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Abstract. We illustrate the concepts of sessions and session types as
they have been developed in the setting of the π-calculus. Motivated
by the goal of obtaining a formalisation closer to existing standards and
aiming at their enhancement and strengthening, several extensions of the
original core system have been proposed, which we survey together with
the embodying of sessions into functional and object-oriented languages,
as well as some implementations.
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1 Introduction

The rapid growth of web technologies and of service oriented programming is
promoting a fruitful interaction between research communities and standards or-
ganizations, with the aim of designing languages and systems for communication
centred computations based on a sound theoretical footing.

Session types are one of the formalisms that have been proposed to struc-
ture interaction and reason over communicating processes and their behaviour.
They appeared in [THK94] and subsequently in [HVK98], where the issue of
formalising in a type system the concept of session was framed in the (polyadic)
π-calculus with types. The basic idea is to introduce a new form of polymor-
phism which allows the typing of channel names by structured sequences of
types, abstractly representing the trace of the usage of the channels.

The apparently weak constraint constituted by typing channels with session
types, while disregarding the interleaved usage of the channels themselves within
the process term, is however sufficient to detect subtle errors in the implementa-
tion of communication protocols. In fact it reveals to be the right setting where
concepts developed for the π-calculus or in general for process algebras can be
combined: we think of error freeness checked via typability, of internal mobility
which nicely captures the idea of private conversations, of linearity and type
duality which enforce the mirroring of the channel usage into its type, and of
channel transmission, at the very basis of the π-calculus, to model service dele-
gation.



Since then a substantial body of research has been carried out: to better
understand the potentiality of the proposed calculi, as it is the case of the intro-
duction of subtyping polymorphism for session types in [GH05]; to strengthen
the expressive power of session type systems with respect to relevant compu-
tational properties like progress and deadlock-freedom in [DCdLY08], building
over ideas of [Kob06]; to widen the scenarios which can be modelled in the cal-
culus, stepping to multiparty sessions instead of just dyadic ones [HYC08], or to
detect realizable choreographies via a system of global session types in [CHY07];
to propagate the session type technology to existing programming languages as
in [VGR06] for the functional paradigm or in [CCDC+09] for the object-oriented
one, providing implementations and applications.

Session types are by no means the only proposal for a theoretical founda-
tion of communication centred programming which has been based on process
algebras. Service calculi as well as protocol descriptions called “contracts” have
been devised (for which see the references in Section 6) and in some cases the
relations with session types have been investigated, although much remains to
be done. The comparisons of the superficially different formalisms enlightening
common underlying concepts will hopefully improve the language design and the
programming practice for communication based computing.

In the present paper we will survey all these aspects mainly informally, by
means of examples or just providing pointers to the literature. We begin in Sec-
tion 2 with session types in their global versus local formulation, though this
is a recent development: this is where the basic concepts and formalisms are
presented. Section 3 overviews the numerous extensions for the original system
which have been proposed to gain expressivity and to catch stronger computa-
tional properties. Section 4 is devoted to the embedding of sessions and their
typings into the functional and object-oriented programming paradigms. In Sec-
tion 5 we report on implementations of sessions and session types which use
mainstream programming languages. Finally in Section 6, we quickly review for-
malisms and calculi which appear to be close to session type systems and to
their goals.

2 Basic Concepts and Systems

In networking a session is a logic unit of information exchange between two or
more communicating agents. The essential concern of a session is to specify the
topic of conversation as well as the sequence and direction of the communicated
messages. This has been formalized as a type system for a dialect of Milner’s
π-calculus in a series of papers by Honda and others [THK94,HVK98,YV07],
and recently extended to express ideas from W3C-CDL (http://www.w3.org/
TR/ws-cdl-10/), a language for choreography. To look at sessions and session
types in their latest incarnation, we follow [CHY07,HYC08], where sessions are
described at different levels. At the global level they are abstract specifications
of globally available services (called interactions in [CHY07]), whose types are
global session types, or simply global types. At the local level they are protocols
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Fig. 1. UML sequence diagrams of some User-ATM interactions.

described in the participant perspective: the local session types or just session
types, which can be assigned to end-point processes, the actual participants of
the interaction. These two levels are related to each other: the global processes
(that can be thought of as choreographies) and the global types should project
to the local ones, where end-points play the role of the actual implementations
of the specified system.

To illustrate these concepts and their formal representation, let us consider
the following protocol which describes a simplified interaction between a cus-
tomer (User) and an automated teller machine (ATM)1:

– First the User communicates her/his identifier to the ATM;
– The ATM answers with either success or failure.

• In the first case the User can ask either for doing a deposit or a withdraw.
∗ For a deposit the User communicates an amount, and waits for a

balance.
∗ For a withdraw first the User communicates an amount and then the

ATM answers with either dispense or overdraft.
• If the answer is failure, then the interaction terminates.

Two possible interactions are described in the UML sequence diagrams in Fig-
ure 1. Note that identifier, amount and balance are row data and have been
represented by dashed arrows, while success, failure, deposit, withdraw, dispense
and overdraft are labels used to choose between different options, shown in the
diagrams by solid arrows.

1 The example of the interaction among User, ATM and Bank comes from [HVK98],
and it has been used by several authors. We adapt this example also to illustrate
the subsequent developments and variations of the original system.
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Following [CHY07]2 a global description of this interaction is as follows:

User −→ ATM : identifier.
ATM −→ User :

{ success : User −→ ATM :
{ deposit : User −→ ATM : amount.

ATM −→ User : balance.
end

8 withdraw : User −→ ATM : amont.
ATM −→ User :

{ dispense : end
8 overdraft : end
}

}
8 failure : end
}

(1)

The arrows User −→ ATM and ATM −→ User represent the direction of the
message, which in the first line is simply an identifier. The alternatives between
the possible answers success or failure by the ATM (and similarly in the subse-
quent lines, where branching actions are described) are grouped by curly brackets
and separated by 8. In the last case the protocol terminates, while in the first
one it goes on with nested choices, by choosing among deposit and withdraw. In
the first case the User is expected to send the amount and to wait for the balance
from the ATM. In the case of withdraw instead, after sending the amount the
User will receive either a dispense or an overdraft message from the ATM.

The global type of the current interaction can be simply obtained from the
global description replacing data by their types:

User −→ ATM : String.
ATM −→ User :

{ success : User −→ ATM :
{ deposit : User −→ ATM : Real.

ATM −→ User : Real.
end

8 withdraw : User −→ ATM : Real.
ATM −→ User :

{dispense : end
8 overdraft : end
}

}
8 failure : end
}

(2)

2 In [CHY07,HYC08] global descriptions of interaction are more informative than ours,
since they also specify the initiation and the channel names on which data and choice
labels are communicated.
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Now let us look at the User view of this interaction, which can be described
by the session type:

!String. &{ success : ⊕{ deposit : ! Real. ? Real. end
8 withdraw : !Real.

&{ dispense : end
8 overdraft : end
}

}
8 failure : end
}

(3)

With respect to the global type (2), the local view of User is obtained by removing
the arrows, being the source and the target of the messages determined, and by
using ! or ? when the User is the sender or the receiver of a message, respectively;
then by writing ⊕ when the User selects a choice and & when she/he offers a
branching of choices.

Similarly we get the type for the ATM view; however, being this symmetric
w.r.t. the User’s view, the same result can be obtained form (3) by interchanging
! with ? and ⊕ with &:

? String. ⊕ { success : &{ deposit : ? Real. !Real. end
8 withdraw : ? Real.

⊕{ dispense : end
8 overdraft : end
}

}
8 failure : end
}

(4)

The types (3) and (4) show a typical duality of session types, which is at the
basis of communication safety and session fidelity properties of the processes
typable in the session type systems. Communication safety is the extension to
a sequence of communications of the standard correctness property of simple
types for (polyadic) π-calculus (see [SW01] Chap. 6), namely that only data of
the expected type are exchanged. Session fidelity is instead a typical feature of
session type systems, where special names, called session channels, may carry
messages of different types but in a specific sequence. To illustrate the point let
us see how a process implementing the User agent might look:

ā(k). k ! identifier.
k &{ success : if · · · then k ⊕ deposit : k ! amount. k ? (x). 0

else k ⊕ withdraw : k ! amount.
k &{ dispense : · · ·

8 overdraft : · · ·
}

failure : 0
}

(5)
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where · · · represent local computations.
On the other hand a process modelling the ATM could be:

a(h). h ? (x).
if · · · then h ⊕ success : h&{ deposit : h ? (y). · · · h ! balance. 0

8 withdraw : h ? (z).
if · · · then h ⊕ dispense : · · ·

else h ⊕ overdraft : · · ·
}

else h ⊕ failure : 0

(6)

The name a is a session name (simply a name in [HVK98]) and the prefixes a(h)
and ā(k) are used for session initiation, named accept and receive in the same
work; the names k, h are bound names in the respective bodies representing
the session channels. As soon as the session begins, the session channels are
substituted by a new name κ, with a superscript polarity3 p ∈ {+,−}, marking
the two end points of the running session, as it is apparent from the rule for
session initiation:

(ā(k).P ) | (a(h).Q) −→ (νκ)(P{κ+/k} | Q{κ−/h}).

The polarised channels κp
1, κ

q
2, . . . are the medium of all messages between the

participants of a session. In fact they are used to receive and send values:

(κp ! v.P ) | (κp̄ ? (x).Q) −→ P | Q{v/x}

(where +̄ = − and −̄ = +), and to perform select/branching actions4:

(κp ⊕ `i : P ) | (κp̄ &{`1 : Q1 8 · · · 8 `n : Qn}) −→ P | Qi, (1 ≤ i ≤ n).

Communication safety and session fidelity (simply called “error freeness” in
[HVK98]) are induced by a typing discipline, assigning session types S, S′, . . . to
session channels, and the type [S] to a session name carrying a session channel
typable by S or by S. So typing judgements are of the shape5:

Γ ` P . ∆

where Γ associates types to session names and variables, while ∆ associates
session types to session channels. In the sequel we do not report rules for the
polarised channels (that are essentially the same), just for simplicity.

3 The use of polarities has been proposed in [GH05], and adapted to the original syntax
in [YV07].

4 W.r.t. [HVK98], we write κp ⊕ `i : P for κp / `i; P and κq &{`1 : Q18 · · ·8`n : Qn}
for κq . {`1 : Q1 8 · · · 8 `n : Qn}, just to keep closer process and the type syntax in
the present informal exposition.

5 The syntax of judgments and rules of the session type system is from [YV07] §3,
omitting the bases Θ, of use for process definitions that we disregard in this survey.
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The typing rules for session initiation assure that the channels bound by
session names have exactly the session types prescribed (writing S for the dual
of S):

Γ, a : [S] ` P . ∆, k : S

Γ, a : [S] ` a(k).P . ∆

Γ, a : [S] ` P . ∆, k : S

Γ, a : [S] ` ā(k).P . ∆

The assumption a : [S] declares that the session name a is able to open a session
whose session channel k has type S. The session type S is constructed along the
use of its subject k in the process P , i.e.:

Γ, x : T ` P . ∆, k : S′

Γ ` k ? (x).P . ∆, k :? T.S′

whose dual is derived by the rule:

Γ ` P . ∆, k : S′′ Γ ` v : T

Γ ` k ! v.P . ∆, k :!T.S′′

Because of these rules, the type ? T.S′ in the conclusion of the first rule tells
that over the channel k there will be an input of a value of type T , and then
the conversation will continue according to S′; similarly the type !T.S′′ in the
conclusion of the second rule tells that the session over k begins with output of
a value of type T , and then it continues according to S′′. By this we have that
!T.S′′ = ? T.S′, provided that S′′ = S′.

Note that to reflect the usage of the session channel in its session type, an
almost linear discipline is imposed to the typings ∆. In particular the axiom
Γ ` 0 . ∆ (where 0 is the inactive process) requires that ∆ associates only
the session type end (the type of the completed sessions) to channels. As a
consequence weakening of the typing ∆ is not admissible but for typings of this
form.

We omit the rules for typing selection, branching and parallel composition,
which can be found for instance in [YV07].

The actual strength of the π-calculus w.r.t. CCS and similar process algebras
consists in the ability to send and receive names. We have seen above that
the formalism chosen for the endpoint calculus is essentially a dialect of the
π-calculus, extended with session initiation and selection/branching primitives.
We will discuss now how a restricted (and more structured) form of mobility
allows to express delegation in the scenario of sessions and session types.

Consider the more complex version of the User-ATM protocol in Figure 2,
which further includes the Bank. The point here is that, to complete its protocol,
the ATM asks the Bank to deposit or to withdraw the required amount from the
proper bank account. This is accomplished by opening a new session between
the ATM and the Bank, which is the agent that ultimately is expected to send
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Fig. 2. UML sequence diagram of a User-ATM and Bank interaction.

or to receive the amount determined by the User:

a(h). h ? (x).
if . . . then

h ⊕ success : b̄(k). k ! x. h&{ deposit : k ⊕ deposit :
h ? (y). k ! y. k ? (z). h ! z. 0

8 withdraw : k ⊕ withdraw :
h ? (t). k ! t.
k&{ dispense : h ⊕ dispense : · · ·

8 overdraft : h ⊕ overdraft : · · ·
}

}
else h ⊕ failure : 0

(7)

The service name b̄ is used to require a connection to the Bank, and uses the
session channel k. Its first use is to send to the Bank the identifier, received on
x from the User. Then the ATM plays just the role of a forwarder between the
User and the Bank and vice versa. A quite different approach, however, would
be to delegate (say just after authentication) all the ATM job to the Bank by:

a(h). h ? (x).
if · · · then h ⊕ success : b̄(k). k ! x. k ! h.0

else h ⊕ failure : 0
(8)

In the process (8) the session channel h, which is supposed to carry the con-
versation with the User, is passed along k to the Bank, that will continue the
interaction directly with the User. This is however transparent to the User, who
is unaware of the fact that the opposite endpoint is now held by some different
partner.

8



Delegation is achieved by allowing higher-order sessions, i.e. by allowing to
send channels over channels6:

(κp ! κq
1.P ) | (κp̄ ? (h).Q) −→ P | Q{κq

1/h}

How is this reflected in the type system? Is typing able to guarantee to the User
that either interaction with the non delegating ATM (7) or with the delegating
ATM (8) will always comply with the protocol formalized by the type? As a
matter of fact both these issues are addressed by suitably typing the channel
exchanges. The rule for the sending process is:

Γ ` P . ∆, k : S1

Γ ` k ! h. P . ∆, k : !S2.S1, h : S2

where h is a fresh name. Because of this the new channel h cannot occur in P ,
even if it is credited of the (arbitrarily complex) usage described in S2. This is
essential for session fidelity to hold: looking at the example (8), if the ATM could
save an occurrence of h that could be used after having been sent to the Bank,
then the conversation with the User would be ambiguously directed either to the
ATM or to the Bank, and the interaction might end up in some unexpected way.
For example the process

(κ+ ! κ+
1 .κ+

1 ! true.0) | (κ− ? (h).h ! false.0) | (κ−1 ? (x).P )

reduces to
(κ+

1 ! true.0) | (κ+
1 ! false.0) | (κ−1 ? (x).P )

where the linearity of the channel κ+
1 is lost. The last process can non determin-

istically give either (κ+
1 ! false.0) | P{true/x} or (κ+

1 ! true.0) | P{false/x}, so no
communication protocol is respected.

On the other hand the receiving process will bind a session channel h:

Γ ` Q . ∆, k : S1, h : S2

Γ ` k ? (h).Q . ∆, k : ?S2.S1

It is indeed essential that the actual usage in Q of the channel h is controlled by
the type S2, which suffices to guarantee that the delegated session will continue
as expected by the partner. This implies that, while the type of k obviously
changes, the session type of the delegated session in (8) remains the same as in
the case of (7) without delegation.

6 Observe that, since channel names can only be introduced by the initiation of a
session, where they occur within the scope of the restriction operator ν, the com-
municated names are always private, that is only “internal mobility” is permitted
(see [SW01], Chap. 5.7). However in [Bor98] it is shown that the internal π-calculus
has the same expressive power, up to barbed-bisimulation, as the asynchronous π-
calculus, which in turn is known to encode the full π-calculus: see [SW01], Chap.
5.5.
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By admitting recursive definitions of processes, also protocols of unbounded
sequences of actions can be expressed.

We remark that while global types have straightforward projections into ses-
sion types, this fails on the process side. Although this is not the case of our
examples, the projection map sending global interactions into end-point pro-
cesses is quite complex. In fact it is a partial map which is defined only if the
given interaction satisfies connectedness, well-threadedness and coherence condi-
tions, as they are detected via a further refinement of the global typing system
(for more details see [CHY07]).

The interested reader wishing a more technical presentation of the basics of
session types might consult [Vas09a], where Vasconcelos presents a reconstruc-
tion of session types in a linear π-calculus with a restriction operator binding at
the same time two variables and establishing that they are the two end-points
of communications.

3 Extensions

In this section we discuss, mainly through schematic examples, some extensions
of sessions and session types that allow to increase their expressivity and conse-
quently to widen their applications.

3.1 Extensions of the Calculus

Correspondence Assertions. In the example (7) of the User-ATM-Bank sketched
in the previous section, a malicious ATM′ could send to the Bank an amount of
money different from that communicated by the User, and consequently altering
the balance obtained from the Bank:

ATM′ =

a(h). · · · b̄(k). · · ·
deposit : h ? (y). k ! y − 10. k ? (z). h ! z + 10.
· · ·

(9)

This change is transparent to the typing, since it does not modify the commu-
nication protocol. In order to cope with such kind of misbehaviour, in [BCG05]
Bonelli et al. incorporate correspondence assertions in the theory of session types.
In particular to detect the misbehaviour of ATM′ one is enabled to include two
correspondence assertions (which are tagged tuples of expressions) into the codes
of the User and of the Bank, intended to state that values of both the amount
and the balance are the same:

User′ = ā(h). · · · h ! amount. h ? (x). cBegin 〈amount, x〉. · · ·
Bank′ = b(k). · · · k ? (y). k ! balance. cEnd 〈y, balance〉. · · ·

Then the type system can discover the malicious behaviours of the ATM′ since in
the type checking of the process User′ |ATM′ |Bank′ the tuples 〈amount, x〉 and
〈y, balance〉, paired by the keywords cBegin and cEnd, do not match.
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In general type systems with session types and correspondence assertions can
be used to check:

– source of information,
– whether data is propagated as specified across multiple parties,
– if there are unspecified communications between parties, and
– if the data being exchanged have been modified by the code in some unex-

pected way.

Multiparty Sessions. In a multiparty session we can have any number of par-
ticipants. So a multiparty session forms a unit of structured interactions among
many participants which follow a prescribed scenario specified as a global type
signature. Multiparty sessions were first designed in [HYC08], but we follow
the syntax of [BCD+08], being closer to that one used here for dyadic sessions.
For example a global type describing the User-ATM-Bank interaction with three
participants is:

User −→ {ATM,Bank} : String.
ATM −→ {User,Bank} :
{ success : User −→ Bank :

{ deposit : User −→ Bank : Real.
Bank −→ User : Real.
end

8 withdraw : User −→ Bank : Real.
Bank −→ {User,ATM} :
{ dispose : end
8 overdraft : end
}

}
8 failure : end
}

(10)

In this context the arrow does not just indicate the direction of a message:
User −→ {ATM,Bank} : String expresses that the User sends the same String to
the ATM and to the Bank by means of a unique action. Differently than in the
dyadic case, when projecting the global type:

User −→ {ATM,Bank} : String

we have to take into account the roles to which the single actions are projected,
giving the slightly more verbose session types:

! 〈{ATM,Bank},String〉 ? 〈User,String〉 ? 〈User,String〉

for respectively the User, the ATM and the Bank.
On the process side the session initialization primitives declare the role of the

single participants (labelled by a natural number), but for one (distinguished by
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the over-bar on the service name) which being the last one declares the overall
number of participants. For example, writing the initial actions of each partner
in columns which are separated by the parallel composition operator we get for
the previous example:

a[1](k1). a[2](k2). ā[3](k3).
k1 ! 〈{2, 3}, id〉. k2 ? 〈1, x〉. k3 ? 〈1, y〉.

. . . . . . . . .

where each communication specifies either the set of the receivers or the sender.

Concurrent Constraints. Following the approach of [BM07,BM08] the paper
[CDC09] proposes a calculus which combines concurrent constraints, name pass-
ing and sessions. Public and private constraints specify the requirements of ses-
sion participants to open new interactions and to conduct them. More precisely
the primitives for session initiation allow the programmer to specify a set of
constraints whose satisfaction is necessary for starting the session interaction.
For example a service could offer different times and prices:

a{deliveryTime = 3 | price = 10}(k). . . .
a{deliveryTime = 5 | price = 7}(k). . . .

so that a rushed client ā{deliveryTime ≤ 4}(h). . . . will choose the first option; a
thrifty client ā{price ≤ 9}(h). . . . will take the second one; finally a too demand-
ing client ā{deliveryTime ≤ 4 | price ≤ 9}(h). . . . will refuse the connection at
all.

In this calculus we have:

– a fusion mechanism that explicitly represents, through the notion of con-
straint, relations involving private and public names,

– symmetric data communication both in input and in output, achieved via
the introduction of constraints between channel names.

A simple example showing how communication is realised by fusion - i.e. just by
creating a new constraint and putting it in parallel with the process continuations
- is:

κ+(amount).P | κ−(x).Q −→ P | Q | amount = x

The main technical problem is to preserve the linearity of session channel
usage in presence of delegation and constraints.

Lopez et al. [LPO10] encode a timed extension of multi-party sessions [HYC08]
into the timed process calculus with concurrent constraints of [OV08]. The timed
extension explicitly includes information on session duration, allows for declara-
tive preconditions within session initiations, and features a construct for session
abortion. Since the processes of [OV08] can be interpreted as linear temporal
logic formulas, the given encoding allows to verify properties of structured com-
munications.
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Code Mobility. Mostrous and Yoshida propose in [MY07,MY09] a calculus of
sessions in which processes can be sent and received, i.e. a calculus of sessions
with higher-order processes. The advantage is to avoid many remote interac-
tions. For example the ATM could send a process to the Bank so that the Bank
could directly interact with the User. [MY09] discusses also how actions can be
permuted in order to increase efficiency.

The main challenge of this approach is the preservation of the linear use of
session channels while allowing instantiation of names into executable code.

Exceptions. Carbone et al. in [CHY08] propose a notion of exceptions for sessions
which they call interactional exceptions. These exceptions demand not only local
but also coordinated actions between session participants. The main features of
the proposed calculus typed by sessions with exceptions are:

– flexibility: exceptions are allowed at any point of a conversation;
– consistency: messages in normal and exception conversations are not mixed-

up;
– safety: communications inside sessions take place linearly and without com-

munication mismatch.

Resource Access Control through Delegation. Capecchi et al. in [CCDR09] enrich
the calculus of multiparty sessions with security levels of participants and data.
A suitable type system assures that each participant can only receive data of
security levels less than or equal to its own security level. For example in a well-
typed protocol involving a Customer, a Seller and a Bank, the “secret” credit card
number of the Customer is communicated to the Bank, but not to the Seller. This
is realised also by making delegation explicit in the typing of the delegated session
channel. Typing prevents any leak of information due to selection/branching too.

3.2 Extensions of the Typing

Subtyping. The idea of subtyping, coming from the typed λ-calculus, is that any
value of a certain type can be safely placed in a context expecting a value of some
more general type: this principle is called subsumption (for a handy and clear
explanation of the concepts of subtyping and subsumption see [Bru02], Chap. 5).
In the setting of the π-calculus, where only names have a type, the subsumption
rule takes a dual form (also called narrowing): if a type T ′ describes a more
general kind of data than T , written T ≤ T ′, then any name typable by T ′ in
the process P can safely be typed by T in the same process. This is sound with
respect to communication safety because for example, an ATM which accepts
a Real amount of money can safely communicate with a User who sends an Int
amount of money, which is formally expressed by postulating Int ≤ Real and by
deriving ?Int ≤ ?Real.

The concept of subtyping, originally conceived for input/output types (see
[SW01] Chap. 7, where the covariance/contravariance of input and output ac-
tions - respectively - is explained) has been extended to session types by Gay and
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Hole in [GH05]. An ATM which offers on a channel both deposit and withdraw
can safely communicate through that channel with any User willing just to do a
deposit action, which can be expressed by:

&{deposit : S1} ≤ &{deposit : S1,withdraw : S2}.

On the contrary a User who is willing to do a deposit through a certain chan-
nel will comply with any environment ready to interact over that channel with
someone either asking for a deposit or for a withdraw:

⊕{deposit : S1,withdraw : S2} ≤ ⊕{deposit : S1}.

To formalize this in the type system, let us consider the following rule7:

Γ ` P . ∆, k : S′ S ≤ S′

Γ ` P . ∆, k : S

Then if we type the ATM by k : &{deposit : S1,withdraw : S2} in the premise,
we know that it is offering both actions, so that in particular it will do with
just deposit, as stated in the conclusion. On the other hand if we know from the
premise that the User will do just a deposit, a fortiori she/he will be correctly
communicate with an ATM accepting either a deposit or a withdraw selection
action, which is spelled out in the conclusion.

Summarizing:

– input is covariant,
– output is contra-variant,
– branching is covariant in the number of branches,
– selection is contra-variant in the number of branches,
– both branching and selection are covariant in the continuation types.

This has the remarkable consequence that, if S, S′ are session types and S ≤ S′,
then S′ ≤ S.

Subtyping enhances expressivity of typing with session types since it allows:

– refinement of participants without invalidating type-correctness of the overall
system,

– participants to follow different protocols which are nevertheless compatible
according to the subtype relation.

Bounded Polymorphism. A more precise and flexible specification of protocols
is obtained in [Gay07] by introducing bounded polymorphism. In particular a
choice of type in one message may affect the types of future messages. For ex-
ample
7 This rule is only admissible in the system studied in [GH05], where a more syntax

directed presentation is indeed preferred.
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&{ opp (Int ≤ X ≤ Complex) : ? X. ! X. end
. . .

}
is the type of a calculator which offers an opposite operator working on all
numbers whose type is between Int and Complex, returning a number of the
same type. A User typed by

⊕{ opp : ! Real. ? Real. end}

could safely engage a session with such a calculator.

Progress. A very useful property is that once a session is started, the participants
will be able to complete all the necessary communications without getting in a
deadlock. This property - usually called progress - has been studied for several
calculi; in particular Kobayashi has developed very refined techniques for the
π-calculus [Kob98,Kob02,Kob05,Kob07].

Session types already assure deadlock-freeness inside single sessions. If dis-
tinct sessions do not overlap, then after a session initiation the process is never
blocked. This is no longer true if a process contains two or more interleaved
sessions: in fact if a session includes another one, then the outermost session
might start and wait forever if the innermost session does not find a partner.
For example when running the process (7), the session between the User and the
ATM opened by a is blocked if there is no Bank hearing on b. In an open sce-
nario we can assume that it is always possible to find the required partners, and
therefore we do not consider this kind of cases as deadlocks. There are however
situations which cannot be solved by adding suitable partners. A very simple
kind of deadlock occurs when two sessions are wrongly interleaved. Consider for
example the following typable process:

a (k). ā (k′).
b (h). b̄ (h′).
k ! 2. h′ ! true.

h ? (x) k′ ? (y)
. . . . . .

After the two session initiations we get:

κ+
a ! 2. κ+

b ! true.
κ−b ? (x) κ−a ? (y)

. . . . . .

which is blocked as soon as input and output actions are synchronous. Allowing
asynchronous output does not avoid this kind of blocks in general, as it is shown
for instance by:

a (k). ā (k′).
b (h). b̄ (h′).

h ? (x). k′ ? (y)
k ! 2 h′ ! true

. . . . . .
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More interesting examples of deadlocks involve delegation. Type systems assur-
ing progress are discussed in [DCdLY08] for dyadic sessions and in [BCD+08]
for multiparty sessions. The key ideas of these works are:

– to take advantage of nested sessions,
– to infer the order of channel usage for interleaved sessions (following [Kob05]),
– to forbid “self-delegation” (opposite polarities of the same session channel

cannot be put in sequence).

Action Permutation. As it is well known, in asynchronous π-calculus inputs are
blocking while outputs are not (see [SW01], Chap. 5). This asymmetry is the
starting point of the work in [HMY09], where Honda et al. propose to execute
outputs before inputs when possible for increasing efficiency. This change of order
is realized by means of an appropriate subtyping theory, which allows automatic
action permutation for multiparty sessions while assuring communication safety
and session fidelity. Notably action permutation is tricky in presence of recursion
and selection/branching.

3.3 Other Extensions

Semantic Subtyping. Semantic subtyping, as proposed in [CF05], is based on the
interpretation of types as the sets of their inhabitants, so that subtyping turns
out to be set inclusion. Type constructors are indeed interpretable as plain set
theoretic operations, so that boolean combinators have their natural meaning.

In [CDCGP09] Castagna et al. propose a theory of session types in which
the choices are done on the basis of the type of the messages exchanged. The
standard choices through labels are then particular cases in which each label is
typed with a singleton type.

An example is the process:

&{ k ? (x : Int). k ! − x. 0
k ? (y : Bool). k ! ¬y. 0

}

which, when receiving either an Int or a Bool value, replies differently: in case of
an Int number it answers with its opposite; on receiving a Bool value it answers
with its negation. The type of the channel k in this process is therefore:

&{ ?Int. !Int. end
?Bool. !Bool. end

}

Consider now the slightly different type:

&{ ?Real. !Nat. end
?Int. !Bool. end

}
(11)
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It can be assigned to a channel which, when receiving a Real number replies with
a Nat number, and when getting an Int number answers with a Bool value. Being
Int a (semantic) subtype of Real, when the channel receives an Int it can react
either by sending a value of type Bool, or, by viewing the integer as a Real, a
value of type Nat. A session type which is dual of this type can naturally use
boolean operators within type syntax:

⊕{ !(Real ∧ ¬Int). ?Nat. end
!Int. ?(Nat ∨ Bool). end

}

This type says that if the channel sends a Real number which is not an Int
number, it will receive a Nat number; but if it sends an Int number, then it will
receive either a Nat number or a Bool value. In this way one can obtain a finer
description of behaviours within the formalism of session types. Note that also
the types !(Real ∧ ¬Int). ?Nat. end and !Int. ?(Nat ∨ Bool). end are dual of (11):
namely duality is not involutive in this theory.

In [CDCGP09] also duality is defined semantically: two session types are dual
if no conversation on a private channel shared by two processes which follow the
prescriptions of these two types ever gets stuck.

In this scenario, where types play a computational role, session types can be
interpreted as the sets of their dual types and the semantics of boolean combi-
nators is set theoretical. This interpretation of session types gives a semantic
subtyping relation, since it is safe to replace a channel with another one when
every dual of the replacing channel is also a dual of the replaced one.

Hennessy-Milner Logic. Berger et al. in [BYH08] present an extension of Hennessy-
Milner Logic suitable to capture the behaviours of session participants. The basic
concept of this logic is the hypothetical parallel composition formula AmB, which
means: if a process satisfying A is put in parallel with a process that satisfies
this formula, then the resulting process will satisfy B. For example the process

P ≡ a(k). k ⊕ opp : k ! 2. k ? (x). h ! x.0

offers a session initiation on the service name a binding the session channel k,
then along k it selects the label opp, sends the integer 2, and receives an input
which is bound to the variable x. Eventually it sends over the channel h the value
of the variable x. Let Q be a process which offers a session initiation on the service
name ā binding the session channel k′; then using the session channel k′ it offers
a branch labelled opp, receives an input which is bound to the variable y and
then sends the opposite of y. It is clear that the process obtained by putting
P and Q in parallel may reduce to a process which sends −2 on the channel
h. This is expressed in the logic language by saying that P has the property
A m h ! − 2 true, where

A = ∀yInt.ā(k′). k′ & opp : k′ ? (y). k′ ! − y. true.
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4 Session Embedding in Programming Paradigms

In the previous sections sessions have been considered in the context of the π-
calculus. In this section instead we will briefly overview how sessions can be
incorporated into two mainstream programming paradigms, i.e. the functional
and the object-oriented ones. In this way one can achieve powerful type systems
which are suited to programming practice, while retaining the benefit of a sound
theoretical foundation.

4.1 Functional Paradigm

Vasconcelos et al. [VGR06,Vas09b] transfer the concept of session and session
type to a multi-threaded functional language with side-effecting input/output
operations. This shows that static checking of session types can be fruitfully
added to a language such as Concurrent ML [Rep99] or Concurrent Haskell
[JGF96]. For example a functional version of the process (6) would be:

a h = let x = receive h in
if · · · then select success on h case h of { deposit ⇒ · · ·

withdraw ⇒ · · · }
else select failure on h

Characteristics of this embedding are:

– the operations on channels are independent terms rather than prefixes of
processes,

– the communication is asynchronous,
– typing is enhanced by subtyping, which also allows anticipation of outputs

with respect to inputs.

In the recent paper [GV10] Gay and Vasconcelos simplify and extend previous
work by giving an operational semantics with buffered channels and by proving
that the session type of a channel gives an upper bound on the necessary size of
the buffer. A novel form of subtyping between standard and linear function types
reduces the burden of linear typing on the programmer, by allowing standard
function types to be inferred by default and converted to linear types if necessary.

4.2 Object-Oriented Paradigm

Moose. Moose (Multi-threaded Object-Oriented calculus with Sessions) is a
multi-threaded object-oriented calculus augmented with session primitives, which
supports session names as parameters of methods, spawning, iterative sessions
and delegation (see [DCDMY09] and the references there). Progress is enhanced
by spawning a new thread when a session channel is received: in this way self-
delegation never happens. Choice is made on the basis of the class of the object
being sent/received instead of using labels. Through bounded polymorphism the
class of a received object may affect the class of the objects which will be sent.
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SAM. The design of the SAM (Sessions Amalgamated with Methods) calculus
originates from the comparison between sessions and methods in [CCDC+09].
From this comparison a new notion of session is derived, which subsumes the
notion of method. In SAM classes have fields and sessions, session bodies are se-
lected on the ground of object classes, and channels are created only at run time
when sessions are called. Invocation takes place on an object, say a customer
asking to withdraw money from a particular ATM machine, and execution of
the corresponding session takes place immediately and concurrently with the re-
questing thread. The body is defined in the class of the receiving object, namely
in the class implementing the ATM of our example, and any number of commu-
nications interleaved with computations is possible.

For example the ATM class might contain the declaration of a session:

void ?String . . . atmserver
{String x := receive;
. . .
}

where void is the return type of the session, ?String . . . is the session type shown
in example (4), atmserver is the session name and the code between brackets is
the session body - in this case a translation of the process (6). A User can then
call this session on an ATM object by:

new ATM . atmserver {send (identifier);
. . .
}

where the code between brackets is in this case a translation of the process (5).
Notably there are no channels in the source code, and only polarised channels
will be generated at run time.

Delegation is limited since it does not support an initial and a final dialogue
before and after the delegation itself. Expressiveness of typing in SAM has been
enhanced with union types [BCDC+08] and generics [CCDC+09].

Session Object Calculus. Mostrous and Yoshida propose in [MY08] an extension
of Abadi and Cardelli imperative object calculus (see [AC96]) with sessions,
naturally integrating session based choices with method invocations. The main
features of this typed calculus are:

– objects can be spawned, updated and cloned,
– communication is asynchronous,
– subtyping enjoys the minimal subtyping property.

Modular Session Types as Dynamic Interfaces. In the object-oriented calculus of
[VGR+09] the availability of methods depends on object states: object interfaces
are dynamic. Each class has a session type which provides a global specification of
the availability of methods at each state. The typing of a method specifies pre- and
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post-conditions for its object states and static typing guarantees that methods
are only called when they are available. A key feature is that the state of an object
may depend on the result of a method whose return type is an enumeration.
Inheritance is included; a subtyping relation on session types characterises the
relationship between method availability in a subclass and in its superclass.

Building on [VGR+09], Gay et al. show in [GVR+10] that a session can be
modularised by dividing it into distinct methods that can be called separately.
A key idea is to allow a channel to be stored in a field of an object. Several
methods can operate on the same channel, thus allowing to effectively encapsu-
late channels into objects, while retaining the usual object-oriented development
practice.

5 Implementations

Naturally implementations of sessions and session types require their embedding
in the used languages, so that it is not surprising that implementations have been
done using functional and object-oriented languages, even if to the time among
the works surveyed in the previous section just [GVR+10] (see the last paragraph
of Section 4.2) is implemented by Bica (see the last paragraph of Section 5.2).

On the contrary it is worthwhile to notice the interplay between the the-
ory sketched in Sections 2 and 3 and the actual implementations of sessions
and session types mentioned below. For example the Haskell implementation by
Sackman and Eisenbach (see Section 5.1) has first realised the action permuta-
tion studied then by Mostrous, Yoshida and Honda (see the last paragraph of
Section 3.2). Multiparty sessions were first implemented in Scribble (see Section
5.2) and then formalised by Honda, Yoshida, and Carbone (see Section 3.1).

5.1 Functional Languages

The first implementation of sessions and session types was done by Neubauer
and Thiemann [NT04] into Haskell. The core of this and of the following im-
plementations into Haskell is the definition of a session monad. Type classes
with functional dependencies model the progression of the current state of the
channel. Functions with polymorphic parameters model client and server side of
a communication with one specification.

Sackman and Eisenbach give in [SE08] an implementation of sessions as a
standard Haskell library. This implementation presents a monadic API to the
programmer. In particular the SMonad type class is a type indexed monad: it
allows to represent a computation from a state to another one which additionally
produces a value, where the two states can have different types. Since session
types are encoded into Haskell types, no preprocessor, external type checker or
modification to the Glasgow Haskell compiler are required.

At the address http://www.agusa.i.is.nagoya-u.ac.jp/person/sydney/
full-sessions.html one can find a tool providing session type inference in
Haskell using Haskell type-level programming.
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Bhargavan et al. describe in [BCD+09] a compiler from high-level multiparty
session descriptions to custom cryptographic protocols coded as ML modules. In
the generated code each participant has strong security guarantees for all her/his
messages against any adversary that may control both the network and some
participants to the session.

5.2 Object-Oriented Languages

The language Sing# [FAH+06] is a variant of C# which combines session types
with ownership types [CNP01], supports message-based communication via a
designed heap area (shared memory), and allows interfaces between OS-modules
to be described as message passing conversations.

SJ [HYH08] is an extension of Java with syntax for session types and struc-
tured communication operations. The main features of SJ are asynchronous mes-
sage passing, delegation, session subtyping, interleaving, class downloading, and
failure handling. The compilation-runtime framework of SJ maps session abstrac-
tion onto underlying transports, and guarantees communication safety through
static and dynamic session type checking. A User coded into SJ could be:

s.request( ); s.send(identifier);
s.inbranch( ) {case success: if (· · · ){s.outbranch(deposit); . . .}

else {s.outbranch(withdraw); . . .}
}
{case failure: }

Scribble (http://sourceforge.net/projects/pi4scribble/) is a language
for describing global (choreography) and local (service end-point) behaviour.
Extensible tools are provided, both as stand alone applications and as Eclipse
plugins, to edit the language, to perform validation and to export specifications
to other formalisms.

Bica (http://gloss.di.fc.ul.pt/bica/) implements the type system of
[GVR+10]. This implementation comprises an extension to the Java 5 compiler
that checks conventional Java source code against session type specifications for
classes (included in Java annotations). The extension touches the type checker
only: if a program satisfies the more stringent type system of [GVR+10], then
code is generated as usual. Bica is implemented with Polyglot.

6 Related Concepts and Formalisms

The present section quickly surveys on formalisms which look to be closely re-
lated to sessions and session types, and it contains some pointers to the literature.

6.1 Generic Process Types

Igarashi’s and Kobayashi’s generic type system (GTS: see [IK04]) is a power-
ful framework from which one can obtain as instances a variety of type sys-
tems for the π-calculus guaranteeing strong properties like deadlock and race-
freedom. Not surprisingly also systems of session types can be formalised into
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GTS [Kob07,GGR08] although via non trivial translations. However, as observed
by Gay et al. in [GGR08], this does not invalidate the usefulness of session types
mainly because:

1. session types are valuable for program design,
2. session types have been developed for calculi/languages different from π-

calculus,
3. proofs of type soundness for session types are fairly straightforward,
4. type checking algorithms for session types cannot be easily obtained via

translation, since GTS does not yield an algorithm automatically.

6.2 Contracts

Contracts are behavioural descriptions of Web services [MB03]. In [CGP09]
Castagna et al. formalise contracts by means of a sublanguage of CCS without τ
(see [DH87]), namely with both external and internal choice, but not including
the parallel operator. For example a contract for the ATM process (6) would be:

Login.( Success. (Deposit.Amount.Balance.0 +
Withdraw.Amount.(Dispense. · · · ⊕ Overdraft. · · · ))

⊕ Failure.0)

Names and co-names model the input and output actions, respectively; the ex-
ternal choice + is a selection by the ATM counterpart, while the internal choice
⊕ represents decisions by the ATM itself.

The main difference between contracts and session types is that contracts
record the overall behaviour of a process, while session types project this be-
haviour onto the private channels that a process uses.

A prominent feature of the theory of contracts is the subcontract relation: if
σ is a subcontract of τ , written σ � τ , then any client which is satisfied with
a service described by σ, will comply with a service described by τ , since the
latter possibly includes more capabilities than those described in σ.

In [LP08] Laneve and Padovani give two encodings, from contracts to session
types and from session types to contracts8. It is also shown that, if σ � τ , then
the translation of σ is a subtype of the translation of τ in the sense of [GH05].

As remarked in [BCdL10], however, when allowing session delegation, the
direct formalisation of the idea that a subcontract can be the description of
some “shorter interaction” (as it is in [CGP09]), leads to the collapse of the
subtyping relation; this can be avoided at the price of considering subtyping and
subcontract as different notions.

The distance between contracts and session types has been narrowed in
[CP09] by defining a theory of contracts with explicit channels, so that dele-
gation becomes expressible.

Padovani in [Pad09] presents session types roughly speaking as projections
of contracts. The main contributions of this work are:
8 These encodings are however far more complex than what the last example seems

to suggest.
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– session types are generalised to processes similar to value-passing CCS,
– session types can be composed by a parallel composition operator (as con-

versation types, see Section 6.3),
– participants can use channels for communicating after delegating them.

A last remark is that there is a clear similarity between global types and
session types on one side and choreography and contracts (as defined in [BZ07])
on the other side. We think that such a relation should be further investigated
in order to gain a deeper view of both formalisms.

6.3 Conversation Calculus

The conversation calculus (see [CV09] and the references there) organizes be-
haviour around places of conversation, which slightly resemble Boxed Ambients
[BCC04]. The conversation types record the overall behaviour of processes and
assure progress, while accounting for dynamical join/leave of a possibly unan-
ticipated number of participants.

An example of [CV09] showing how the conversation calculus takes advantage
of localities is the following composition of two conversation contexts, named
Buyer and Seller :

Buyer J [ new Seller · startBuy ⇐ buy!prod. price?(v) ] |
Seller J [ PriceDB | def startBuy ⇒ buy?(prod). askPrice↑!prod.

readVal↑?(v). price!v ]

The code new Seller · startBuy ⇐ calls the service startBuy located at
Seller. This system reduces to

(ν c)( Buyer J [c J [ buy!prod. price?(v) ] ] |
Seller J [ PriceDB | c J [buy?(prod). askPrice↑!prod.

readVal↑?(v). price!v ] ] )

where c is the fresh name of the new created conversation context. The code in
the Buyer side of c sends a product and receives a price, both in the current
conversation c. The code in the Seller side of c first receives a product in the
conversation c, then it consults the database PriceDB by means of the messages
superscripted by ↑ which are targeted to the parent conversation (Seller), and
finally it sends a price in the conversation c.

6.4 Calculi for Web Services

The work on this subject is documented by a large and rapidly growing body of
literature, which cannot be accounted for shortly in the present survey. Therefore
we just mention three calculi that look more closely related to sessions and
session types: the Service Centred Calculus (SCC) [BBC+06], the Calculus of
Sessions and Pipelines (CaSPiS) [BBDNL08], and the Calculus for Orchestration
of Web Services (COWS) [LPT07]. Common features of these calculi are:
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– a clear distinction between users and services,
– that services are permanent,
– that sessions can only be nested,
– the presence of operators for explicit closure of sessions,
– that values can be communicated from an inner session to an outer one

(pipeline).

For instance, the SCC process succ ⇒ (x)x + 1 models a service that, re-
ceived an integer, gives its successor. A client for this service will be written
succ {(y)(z) return z} ⇐ 5: after the invocation both x and y are bound to the
argument 5, the client waits for a value from the server and the received value
(in this case 6) is substituted for z and hence returned as the result of the service
invocation.

7 Conclusions

Session types allow the framing of newly emerged issues, in the world of com-
munication centred programming and web services, into the mainstream of type
theories and systems, familiar from the functional and object-oriented languages
theory and practice. As it is inherent to such approach, they are based on abstrac-
tions which just approximate the desired goal of detecting and certifying that
certain desirable properties are satisfied by given pieces of code or system speci-
fications. This has however the advantage of being a well-understood technique,
that can be implemented efficiently and, by the way, embodied into compilers or
software development tools assisting programmers and system designers. On the
other hand this should be contrasted with the modelling of processes into pro-
cess algebras, where powerful but unfeasible concepts of equivalence are used to
abstract from implementation details and to distil a precise notion of behaviour.

We think that, as it happens in other fields, it is a matter of balance between
expressivity and feasibility, which can be reached only via a deeper understanding
of the involved concepts and of their intrinsic complexity. This seems to be the
reason why session types look like processes, or why processes - possibly involving
few computational combinators - are often thought of as specifications, rather
than as concrete implementations. Because of these reasons we think that the
work of comparing session types and related systems with other process-based
formalisms is worthy and might be fruitful to step to a new generation of calculi
and reasoning tools apt to the emerging challenges of the world-wide computing.
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