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Abstract. We propose a new typing system for titecalculus with sessions,
which ensures the progress property, i.e. once a sessidrebasnitiated, typable
processes will never starve at session channels. In thentditerature progress
for session types has been guaranteed only in the case eflreestsions, disal-
lowing more than two session channels interfered in a sitigkad. This was a
severe restriction since many structured communicati@esl rtombinations of
sessions. We overcome this restriction by inferring theeof channel usage,
but avoiding any tagging of channels and names, neitheiicixpbr inferred.

The simplicity of the typing system essentially relies oa slession typing disci-
pline, where sequencing and branching of communicatioenaleeady structured
by types. The resulting typing enjoys a stronger progresgeasty than that one in
the literature: it assures that for each well-typed pro€eskich contains an open
session there is an irreducible proc€¥such that the parallel compositiéhQ

is well-typed too and it always reduces, also in presencateffiered sessions.

1 Introduction

Structuring communication to ensure safe interaction otoorent systems is a central
issue in the theory and practice of concurrent and mobilepedimg. Communication
has indeed evolved into a growing number of complex aatigjtincluding several kinds
of transactions as well as the offer and fruition of servitesugh a large gamma of
systems and networks. In this scenario computation canisistxchanging messages
between loosely coupled parties, whose number and idemiigyt also change dy-
namically. A case in point is delegation of activities torthparties in a client/server
interaction, which often occurs transparently to the dlien

Existing programming languages and standards, while gdaimmunication prim-
itives and syntactical tools to rule interaction, stillfeao the programmer much of the
responsibility in guarantying that the sequence of messewell structured and that
e.g. the client of a service will complete all needed tratisas without getting into
some unwanted state. The lack of structuring principledsis a defect of theoretical
calculi such as tha-calculus: the economy of its syntax and semantics is anradge
for the elegance of the theory, but a drawback when comigolind disciplining specific
kinds of behaviour.

A solution proposed by [2,9, 10, 12, 21] consists in addirimijiives to creases-
sionsto the -calculus. A session is an abstraction of a series of comeations

* Work partially supported by EPSRC GR/T04724, GR/T03208/T®R215, IST2005-015905
MOBIUS, FP6-2004-510996 Coordination Action TYPES, and R&X PRIN’'O5 project
“Logical Foundations of Distributed Systems and Mobile €bd



2 Mariangiola Dezani-Ciancaglini, Ugo de’ Liguoro, and Ni&b Yoshida

through a private channel between two processes. It isextdat a connection over

a session channel (we calhared, that binds a channel name which, after connection,
is substituted by a fresh private name (live channe)in such a way that both privacy
and duality are guaranteed, in the sense of the presencpuwifontput, branching/se-
lection and delegation actions with the same live channslibgct (as it is checked by
basic session type systems).

A central motivation for developing sessions and relatee tyystems is to model
safe hand-shake communications. In such a context prigaggtithe unique desirable
property of sessions, whereas compliance should be alsamfead, namely that any
session does not get stuck into some blocking state. To iexjplia safety issue, let us
consider the following simple process with sessions, amith ar-calculus dialect that
admits sequential composition (the semicolon):

PL = a(x).(x!1(3);x2(2) X! (Apple); P))

This is a server process that first accepts the session coitation through a shared
channeh, and then performs a series of communication via the livecbbwhich will
replacex: it first outputs an integer, second inputs an integer, thepuds a string, and
continue ad?]. This behaviour is abstracted in the type system of [12] ass#ssion
type lint.?int.!string.

A client process intended to interact with the server abollenave the following
communication pattern:

Q1 = a(x).(x?(2).x!(5+2);x2(Z).Q})

This process requests the session communication thragt then performs the dual
actions througkx, typed by tt.lint.?string. Once the session is established, and pro-
vided that only the two connected parties interact togethercommunication over the
live channel replacing alwaysproceedsat least up to the transmission of the string
(and to the end of the sessiorxitloes not occur if?; nor inQ;), since their communi-
cation patterns are dual and private.

The main limitation of the approach is that two parties auased to interact in
one session, and that these should not overlap. On the opitrthe case of e.g. Web
Services communications [22], we need to establish moredha session between two
or even multiple peers. In such a case, the safety is easityayed by the interleaving
of two or more sessions. The simplest example is as follows:

P2 = a(x).b(y). (x (3); X2(2).y! (ApPIE; ) Q2 =a().B(y).(y2(Z)x2(Z') X (5); Q)

where the live channels replacingandy create a circular dependency, causing dead-
lock. However in the session type systems from the liteegtilve latter processes are
typable since the two sessions, onexand the other foy, are correctly structured if
taken in isolation. Thus progress of communications ondlvannels cannot be guar-
anteed when two or more sessions are mixed.

In the present work, we enhance existing session type sgstercheck progress
with respect to live channels belonging to several sessighiée keeping the full ses-
sion constructions, such as branching/selection, détegahd replication. The calcu-
lus is equipped with the construct feequencindy which complex synchronisation
behaviours such as joining and forking processes can be lleddén spite of this
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extension, we show that a great simplification w.r.t. exiptiype systems for partial
deadlock-freedom is achieved by relativising progrese8sien structured processes,
avoiding any tagging of channels and names, neither ekpiani inferred. Our type
system enjoys a progress property tailored to the soundriessssion execution: for
each well-typed proce$dwhich contains live channels there is an irreducible preces
Q such that the parallel compositiéhQ is well-typed too and it always reduces. The
main technical difficulties for progress come from the twatcal features of thetr
calculus: one is name hiding and passing, which can stop eoruations forever, and
the other is process replication, which can destroy thadxliity of communications.
Related work The present paper moved from the desire to remove the liontaaris-
ing from strictly nested sessions in [6, 8], where a similaygoess property has been
established in the case of an object-oriented, class-basgdage with communication
primitives for sessions and with concurrency disciplingdhe use of spawning com-
mands. That result has been obtained under the conditiboibdapping sessions can
only be nested and that the inner sessions have been endegd thef outer ones may
proceed. Such a restriction is abandoned here; moreovezave hside any particular
paradigm of programming languages, and consider an ertensithe full T-calculus
with the session primitives of [12].

A tight relation exists with work by Kobayashi and his cotje@s on partial deadlock-
freedom. We were inspired by [15-18, 23] in considering tiation between channel
names induced by their use. However there are both techachtonceptual differ-
ences.

First we do not decorate types by multiplicities, namely wendt record levels of
capabilities/obligations. Usages e.g. in [18], as well pés” in the general frame-
work of [14], are far more concrete behavioral descriptithan session types; hence
the usages make sense as internal machinery of an autopsiigtprocedure, not as
interfaces or abstract protocols for the user, we are Igptan

Second the structure of session types allows us to get disartianalysis without
any form of tagging (neither by the user, nor by the typingesyd and by means of a
syntax directed type system, where the number of rules ogyedds on the richness
of the language syntax. This is coherent with the aim of usigsion primitives and
session types directly as the basis for programming largydagign, rather than as a
tool to perform some form of static analysis. We leave fortarework to analyse rela-
tionships with the encodings of session types into funeti@md process linear typing
systems [11,19].

Paper structure Section 2 describes the syntax and the reduction rules otalur
culus, and Section 3 discusses the type system. The featvesll-typed processes
are the subject of Section 4. The full definitions and proafs be found ahtt p:

[/ www. di . unito.it/~dezani/dly. pdf.

2 A Calculus for Structured Communications

2.1 Process Syntax

TheTe-calculus with sessions we consider is an extension of tlelcs studied in
[12], by means osequencingwhich allows to get forks and joins of processes [1]. The
syntax is reported in Table 1.
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For channels we use names and variables, the latter in pfdoeund names in
accept/request and receive guarded processes. We fuistingdish among two sorts
of channel names: shared and lihared channelgalled simply “names” in [12]),
ranged over by, b, ... are used to open sessions, so that they can be either public or
private;live channelgthe “channels” of [12]), written als®, k‘f, ... areinstead used only
within open sessions, as it becomes clear in the definitidheobperational semantics,
so that their intended use (enforced by the reduction oelaiind the type system) is
within the scope of the operator. Thepolarity p € {+,—} in apices ofkP represents
the two end points created by the session initialisatioms Mbtion is originally intro-
duced in [10] to assure subject reduction (see [24] for thaildel discussion).

We writea(x).P anda(x).P for theacceptandrequesiprimitives of [12]. Instead of
the recursive agents, we ysermanent accepivrittenxa(x).P, and for shared channels
only, to model a server providing for a service to an unbodrdember of clients. In
case oB(x).P, xa(x).P anda(x).P the identifiera represents the public interaction point
over which a session may commence. We say dhatthe subjectof the (permanent)
accept/request process. The bound varialskpresents the actual channel over which
the session communications will take place, to be replagealllve channel when the
session has been opened and the connection established.

Constants and expressions of ground types (booleans @gens) are also added to
model data, which are sent and received by means of the sefife andk?(x).P. We
write K <1.Pfor selectionwhich chooses an available branch, amd{l1 : Pi[ ... [In : P}
for branching which offers alternative interaction patterns; thesetheesame as in

(Shared Channels) (Live Channels)
c = X,Y,z variable K =XY,2 variable
| ab name | kP polarised name
(Values) (Expressions)
en=v value
viza shared channel name | x,y,z variable
| true,false boolean | et+e sum
| n integer | not(e) not
| ...
(Processes) (Prefixed processes)
T =c¢(x).P accept
| *c(x).P permanent accept
P:=0 inaction | T(x).P request
| T prefixed process | k!(e) data send
| P;Q sequencing | K?(X).P data receive
| P|IQ parallel | k«l.P selection
| (va)P  shared channel hiding | k>{l1:Pi]]...]In:Pn} branching
| (VK)P live channel hiding | k!{k") session send
| K?(x).P session receive
| if ethen Pelse Q if-then-else

Table 1. Syntax
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[12].

We usek! (k') (session send) and?(x)).P (session receive) for throw and catch
primitives of [12] respectively. These are callbjher-order session communication
primitivessince live channel’ is passed via live channel This mechanism enables to
represent complex but safe delegations without interfarday any third party.

In data and session sending, data and session receivehbrguand selection, we
call the channet the subjectof the prefixed process.

The essential difference with the calculus in [12] is theiadaf sequencingwrit-
tenP ; Q, meaning thaP is executed befor®. This syntax allows for complex forms
of synchronisation aB can include any parallel composition of arbitrary processe

The precedence of the operators building processes is {frestrongest)<, >, {}”,

“r %7 and | ". Moreover we convene that™associates to the right. For example,
K<l.k?(x).P; Q| Rmeang(k <l.(k?(x).P)); Q)| R. We often omiD and write(vab)(P)

for (va)((vb)(P)), etc. The bindings for channels and variables are standatdve
write fn(P), fv(P) and bnP) for free channels, free variables and bound channels re-
spectively.

We say that the following pairs of prefixed processesdur@: {a(x).P, a(x).Q},
{xa(x).P, a(x).P}, {kP!{e), kP2(x).P}, {kP«li.P, kP>{l1:Q]...[In:Qn}} where
i€{1,...,n}, and {kP!I(k), kP2(x).Q}.

2.2 Operational Semantics

We formalise the operational semantics of the calculus byeastep reduction re-
lation — , defined in Table 2, up to the standard structural equivalenplus the rule
O;P=P.

The reduction rules are based on those ofrtfoalculus with the session primitives
[10, 12], taking into account the behaviour of sequencingth# interplay between par-
allel composition and sequencing it is handy to introdu@deation contexts.

Evaluation contextare defined by:

el]=[£[Plz[]IP[(va)z[]| (VKE£[]

[Con] z1[a(x).P] | £2[a(y).Q] — (vk)(£1[P{K"/x}] | £2[Q{k™ /y}]) (kfresh)
[CONR]  1[xa(x).P] | £2[a(y).Q — (VK)(£1[P{K"/X} | xa(x).P] | £2[Q{K™ /y}])
(k fresh)
[ComV] £1[kPHe)] | £2[kPAX).Q] — £1[0] | £2[Q{V/X}]  (e]V)
[LABEL] £1[kPali.P] | £2(KPe{l1: Quf)... [In: Qn}] — Z4[P] | £2[Qi] (1<i<n)
[ComS] 1 [kPL(K])] | £2[kP2(X).Q] — Q{KI/X}| £4[0] | £2[0]  (ka & bn(z1[]) &
bn(zz[])Nfn(Q) = 0)

[1F1] if ethen Py else P, —» P (e] true)
[IF2] if ethen P else P, — P, (e] false)
[EvAL] P—P = £[P| - £[P]

[STR] P=P P-Q Q@=Q=P-=Q

Table 2. Reduction
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We say that a processesis ahead subprocessf a proces®Q if Q = £ [P] for some
evaluation context [ ]. Examining the reduction rules it is easy to check that &figed
processes (butin case of if-branching) in head positiothsae only if a dual subprocess
is in head position too.

Rules [@N] and [CONR] are session initiation rules where two polarised fresh
names are created, then restricted because the leadirsgPgért/x} and Q{k™/y}
now share the channglto start private interactions via In rule [CONR], we write
directly the effect of the replication of the accept/redaesion, and we do not postulate
*a(x).P = xa(x).P|a(x).P: hence replication is triggered only in presence of a dual
session request, a property which simplifies the soundrid¢ke 6yping system.

Rule [CoMV] sends datag(] v means that the expressierevaluates to the value
V). Rule[LABEL] selects thé-th branch.

In rule [CoMS] the process which receives the live channel is put in panaltd
the evaluation contexts. Notice that this does not happéeherother rules. This rule
allows for a safe form of delegation: indeed the processrinaives the live channel
must proceed, even if it is put in a context of overlapping®esss, as it happens e.g. in
Example 4.3 of [12] (Fpt server). This is not guaranteed ley“8tandard” version of
the rule below:

£ [kPL(KD)] | £2[KP2(x).Q] — £4[0] | £2[Q{K{/x}]  (K{ & bn(za[])
In fact by using this rule the process
a(x).b(y).(y2(2).2(5)):x(t).0]a(x).b(y).y' {x')

reduces tqvk)(k~!(5);k*?(t).0) which is stuck, while its intended meaning should be
thaty?(z)).z (5) completes and eventually 5 is communicated aloagd replaced to.

Notice that “;” is essential in order to identify which pr@semust be executed in
parallel with the contexts. The example above shows thatthowt the sequencing
operator — we would be not able both to preserve progressaareftire that a live
channel is received before a communication on other livactls is executed. This is
necessary e.g. for modelling a real estate agent who wahesdelegated by the owner
before showing the house to potential buyers.

Rule [CoMS] subsumeshe channel passing rule namg#Ass| in [12], since the
standard version of this rule afieAss| coincide if we ignore the sequencing. All other
reduction rules are as usual.

3 Typing System for Progress Communication

The type system discussed in this section is designed t@agteg linearity of live chan-
nels, communication error freedom and progress.

3.1 Types

The full syntax of types is given in Table Bartial session typesanged over by, rep-
resent sequences of communications, wiedesthe empty communication, amd.o»
consists of the communications@ followed by those ino,. We pute.c =0.e=0
and we consider partial session types modulo this equality.typest and 2 express
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(direction) Ta=1]7

(select/branch) Fo=| &

(partial sessiontype) o = ¢ | Tt | ts |o.0| £{l1:01,...,In:0n}
(ended session type) s = ag.end| ${l1:s1,...,In:sn}

(running session type)t = ¢ | s

(standard type) t = [s] | bool | int | ...

Table 3. Types

respectively the sending and reception of a value of tygéhe typesd and 2 repre-
sent the exchange of a live channel, and therefore of aneasission, with remaining
communications determined by the ended sessionstype

The selection typed{l1: 01,...,In: 0n} represents the transmission of a lahel
chosen in the sefly,...,In} followed by the communications described by The
branching type&{l1: 01,...,In: 0n} represents the reception of a lalhethosen in
the sef{ls,...,In} followed by the communications describeddy

An ended session typeis a partial session type concatenated either \aith or
with a selection or branching whose branches in turn are botled session types. It
expresses a sequence of communications with its termmai# no further communi-
cations on that channel are allowed at the end.

A running session type, ranges over both partial and ended session types.

A shared session tyge] is the type of shared channels, and has one or more end-
points, denoted bynd. Standard typesare either shared session types or ground types.
Each running session typgénas a correspondirdual, denoted, which is obtained

as follows:

—-?2=l 1= =& &=9 t=¢
-Tt="Tt Ts=Ts 01.02=01.02 #{l1:01,...,In:0n} =F{1:01,...,In: On}
—oend=0.end F{l1:s1,...,lnisn} =F{l1:55,...,ln: 5}

Note that duality is an involutiorT = T.

3.2 Motivating the Design of the Type System

This subsection discusses the key ideas behind the typensystroduced in § 3.4 with
some examples, focusing on progress.

Example 3.1 (Circularity of channelshs we explained in the Introduction, the order
of session channels should be taken into account. Recaglrtoesse®, andQ, from
the Introduction:

P2=a(x).b(y).(x!(3);x2(2).yl(Apple;P;)  Qz=a(x).b(y).(y2(Z).x2(Z").x! (5); Q%)

These processes use the channels bouraddmdb in reverse order, hence they lead to
a deadlock. This is prevented by the type systems, whiclvaliostead to compog®

e.g. with _
Q; =a(x).b(y).(x2(Z) X! (5);y2(Z').Q;)
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For a similar reason, we prohibit processes which havecsedtdarity of a shared chan-

nel like:
Ps = a(x).a(y).(x!(3);y!(5)) |a(z).a(t).(tt").z?(w).0)

which reduces to the deadlock procésisk; ) (k*!(3); k; 1(5) |ky 2(t").k™2(w).0).

On the other hand, we want to allow self-circularity of liveannels. Fortunately we
can profit of the expressiveness of the session types toifjnopir type system: since
sequences of communications ateeady structureddy types, we do not have to con-
sider the ordering between the same live channels. For dea®pp= kP!(3);kP?2(y).0
andPs = a(x).(x!(3); x?(y).0) shall be typable according to our system.

Example 3.2 (Sequencing and live channetds a well known constraint for the lin-
early typedr-calculi to disallow live channels that occur in repeatealcgisses. For ex-
ample Ps = xa(x).k™!(3) in parallel withP; = a(y).0|a(z).0reduces t&s | k™! (3) | k™ 1(3).
This can be easily avoided using a standard technique. Howiae sequencing oper-
ator requires more careful analysis for preserving pragrest us consider a slightly
different proces®; = xa(x).0;k"!(3) which doesnot destroy linearity, but progress.
For exampleP; | Ps reduces toPs where the linearity ok™ is preserved, blk™!(3) is
blocked forever.

Example 3.3 (Bound shared channelsound shared channel which does not have a
dual to start a session can block the communication on lie@ehls forever, as iR =
(va)(a(x).k*1(3)) |k ?(y).0. The problem does not arise if the shared chaanefree,
since we can always compose with a dual process,Rgina(x).k™1(3) |k~ ?(y).0|a(z).0.

Example 3.4 (Shared channel passirgflared channels can be sent only if their dual
processes can communicate without waiting other commtioitato succeed. For ex-
ample, consider the processes:

P =a(t).t!(by|a(x).c(y).x2(2).2(q).q2(w).y2(w).0  Pi2=c(s).b(r).(s!(3);r!(4))
ThenPry1 | Piz reduces tovkpke) (ki 2(w).kd 2(t).0| ks 1(3);k; 1(4)) which is a dead-
lock. A safe process is the parallel compositiofPpfandPy, = c(s).b(r).(r!(4);s!(3)).

Example 3.5 (Session channel passih@)e channels can be sent only if the receiving
process does not contain live channels, as shown by thegsoce

Pra = a(x).b(y).X (y) [a(t) B(2) (). (1" (3); 22(w).0)

which reduces to the deadlock procésky) (k. !(3);k, ?(w).0). A similar, but sound
process i®] ;= a(x).b(y).x! (y) |at).b(z).(t?(t").t"!(3); Z2(w).0), wherez?(w).0is not
in the body oft?(t")).

3.3 Typing Judgements

The typing judgements for expressions and processes dne shape:
M-e:t rs;8-P:A|cC

where we define:

Fre=0]r,xt]|ra:s

K} 3 ::=0] B,a
A:z=0 ] AK:T | Ao C:

a
A c,A<N

0] s,
0] c,

S
C
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I" is thestandard environmenwhich associates variables to types and shared channel
names to shared session typedresp.3) is the set ofshared channel nameshich
can besent(resp.boung; A is thesession environmemthich associates live channels
to running session types, and it can also contain the spggiaibolo. The session en-
vironmentA represents the open communication protocols of a prodessccurrence
of o in A is used to prevent that any process sequentially compogediva term to
which ¢ has been assigned, might contain any occurrence of freeliaenels (see the
definition of A- A" in Table 5).c is thechannel relationwhich is intended to give in-
formation about the ordering in the usage of channels: the metavariablé ranges
over shared and live channels. A well-formed channel itds irreflexive w.r.t. shared
channel names, and cannot contain cycles (see the nextctiob$e

3.4 Type System

Table 4 defines the type system. We omit the typing rules fpressions which are
standard and identical with [24]. For typing processes, sethe auxiliary operators
defined in Table 5. We list the key points of the typing rulasdfmcesses.

Session Initiation As discussed in the examples, accept/request processes wiio-
jects are going to be bound or sent require particular cdre most liberal typing rules
areAccandReqwhere the shared channel can neither be bound nor sent. Jiiéng
session environment is obtained by erasing the type of thadohannek and the re-
sulting channel relation is obtained by replacinigy a to prevent the circular ordering
between names.

If the shared channel is a permanent accept, or when it caouogdbut not sent,
we cannot allow live channels in the continuation procefsas Examples 3.2 and 3.3).
In rulesAccB ReqB andAcc, the satisfaction of this condition is enforced by requir-
ing that the session environment of the body process onliagmthe current channel
and by typing the whole process with the session environfrgntNotice that session
environments containing cannot be composed with session environments containing
channels by the definition &- A’ given in Table 5.

If the shared channel can be sent but it cannot be bound wetoeeduire that
all communications on that channel can be executed withemutiring other channels
to communicate (Examples 3.4). This can be achieved by ggkist the channel is
minimal in the current channel relation, i.e. using, x (defined in Table 5) in the con-
clusion. We aslkc \\ x to be the channel relation in the conclusion of rdesS Req$S
andAcc'S, convening that the rules cannot be applied if it is undefined

RulesAccBSand RegBSput the above restrictions together, and are used to type
shared channels which can be both bound and sent. InAgles, AccBSandReqBS
the subject can also be a variable, which will be replaced biiamnel name which
surely can be sent and possibly can be bound.

Session CommunicationThese rules add relevant information to session enviromsnen
and to channel relations. Rulsmdchecks that only shared channels in thessate sent.
The resulting session environment{is: t}, wherek is the subject of the sent process
andt is the type of the sent expression. The resulting chanregioelcontains the name
(without polarity) of the subject, where we defifi&) = k if kK = kP and/(k) = k oth-
erwise.
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Rule Rcvuses the composition operator defined in Table 5 betweeiosessvi-
ronments, which extends that one between running sessp@s.tyn this way we can

M-a:fs) r;s;8FP:AXs[c agdsuUB N-a:[§] r;s;8EP:AXs[c agsuUs

Acc Req
r;s;sFax).P:Afc{a/x} r;s;stax).P:A)c{a/x}
M-a:s] r;s;8-P:{x:is}jc ags rca:[s] r;s;8-P:{xis}jc a¢s

AccB
r;s;stax).P:{o}]c{a/x} r;s;sFax).P:{c}]c{a/x}

M-a:s] r;s;8-P:{xis}jc ags M-cifs] Ms;8EP:{xs}t]c
Acc Acc'S
r;s;8 Fxa(x).P:{o} [ c{a/x} ;8,8 F*c(X).P:{o}[c\x
N-a:fs] rs;8-P:Axis|c a¢s Nca:[s] rs;8-P:Axis|c a¢s
AccS ReqS
rs;8Fax).P:Ac\x rs;8Fax).P:A)c\x
Fec:s] Ts;8EFP:{x:s}]c Mec:[s] r;s;8-P:{xs}|c
AccBS RegBS
r;$;8Fc(x).P:{o}]c\x r;s;8Fc(x).P:{o}[c\x
N-et ife=athenaes rx:ts;8-P:A[c
Snd Rcev
rs;3 ke {kit}[{K)} r;8;8 FK2(X).P:{k2}-Al pre({¢(K)}, C)
rs;8FP:AK:TI[c (1<i<n)
Sel
Ms;8EFkali.P:AK:@B{l1:11,....In:Tn} [ pre({4(K)}, C)
rs;sER:AK TG (i=1,...,n)
Bra
M8l P Jln P AK:&{l 1T, In s o} [ pre({4(K) }, U1<i<nCi)
s # €.end
CSnd
M8 8 FRIKY - {kds, K ish [ {(K), 6(K), £(K) < £(k)}
rs;8EP:{x:s}[{x} s#¢e.end M-ebool T;s5;8EHR:AJc (i=1,2)
CRcv If
r;8;8 EK?(X).P:{k2}]{{(K)} r;8;8F if ethen Py else Py AfC
rs;8FP:AJc T;5;8FQ:A[c’ rs;8FP:AJc T;5;8FQ:A[c’

Seq Par
rs;8FP;Q:A-Apre(c,c’) rs;8FP|Q:AUN cuc’
ra:s);s;s-P:Alc aes rs;8FP:AK:TKP:T|C

HidingS HidingL
rs\as\ak (va)P:Afc\a r;s;8F (VKP:AJc\k
r;s;8FP:A[c K ¢domA) r;s;8FP:AKE]C
——Inact
. 010 Weakd Weal2
rs;8-0:0] rs;8FPIAKE[C rs;8FP:AK:eend]C

Table 4. Typing Rules
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prefix by 2 the possible communications on chank@rescribed by. In the obtained
channel relation all channels in are bigger tharf(k) by the definition ofpre(c, ¢’)
given in Table 5.

In rulesSelandBra all T; are either partial session types or ended session types —
this is guaranteed by the syntax of conditional sessionstypee Table 3).

The conditiort # €.end in rulesCSndandCRcvallows to exchange only live chan-
nels which are not consumed, a reasonable requirement fwodgrogramming disci-
pline. Example 3.5 justifies the requirement thé the only live channel of.

Compositional and Structural Rules Rule Seqtakes into account that all communi-
cations inP must be executed before the communication®.itnstead in ruléPar the
communications ifP andQ can be executed in any order, and for this reason we take
the unions of session environments and channel relatioitis the proviso thath U A’

is defined only if donfd) "ndom(A") = 0. In the rules for restrictions we uge\ A de-
fined in Table 3, whiles \ ais simply the sets withouta and similarly fors \ a. The
weakening rules are standard and necessary to type brgrutuicesses.

We assume that the typing rules are applicable onslliEhannel relations in the
conclusion of typing rules do not contain cycles and do nletesa shared channel with
itself. such channel relations are said to be well-formed. Thedwatition disallows
a cycle between two names, while the second condition disak < a, but it allows
bothk < k andx < x in channel relations. These conditions are justified belowugh
Example 3.1.

3.5 Justifying Examples

We end this section by briefly explaining why the negativenegles given in 8§ 3.2
cannot be typed, while the positive ones are typable. Foclihanel relations, we only

Composition for Running Session Types and Session Environents

. 1.7 if Tis a partial session type amtlis a running session type
1 otherwise

A ifoeA and &' C {o};

A\A U NMN\A U {K:AK) - A(K) | kedom(A)ndom(A')}U{o | o€ A’}
if o¢A and YkedomA)ndom(a): A(K) - A (K) # L;

L otherwise

AN =

Operators for Channel Relations

C\)\:{)\1-<)\2|)\1-<)\2€C&Al#A&)\z#A}U{)\/l)\/GC&)\/7&)\}

c\x if xis minimal in¢c
c\x= .
1 otherwise.

pre(c,c’') = (cUC'UN<N|Aec&Nec')

wherec* is the transitive closure af andX is minimal inc if AN <A e c.

Table 5. Operators for Types and Environments
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write the order of the channels, omitting the set of channels

Example 3.1The channel relation d®» andQj is {a < b}, while the channel relation
of Q2 is {b < a}. ThereforeP, | Q, creates a cyclic relation, which is not well-formed.
Hence it is untypable. On the other hafd| Q; is typable. SimilarlyPs is not typable
since{a < a} is not a well-formed channel relation, whiRa andP;s are typable since
{k <k} and{x < x} are well-formed channel relations.

Example 3.2The proces$s; cannot be typed since Ruldgc® andAcc'Srequire the
session environment of the body of the repeated accept t@micoonly x as subject,
while the session environmentkf!(3) containk™ as subject. The proceBsis unty-
pable since-a(x).0 must be typed by the session environmgsit (see rulesicc” and
Acc'S), and we cannot sequentially compdsg with k*1(3) by the definition of *”
(used in ruleSeq.

Example 3.3The argument of Example 3.2 shows thét).k™ 1(3) cannot be typed by
rulesRegBandRegBS$hencePy is untypable, whilePyg is typable since we can apply
rulesRegandReqS

Example 3.4The proces®i, cannot be typed by using rul&egSandReqBSsincer
is not minimal in its channel relatiofs < r}. Instead the proces$y, is typable using
rulesReqsandRegBS

Example 3.5:The process$?(t").(t'1(3);z?(w).0) in P13 cannot be typed, since rule
CRcvrequires the session environment of the body of the receigetain onlyt’ as
subject. RuleCRcvallows to typet?(t’).t'!(3) instead, hencBy; is typable.

4 Subject Reduction and Progress

This section discusses the features of our type systemtutaily splits into two parts:
subject reduction and progress. Proofs are given in oytiipetating the needed lem-
mas.

4.1 Subject Reduction

The basic property of substitutivity of values and live chelis to variables within deriv-
able typing judgments is easily checked by induction onvad¢ions:

Lemma 4.1 (Substitution Lemma).
1. Ifr,x:t;s;8 FP:A[ ¢ andl Fv:t, thenl;s;8 - P{v/x}: Af c.
2. Ifr;8;8 EP:AX: 1] ¢ and k fresh, thel;s; 3 - P{kP/x}: A kP:1[ ¢ {kP/x}.

Subject Equivalence, namely the invariance of typing judgtaw.r.t. structural equiv-
alence is proved straightforwardly by case analysis of fiied equivalence law.

Lemma 4.2 (Subject Equivalence)lf I';.s;8 + P:A[ ¢ and P= Q, thenl";s;3 - Q:
Afc.

Subject Reduction, namely the invariance of derivablenggudgments w.r.t. reduc-
tion, does not hold literally, since session types are shed by reduction and the
channel relation becomes a subrelation of the original blosvever a weaker state-
ment, which suffices for the present purposes, can be establimodulo inclusion of
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channel relations and of prefixing of session environmeiaited below evaluation or-
der.

Definition 4.3 (Inclusion). Theinclusion between channel relatioase ¢’ holds if
A € ¢ impliesA € ¢’ and\ <\ € ¢ impliesA <\ € ¢/, forall A, N\,

One might think of an ordering as a graptfV, E) whereV is the set of channels in,

andE is just the relation<; thereforec € ¢’ holds if and only ifc is a subgraph of’.
The partial order among pairs of session environments dakfiegt reflects the dif-

ference between two running session types before and adéestep reduction.

Definition 4.4 (Evaluation Order).

1. Cis defined as the smallest partial order on running sessipagyuch that C t;
cendCs; 0 CH{l1:01,...,In:0n}; si E${l1:51,...,In:sn}; and o C o’ implies
o-TCOo 1.

2. C is extended to session environments as follaws: A’ if ¢ € A implieso € A';
and K:1t € Aimplies R: 17 € A’ andt C 1.

Before stating Subject Reduction, we recall the importatiom of balanced session
environments [10]. A session environménis balancedif kP:t andkP: 1’ € A imply

T = T. The need of restricting to balanced session environmeritkistrated by the
proceskl! (true) | kP?(x).k5! (x4 1), which would be typable by unbalanced session
environments, whereas it reducekfd(true + 1) leading to a run-time error.

Theorem 4.5 (Subject Reduction).

1. Ifr+e:tande] v, thenl Fv:t.
2. IfT;s;8 - P:Af ¢, whereA is balanced, and P~ Q, thenl™;s; 3 - Q: A || ¢/, for
somed, ¢’ such that)' is balanced)' C Aandc¢’ € c.

The main part of the theorem, namely (2), says that after sisesias begun the re-
quired communications are always executed in the expectent specified by channel
orderingsc’ € ¢ and session environmerisC A.

4.2 Progress

This subsection discusses the main result of this papethattypable processes which
contain live channels can always execute, unless therdthez accept or request head
subprocesses with free subjects waiting for the dual peesedVe formalise this prop-
erty as follows:

Definition 4.6 (Progress).A process P has thprogress propertif P —* P’ implies
that either P does not contain live channels of |® — for some Q such that'PQ is
well-typed and Q4.

A process has the progress property if it is not blocked, and a prosesocked if it
is some “bad” normal form. In our setting this means that sopen session is incom-
plete. This might happen because some internal commumiceéinnot occur and the
obstacle cannot be removed either by internal or by ext@wamunications, namely
by communications relative to other sessions. This is whydwaot consider any ir-
reducible process as blocked, rather we say that even aluaitdeP has the progress
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property whenever it is able to interact in parallel with oghsuch thaP|Q is well-
typed: we askQ itself to be irreducible to ensure thBtactually participates in the
reduction step.

The goal of this section is to show that any process reprieggatstate in the run-
ning of some well-typed “program”, has the progress prop€rit together with Subject
Reduction, this implies the safety of well-typed programstwexecution. By analogy
with the theory of sequential languages, programs are dlps®esses; moreover they
do not contain live channels, since the latters only appé#ewunning. We call closed
typable processes without live channielisial .

Definition 4.7 (Initial Processes)A process P isnitial if I';5;3 F P: 0[] ¢ for some
I not containing variables and some, with a deduction which does not use rule
HidingL.

Notice that initial processes cannot contain free live cledsmsince the session environ-
ment is empty, nor bound live channels since to type themHidéngL is needed.

As in the case of type systems for partial deadlock-freedwegrhave first to estab-
lish a relation between the ordering in the usage of chanasfsecially the live ones,
and their formal counterpartin our system, namely charelatipns. To make this pre-
cise we define the auxiliary notion of precedence betweelikpoesubprocesses.

Definition 4.8 (Precedence)Theprecedence relatiobetween prefixed processes in-
side a process is defined by: T precedésnTP if P contains either 7= C'[T'] or
C[T];C'[T’], where @ ],C'[ | denote arbitrary contexts.

The main lemma states that in a process obtained by reduciigti@l process a live
channel which is minimal in the channel relation can only teepded by an accept/re-
quest on a free channel.

Lemma 4.9. Let B be initial and B —* (véR)P andrl;s;3 F P: Af ¢ be derivable
and let T be a subprocess of P with subjetgkd let k be minimal irr, then either P
contains as head subprocess an accept or request on a fremehar P contains T as
head subprocess.

Proof. (SketchThe proofis a consequence of the following properties:

(P1) If Pyis initial andPy —* P andT preceded’ in P andkP is the subject off, then
kP cannot be the subject af.

(P2) If T preceded’ in a typableP and the subject of’ is a free live channel, then
the subject ofT is neither an accept/request on a bound channel nor a peniane
accept.

(P3) LetP be typable with channel orderand letT precedd’ in P. If kP is the subject
of T and k‘f is the subject off” and bothk andk; are free inP, then we have
k<kiec.

Property P1) can be shown by induction on reduction.

Property P2) is guaranteed by the use oin the type system. If the subject ®f
is a free live channel, then the session environment fontypiprocess which contains
T’ cannot be empty. By the hypothe§iontains eithe = C[T’] or C[T];C'[T']. In
both cases, iT is an accept/request on a bound channel or a permanent atwspit
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must be typed by one of the ruléscB ReqB Acc', AccBSReqBS$Acc'S. These rules
prescribe the session environment of the body @inly contains the channel variable
bound byT and the session environmentbftself to be{c}. So if T = C[T’] the thesis
follows immediately, otherwise it follows from the defimti of “-” and the typing rule
Seq

For property P3) notice that by the hypothesR contains eithe = C[T’| or
C[T];C'[T']. In the former case, sinde’ is the subject ofl, we know thatk € ¢;
similarly, sincek‘f is the subject off’, we know thatk; € ¢’, for somec’ such that
¢ = pre(k,c’), sinceC[T'] is the conclusion of one rule amomgv, Sel, Brgnot of
Sendor CSendbecause no prefix could occur inside). This implies thak k € ¢ as
desired. The cade containsC[T];C'[T’] is similar and easier.

A key notion in showing progress is the natural corresponddretween communica-
tion patterns and shapes of session types.

Definition 4.10. Definell between prefixed processes and partial/ended session types

as follows: Ki(e) Dt K2(x).P 0%
K<liPO®{l1:01,...;,In:0n} ke{l1:Pif...[In: P} O0&{l1:01,...,In:0n}
K<aliPO®{l1:s1,...,In:sn} K {l1:Pi]...[In:Pa} O&{l1:51,...,In:sn}

KI{k") O's  Kk?(x).PO%

where i€ {1,...,n}.
Then, by analysis of deductions using standard generaimias, we have:

Lemma 4.11.If P is typable with a session environmehtsuch thatA(kP) = 1 ¢
{€,e.end}, then P contains at least one prefix with subje@t Moreover if T is the
prefix with subject Kwhich precedes in P all other prefixes with subjetttken either
TOtort=0rTandTOoO.

Since ruleHidingL only restricts dual live channels with dual session typesonly
get session environments which are balanced if we start iingial processes.

Lemma 4.12. If Py is initial and Ry —* (véR)P, then there exidt, s, 3,A, ¢ such that
Ms;8 = P:A]c andAis balanced.

We eventually come to the Progress Theorem: for each prételstined by reducing
an initial process i contains an open session, then there is an irreducible gsQce
such that the parallel compositiéhQ is well-typed too and it always reduces, also in
presence of interleaved sessions.

Theorem 4.13 (Progress)All initial processes have the progress property.

Proof. LetPg be initial andPy —* P. If P does not contain live channels®r— P’ there

is nothing to prove. No head prefixed procesB im an if-then-else statement: otherwise
P would reduce, sinc® is closed (being? closed) and any closed boolean value is
eithertrue or false. If one head prefixed subprocessHris an accept/request on a

free channed, thena must be in the domain of the standard environnieased to type

Po andP. LetT (a) = [s] and a head prefixed subproces®ian a be an accept process.
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B(e.X) = (0,0)

B(z.end, ) — (0,0)

B(!bool.T,x) = (X! (true); p1(B(1,%)), p2(B(T,%)))

B(![s].1,x) = ((vb)x!(b); p1(B(T,X)),p2(B(T,X))) bfresh

B(?.1,x) = (xAy).p1(B(1,%)), p2(B(1,%))) yfresh

B(’s.1,x) = (X {y);p1(B(1,%)), p2(B(T,x)) U{y:s}) yfresh

B(%.1,%) = (x2(y)-p1(B(t,x)), p2(B(t,%))) yfresh

B(@{l1:01,..-,In:0n}.T,X) = (X<l1.p1(B(01,X)); P1(B(T, X)), P2(B(01, X)) Up2(B(T,X)))

B(&{l1:01,...;In:0n}.T,x) = (xe{l1: p1(B(01,X)[---[lIn: p1(B(On,X))}; p1(B(T,X)), )
whereA = Ui<j<n p2(B(0i, X)) U p2(B(T,X))

B(@{l1:s1,--Intsn},X) = (X<l1.pa(B(s1,X)), p2(B(s1,X)))

B(&{lr:s1,-. s Inzsn},X) = (xe{l1: pa(B(s1,X)[---[In: p1(B(sn, X))}, Ur<i<nP2(B(si,X)))

where( , ) is a pair constructor angh ( ), p2( ) are standard projections.

Table 6. Mapping3

Then we can buildQ as a request process arwhich offers in the given order all the
communications prescribed Byaccording to the relatiodl. Notice that ifs prescribes
to send live channels, then the body@fmust contain pairs of accept/request which
produce these live channels. We can choose fresh namesjastsudf these pairs of
accept/request and put them in parallel, the accepts fetldwy all the communications
prescribed bg. More precisely, first we define in Table 6 the mappBfgom a session
type and a channel variable to a pair of a process and a sessisnnment. Second we
define the mapping from a session type and a channel variable to a process aw$oll

a(s,X) = (Vbr...bn)(b1(y1). ... bn(yn).p1(B(s,X)) | B1(y1).a (ST, Y1) | - |Bn(Yn).a(3n, ¥n))
if p2(B(s,X)) ={y1:s1,...,¥n:sn} andby,... b, are fresh.

Letl (a) = [s|: then we can tak® = a(x).a (5, x) if P is an accept on the chanrelor
Q=a(x).a(s,x) if Pis arequest on the chanreellf Py is initial thenl;s; 8 - Py: 0[ ¢
for somer,s,3,c. By Theorem 4.5(2) we gét;s; 3 - P: 0] ¢’ for somec’ € c. It
is easy to verify by induction on the construction®@thatl;s;3 - Q: A]| ¢” for some
c" e ¢’ andh, whereA = 0 if p2(B(s,x)) = 0 andA = {o} otherwise. Since” e ¢’
implies thatc’ U ¢” is well-formed, we concludE;s;3 - P|Q: A c'uc”.
OtherwiseP does not contain as head subprocess an accept or a requeBeen a
shared channel, biit contains live channels. L& = (vak)Q, whered includes the set
of all shared channels which are subjects of the head prefis@bsses i andk is
the set of all live channels which occurih By Lemma 4.12, we know that; s;3 +
Q: Af ¢ for somel',s,8,A andc. Letk be a minimal live channel ia. This implies
kP:1 € A for somet such thatt ¢ {€,e.end}. By Lemma 4.12A is balanced and then
kP:T € A. By Lemma 4.11 the channet8 andkP must occur irP. By Lemma 4.9 there
are two head prefixed processesPinvith subjectskP and itskP, respectively. Notice
that kP andkP have dual types, so that by Lemma 4.11 they are the subjeataif d
communication actions: it follows th&reduces.
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5 Conclusion and Future Works

This paper proposed the first session typing system for thgress property on inter-
leaving sessions, which are not necessarily nested. Thkingstyping system ensures
a strong progress property for a calculus allowing creadiomew names and full con-
currency, significantly enlarging the approach taken i8]6ln spite of the richness of
the calculus, the typing system is based on the intuitiva mfechannel causality with-
out additional information on the syntax of the originalsies types.

For simplicity, we use the replications rather than the reiwe agents [12] for repre-
senting infinite behaviours. We conjecture that our apgr@an be smoothly extended
to recursive agents and recursive types. Since our typiagsyuses standard types,
it can be easily integrated with subtyping [10], boundedisespolymorphism [9] and
correspondence assertions [2], guaranteeing the protmesgyh the additional infor-
mation represented by the sets of sent and bound channetb@arctiannel relations.
Challenging extensions are progress guarantees for afpagnic (global) communi-
cation dependencies [5], combining more powerful meank as@ryptography [3, 7],
refinements [20] and logical approach [4], by which more adeal security properties
can be ensured.

The main reason for including the sequencing constructertavarovide a basis for
the progress straightforwardly expendable to conventiomgerative and Web Service
languages [5, 8, 13]. In our experience of implementatitiessequencing construct is
essential in writing optimal code for the branching struesu In particular, for our on-
going work on session types with advanced exception, weineguplicit sequencing
to model escaping blocks during session communicationeswiming an intermediate
session.

Without the sequencing constructor our calculus would belglightly simpler. We
could not get rid of the evaluation contexts, since progregsires that the process
which receives a live channel is evaluated in parallel whth tontexts, as shown in
the example at the end of Section 2. For the same reason wearteedinator for the
receiving process, role which is played by sequencing irctireent calculus. To sum
up without the sequencing constructor we would loose espuigg with the only gain
of sparing one typing rule.

We plan to extend the current formulation and typing systempfeserving the
progress property on live channels, and to apply it to thegdex a type safe exception
handling for Java with session communication [13].

Acknowledgement$Ve thank Simon Gay, Naoki Kobayashi, Vasco Vasconcelos, the
TGC referees and participants for their comments and dismos. The final version of
the paper improved due to their suggestions.
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