assertions [2], guaranteeing the progressthrough the additional infor-
mation represented by the sets of sent and bound channels andthe channel relations.
Challenging extensions are progress guarantees for choreographic (global) communi-
cation dependencies [5], combining more powerful means such as cryptography [3, 7],
refinements [20] and logical approach [4], by which more advanced security properties
can be ensured.

The main reason for including the sequencing constructor was to provide a basis for
the progress straightforwardly expendable to conventional imperative and Web Service
languages [5, 8, 13]. In our experience of implementations,the sequencing construct is
essential in writing optimal code for the branching structures. In particular, for our on-
going work on session types with advanced exception, we require explicit sequencing
to model escaping blocks during session communication and resuming an intermediate
session.

Without the sequencing constructor our calculus would onlybe slightly simpler. We
could not get rid of the evaluation contexts, since progressrequires that the process
which receives a live channel is evaluated in parallel with the contexts, as shown in
the example at the end of Section 2. For the same reason we needa terminator for the
receiving process, role which is played by sequencing in thecurrent calculus. To sum
up without the sequencing constructor we would loose expressivity with the only gain
of sparing one typing rule.

We plan to extend the current formulation and typing system for preserving the
progress property on live channels, and to apply it to the design of a type safe exception
handling for Java with session communication [13].

AcknowledgementsWe thank Simon Gay, Naoki Kobayashi, Vasco Vasconcelos, the
TGC referees and participants for their comments and discussions. The final version of
the paper improved due to their suggestions.

References

1. J. Beaton and W. Weijiland.Process Algebra, volume 18 ofCambridge Tracks in Theoretical
Computer Science. CUP, 2000.

2. E. Bonelli, A. Compagnoni, and E. Gunter. CorrespondenceAssertions for Process Synchro-
nization in Concurrent Communications.Journal of Functional Programming, 15(2):219–
248, 2005.

18 Mariangiola Dezani-Ciancaglini, Ugo de’ Liguoro, and Nobuko Yoshida

3. S. Briais and U. Nestmann. A Formal Semantics for ProtocolNarrations. InTGC’05, volume
3705 ofLNCS, pages 163–181. Springer-Verlag, 2005.

4. L. Caires. Spatial-Behavioral Types, Distributed Services, and Resources. InTGC’06, vol-
ume 4661 ofLNCS, pages 263–280. Springer-Verlag, 2007.

5. M. Carbone, K. Honda, and N. Yoshida. Structured Communication-Centred Programming
for Web Services. InESOP’07, volume 4421 ofLNCS, pages 2–17. Springer-Verlag, 2007.

6. M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida. Asynchronous Session Types and
Progress for Object-Oriented Languages. InFMOODS’07, volume 4468 ofLNCS, pages
1–31. Springer-Verlag, 2007.

7. R. Corin, P.-M. Deniélou, C. Fournet, K. Bhargavan, and J. Leifer. Secure Implementations
for Typed Session Abstractions. InCSF’07, pages 170–186. IEEE Computer Society, 2007.

8. M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session Types
for Object-Oriented Languages. InECOOP’06, volume 4067 ofLNCS, pages 328–352.
Springer-Verlag, 2006.

9. S. Gay. Bounded Polymorphism in Session Types.Mathematical Structures in Computer
Science, 2007. To appear.

10. S. Gay and M. Hole. Subtyping for Session Types in the Pi-Calculus. Acta Informatica,
42(2/3):191–225, 2005.

11. S. Gay and V. T. Vasconcelos. Asynchronous Functional Session Types. TR 2007–251,
Department of Computing, University of Glasgow, 2007.

12. K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Disciplines for
Structured Communication-based Programming. InESOP’98, volume 1381 ofLNCS, pages
22–138. Springer-Verlag, 1998.

13. R. Hu, N. Yoshida, and K. Honda. Language and Runtime Implementation of Sessions for
Java. InICOOOLPS’07, 2007.http://www.doc.ic.ac.uk/∼rh105/sessiondj.html.

14. A. Igarashi and N. Kobayashi. A Generic Type System for the Pi-Calculus. Theoretical
Computer Science, 311(1-3):121–163, 2004.

15. N. Kobayashi. A Partially Deadlock-Free Typed Process Calculus. ACM TOPLAS,
20(2):436–482, 1998.

16. N. Kobayashi. A Type System for Lock-Free Processes.Information and Computation,
177:122–159, 2002.

17. N. Kobayashi. Type Systems for Concurrent Programs. InFormal Methods at the Cross-
roads, volume 2757 ofLNCS, pages 439–453. Springer-Verlag, 2003.

18. N. Kobayashi. Type-Based Information Flow Analysis forthe Pi-Calculus.Acta Informatica,
42(4–5):291–347, 2005.

19. N. Kobayashi. A New Type System for Deadlock-Free Processes. InCONCUR’06, volume
4137 ofLNCS, pages 233–247. Springer-Verlag, 2006.

20. N. Kobayashi. Type Systems for Concurrent Programs. Extended version of [?], Tohoku
University, 2007.

21. C. Laneve and L. Padovani. The Must Preorder Revisited: An Algebraic Theory for Web Ser-
vices Contracts. InCONCUR’07, volume 4703 ofLNCS, pages 212–225. Springer-Verlag,
2007.

22. K. Takeuchi, K. Honda, and M. Kubo. An Interaction-basedLanguage and its Typing Sys-
tem. InPARLE’94, volume 817 ofLNCS, pages 398–413. Springer-Verlag, 1994.

23. Web Services Choreography Working Group. Web Services Choreography Description Lan-
guage.http://www.w3.org/2002/ws/chor/.

24. N. Yoshida, M. Berger, and K. Honda. Strong Normalisation in theπ-Calculus.Information
and Computation, 191(2):145–202, 2004.

25. N. Yoshida and V. T. Vasconcelos. Language Primitives and Type Disciplines for Structured
Communication-based Programming Revisited. InSecReT’06, volume 171 ofENTCS, pages
73–93. Elsevier, 2007.

