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Abstract—We analyze a peer-assisted Video-on-Demand sys-
tem in which users contribute their upload bandwidth to the
redistribution of a video that they are downloading or that they
have cached locally. Our target is to characterize the additional
bandwidth that servers must supply to immediately satisfy all
requests to watch a given video. We develop an approximate
fluid model to compute the required server bandwidth in the
sequential delivery case. Our approach is able to capture sev-
eral stochastic effects related to peer churn, upload bandwidth
heterogeneity, non-stationary traffic conditions, which have not
been documented or analyzed before. We provide an analytical
methodology to design efficient peer-assisted VoD systems and
optimal resource allocation strategies.

I. INTRODUCTION

In this paper, we focus on peer-assisted Video-on-Demand
(VoD) systems, in which users can browse a catalog of
available videos and asynchronously issue requests to watch a
given content. In peer-assisted VoD systems, users interested to
a specific video can retrieve it from servers (CDN modality),
from peers downloading/watching it, and from users storing
a copy of it in their computer/Internet TV memory or in
dedicated set-top-boxes remotely controllable by the network
operator [1].

Our main contribution is a stochastic fluid framework that
allows to approximately estimate the additional bandwidth
that servers must provide to satisfy all requests to watch
a given video. A stochastic fluid approach to analyze peer-
assisted video distribution has been proposed in [2] in the
context of live streaming, in which (heterogeneous) peers
download and playback content synchronously. Here we apply
the stochastic fluid approach to VoD systems, whose dynamics
are quite different from live streaming, since users can watch
the video asynchronously. A mathematical formulation of the
server bandwidth needed under sequential delivery appeared
in [3], in which authors resort to a Monte Carlo approach
to get basic insights into the system behavior (like surplus
and deficit modes). The sequential delivery scheme has been
considered also in [4], where authors explore by simulation the
effectiveness of different replication strategies to minimize the
server load in the slightly surplus mode, as well as distributed
replacement algorithms to achieve it. Differently from previous
work, our methodology can account for several stochastic
effects related to upload bandwidth heterogeneity and non-
stationary traffic conditions, which have not been analyzed
before, providing a useful tool for the analysis and design of
VoD systems.

The analytical approach described in this paper comple-
ments the analysis presented in a companion paper [5] in
which we obtain rigorous bounds for the sequential delivery

scheme (under stationary traffic conditions) and asymptotic
results as the number of users increases. With respect to [5],
we extend the analysis to non-stationary traffic conditions,
with a different goal in mind, i.e., to provide a performance
evaluation tool that can be readily used for system design and
optimization.

We emphasize that in our work we do not consider is-
sues related to optimal replication strategies of heterogeneous
contents (in size and popularity) or optimal peer resource
allocation (in terms of storage and upload bandwidth) in the
presence of multiple videos. This because we focus on the
bandwidth requested from the servers to distribute a given
video, assuming that the peer resources allocated to it (i.e.,
number of copies available in the system and the amount of
upload bandwidth devoted to the considered video) are given.
Although we focus on a single video, our analysis can be
combined with optimal resource and replication strategies for
the case of multiple videos.

II. MODEL

A. System assumptions

Users run applications that allow them to browse an online
catalog of videos. When a user selects a video, we assume
that the request is immediately satisfied and the selected video
can be watched uninterruptedly till the end, i.e., the system is
able to steadily provide to the user a data flow greater than or
equal to the video playback rate. Users contribute their upload
bandwidth to the video distribution, thus they can retrieve part
of the video (or even the entire video) from other peers, saving
servers resources.

We focus on a given video of duration Tv seconds and size
L bytes, which is played back by the users’ applications at rate
dv = L/Tv bytes/s. Clearly, to guarantee continuous playback
each user must at least receive video chunks sequentially at
rate dv . As a widely adopted strategy to mitigate bandwidth
fluctuations, applications pre-fetch and buffer video chunks
before playback. In our model, we assume that the system
provides to each user a fixed download rate d ≥ dv (we assume
unlimited download bandwidth at each user). Notice that the
download rate d can be chosen by the system. We will show
that in some cases, unexpectedly, the optimal value of d (i.e.,
the one that minimizes the average bandwidth requested from
the servers) is actually larger than dv .

The amount of upload bandwidth with which peers con-
tribute to the redistribution of the video that they are down-
loading may or may not be under the control of the system. In
our analysis, we assume that the upload bandwidth available at
a peer is a random variable with given distribution. The amount

The 31st Annual IEEE International Conference on Computer Communications: Mini-Conference

978-1-4673-0775-8/12/$31.00 ©2012 IEEE 3001



of upload bandwidth with which users contribute at a given
time to the redistribution of the considered video is modeled
by a random variable U with cumulative distribution function
FU (w), mean U and variance σ2

U . The random variables
denoting the instantaneous upload bandwidths of the users are
assumed to be i.i.d. (identically and independently distributed).

B. Peers dynamics

We assume that the arrival process of requests for the
considered video follows a time-varying Poisson process of
intensity λ(t); so doing our model is able to capture non
stationary dynamics induced by either daily traffic fluctuations
or rapidly-changing video popularity.

The dynamics of peer participation in the distribution of
a given video must account for the fact that activity periods
of the users are highly heterogeneous, as observed in several
measurement studies [3]: some users stop watching the video
after a very short time since the beginning; most users who
decide to watch the video shut down the computer/Internet-
TV towards the end of it; some of them keep the application
running for prolonged time after the end of the video; those
running set-top-boxes can be considered to be always active
and serving other peers (until they stop contributing to the
distribution of the considered video). We account for general
user behavior assuming that the activity period of a user
(i.e., the interval during which a user contributes its upload
bandwidth to the system, starting from the instant at which the
video has been requested) is described by an arbitrary random
variable T with finite mean T and complementary cumulative
distribution function GT (x). The activity periods of the users
are assumed to be i.i.d.

It follows from our assumptions that the number of active
users N(t) at time t is distributed as the number of customers
in an M/G/∞ queue with time-varying arrival rate, hence it
follows a Poisson distribution with time-varying mean N(t)
given by

N(t) =

∫ ∞

0

λ(t− x)GT (x) dx (1)

In our analysis we need to distinguish two classes of active
users: those who are still downloading the video, and those
who have completed the download (referred to as seeds in the
following). Let τd = L/d be the time needed to download
the whole video, and T d =

∫ τd

0 GT (x)dx the average time
spent by peers downloading the video. The number of down-
loading peers at time t, denoted by Nd(t), follows a Poisson
distribution of mean Nd(t) given by

Nd(t) =

∫ τd

0

λ(t− x)GT (x) dx (2)

Then standard properties of Poisson processes allow to say that
the number of seeds at time t, denoted by Nseed(t), follows a
Poisson distribution of mean N seed(t) = N(t)−Nd(t).

We define as instantaneous system load γ(t) the quantity

γ(t) =
d ·Nd(t)

U ·N(t)
(3)

which is the ratio between the average data rate requested
at time t by downloading peers and the average upload
rate provided by all active users at time t. Borrowing the
terminology adopted in previous work [6], [4] we say that

at time t the system operates in deficit mode if γ(t) > 1, in
balanced mode if γ(t) = 1, and in surplus mode if γ(t) < 1.

We also introduce the per-user system load γp = d·Td

U·T
,

which is the ratio between the average amount of data that are
downloaded by a peer, and the average amount of data that a
peer is able to offer to other peers. Note that by construction
γp is equal to the (constant) instantaneous system load in the
case of a stationary user arrival process. In ergodic systems,
γp can be regarded as the time average of γ(t).

C. Performance metrics

A fundamental goal of a VoD system is to minimize the
bandwidth required from the servers. Let S(t) be the random
variable denoting the additional bandwidth that the servers
must supply at time t to satisfy all active downloads of the
considered video. We denote by S(t) and σ2

S(t) the mean and
variance of S(t), respectively.

Since in practice there are multiple videos to be served
concurrently by the system, statistical multiplexing arguments
suggest that a good design goal is to minimize the mean
value S(t) of the server bandwidth required by a single video.
Therefore, this will be the main metric that we will look at in
our performance analysis.

III. ANALYSIS

We consider the simple case in which users download the
video chunks sequentially. This scheme is simple to imple-
ment, as it does not require complex chunk/peer selection
mechanisms such as those needed in BitTorrent-like chunk
swarming schemes. More importantly, the sequential delivery
scheme is analytically tractable and provides an upper bound
to the server bandwidth requested by non-sequential schemes.

Let Sd(t) be the aggregate bandwidth requested by the

downloading users at time t, and Sseed(t) =
∑Nseed(t)

i=1 Ui be
the aggregate upload rate offered by the seeds at time t. Then
the bandwidth requested from the servers at time t is given by

S(t) = sup{0, Sd(t)− Sseed(t)}. (4)

Focusing on Sd(t), we first condition this quantity on the
number of downloading users k, defining

Sd(k) , (Sd(t) | Nd(t) = k)

After characterizing Sd(k), the evaluation of S(t) is easy, since
the distribution of Nd(t) is known (a Poisson distribution of
mean N(t)), while Sseed(t) is a compound Poisson random
variable which does not depend on k.

To evaluate Sd(k) under sequential download, we start
observing that, if all peers download the video sequentially
at common rate d, a peer can only redistribute video pieces to
peers arrived later on in time.
Proposition 1: Quantity Sd(k) satisfies the following re-

cursive equation:

Sd(k) =

{

d k = 1
d+max{0, Sd(k − 1)− Uk} k > 1

(5)

Proof: The case k = 1 is obvious. The recursive expres-
sion for k ≥ 2 can be easily explained if we look at the users
in reverse order with respect to the arrival time into the system,
i.e., user k arrives before user k−1. Suppose that we know the
server bandwidth Sd(k − 1) needed in the presence of k − 1
users. Then user k can reduce this rate by its upload bandwidth
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Uk, possibly bringing the server rate to zero. Instead, user k
cannot be helped by any other peers, hence it requires fresh
new content from the server at rate d.

The expression in (5) provides the key to the analytical
approximation developed in the next section.

Alternate formulations of quantity Sd(k) exist (see [6], [4],
[5]). Here, we just mention that in our companion paper [5] we
find a connection between the stochastic process described by
(5) and a random walk with increments d−U , which allows to
obtain analytical upper bounds to the server bandwidth and to
characterize its asymptotic behavior for large number of users.

A. Gaussian approximation

In the sequential delivery case, we can characterize the
distribution of the server bandwidth using a second-order
approximation. The idea is to approximate the distribution
of the quantity Sd(k − 1)− Uk in (5) (for each k ≥ 2) by
a normal distribution matching the first two moments of this
quantity. We can then apply standard formulas of the truncated
normal distribution to derive the first two moments of Sd(k) as
a function of the first two moments of Sd(k−1). This provides
a recursive technique to compute the first two moments of
Sd(k) for any k, starting from the exact values known for
k = 1. A similar approximation is subsequently applied to
take into account the effect of the seeds.

Let N (w) be the probability density function of the standard
normal distribution (having mean 0 and variance 1), and Q(w)
its complementary cumulative distribution function.

Let y be a random variable distributed according to a normal
distribution N(µ, σ) of mean µ and standard deviation σ. Then
it can be proved that the first moment of the random variable
y′ = max{0, y} has the following expression:

E[y′] = σN
(

−
µ

σ

)

+ µQ
(

−
µ

σ

)

(6)

while the second moment is given by

E[y′2] = σµN
(

−
µ

σ

)

+ (σ2 + µ2)Q
(

−
µ

σ

)

. (7)

Let Sd(k) and σ2
Sd
(k) be the mean and variance of

Sd(k). Our recursive procedure to approximately compute

Sd(k) and σ2
Sd
(k) for all k starts from the initial known

values Sd(1) = d and σ2
Sd
(1) = 0 (see (5)). Now for a

given k ≥ 2 we approximate Sd(k − 1)− Uk by a normal
random variable y of mean µ = Sd(k − 1)− U and vari-
ance σ2 = σ2

Sd
(k − 1) + σ2

U . Defining the random variable

y′ , max{0, y} ≃ max{0, Sd(k − 1)− U}, from (5) we ob-
tain:

Sd(k) ≃ d+ E[y′] (8)

σ2
Sd
(k) ≃ E[y′2]− E[y′]2. (9)

Finally, applying (6) and (7) we can compute the first and
second moment of variable y′ in (8,9). This provides the
recursion to compute Sd(k) and σ2

Sd
(k) for all k.

To account for the effect of the seeds (if any), we apply
once more the normal approximation, as follows. Let S(t, k)
be the server bandwidth necessary at time t, assuming that
there are k downloading users and Nseed(t) seeds. Moreover,
let S(t, k) and σ2

S(k, t) be the mean and variance of S(t, k).
We observe that Sseed(t) is a compound Poisson random

variable, whose moments can be computed exactly in close-

form. In particular, the mean of Sseed(t) is equal to N seed(t)U ,

whereas its variance is equal to N seed(t)(σ
2
U + U

2
). We

approximate S(t, k) − Sseed(t) by a normal distribution y of
mean µ = S(t, k)−N seed(t)U and variance σ2 = σ2

S(k, t) +

N seed(t)(σ
2
U + U

2
), and apply again (6) and (7) to compute

the first and second moment of y′ = max{0, y} ≃ S(t, k).
Finally, the mean server bandwidth S(t) (and similarly its

variance) can be obtained deconditioning with respect to k:

S(t) =
∑

k≥1

S(t, k)P(Nd(t) = k) (10)

The entire computational procedure has numerical complexity
Θ(kmax), where kmax is a suitable value such that P(Nd(t) >
kmax) < ǫ is negligible (in our results we set ǫ = 10−6).

IV. PERFORMANCE UNDER STATIONARY CONDITIONS

In this section we report a selection of the most interesting
results that we have obtained by our analysis under stationary
user arrival process. Since in this case all averages do not
depend on t, we will omit for simplicity the indication of
time. We normalize to 1 the video playback rate dv, which
thus serves as unit for all other bandwidth figures. We assume
that users stay in the system for a time at least equal to the
watching time, hence T ≥ Tv. Unless otherwise specified, we
assume that users’ upload bandwidth U is exponentially dis-
tributed. The results obtained by our analytical approximation
in Section III-A are compared to those obtained by an event-
driven ad-hoc simulator, which is used also to evaluate the
simple lower bound:

S(t) ≥ max{0, dNd(t)− U N(t)} (11)

which can be derived assuming that, at any time, the upload
bandwidth of the users can be entirely exploited by the system.
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Fig. 1. Comparison of average server bandwidth in the case d = dv , as
function of the number of users N , for different values of U , in the absence
of seeds.

A. Impact of the number of watching users and seeds

Figure 1 reports the average server bandwidth S as function
of the average number of users N , in the case d = dv,
T = Tv. We consider three different values of average upload
bandwidth U = 0.9, 1.0, 1.2, corresponding to systems
operating in deficit, balanced, and surplus mode, respectively
(here γ = 1/U).

Besides noticing the accuracy of the approximate analysis, it
is interesting to see that the average server bandwidth saturates
for U = 1.2 (surplus mode) to a value about 3.5 times
larger than the corresponding lower bound, which tends to
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in the presence of N seed = 0.1 ·Nd seeds.
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Fig. 3. Average server bandwidth as function of the download rate d, for
different values of U , with N = 100, T = Tv .

dv = 1. As expected, the average server bandwidth diverges
under the deficit and balanced modes. Moreover, in the deficit
mode, the sequential system requires asymptotically the same
bandwidth as the completely non-sequential system (i.e., the
lower bound).

In Figure 2 we compare the results obtained in the same
system considered above, but assuming that users remain
active after the end of the watching time for an exponen-
tially distributed amount of time of mean equal to 10% of
the watching time, generating an average number of seeds
N seed = 0.1 · Nd. Now the systems with U = 1.0 and
U = 1.2 operate in surplus mode, whereas the system with
U = 0.9 operates very close to the balanced mode (here
γ = 1/(1.1 · U)). We observe that, in the presence of seeds,
the average server bandwidth requested by systems operating
in surplus mode reaches a maximum, after which it goes
to zero as the number of users increases. Results such as
those reported in Figures 1 and 2 can be useful in system
dimensioning, as they allow to estimate, in the surplus mode,
the worst-case server bandwidth which is needed when the
number of downloading users Nd is not known.

B. Impact of the download rate

Even if users tend to leave the system at the end of the
watching time, it is still possible to benefit from the positive
effect created by the seeds, who absorb part of the fluctuations
in the bandwidth requested by downloading peers, shielding
the servers. The trick to ‘artificially’ create seeds is to make
the users download the video at rate d > dv, so that they
become seeds for other peers before the end of the watching
time. Intuitively, however, d should not be set too large to
offset the gain achievable by the seeds. Figure 3 illustrates the
performance of this strategy in the case of N = 100 users,
T = Tv, showing the average server bandwidth as function

of d. We observe that for all the considered values of U , the
average server bandwidth achieves a minimum for a value of
d slightly larger than dv . The impact is particularly striking in
the surplus mode (U > 1), in which setting d > dv brings the
server bandwidth close to zero.

C. Impact of upload bandwidth heterogeneity

Figure 4 compares the average server bandwidth S as func-
tion of the variation coefficient of the peer upload bandwidth
(keeping fixed the mean), considering N = 100, d = dv,
T = Tv. The average upload bandwidth is equal to either
U = 0.9 (deficit mode) or U = 1.1 (surplus mode). Simulation
results are supplemented by 95%-level confidence intervals.
The upload bandwidth distribution used in the simulations
depends on the variation coefficient: for values larger than
one, we adopt a hyper-exponential distribution with balanced
means; for values smaller than one, we employ an exponential
distribution added to a constant.

We observe that the average server bandwidth increases
significantly as the variability of upload bandwidth increases,
while our approximation tends to provide a conservative
prediction.
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V. PERFORMANCE OF NON-STATIONARY SYSTEMS

In this section we show how our analytical framework can
be applied to study the performance of time-varying systems in
which the arrival rate of requests for a given content changes
significantly over time. In particular, we will see that the
behavior of a non-stationary system can dramatically differ
from the one of a stationary system in which the arrival rate of
requests is constant, due to a misalignment problem between
the temporal evolution of the number of downloaders and the
temporal evolution of the number of seeds.

A. The downloaders/seeds misalignment problem

We consider a reference scenario in which the arrival rate
of requests for a given video follows a daily pattern which is
modeled for simplicity by a sine function of period equal to
24 hours, between a minimum of λ = 0.1 and a maximum of
λ = 1, represented by the thick solid line in the top plot of
Fig. 5.

We first analyze a software-based system in which users
contribute their upload bandwidth during the watching time
of the video, plus a random additional time in which the
application is kept running. We assume that the video duration
is Tv = 2 h, and the additional activity time after the end of the
video is exponentially distributed with mean 1 h. We normalize
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dv = d = 1 and assume that the upload bandwidth of users
is exponentially distributed with mean U = 0.7. The per-user
load is γp = 2/(0.7 · 3) ≈ 0.95. The top plot of Fig. 5 reports
the temporal evolution of both the number of downloaders and
the number of seeds. Since peers become seeds only after the
end of the watching time, the dynamics of downloaders and
seeds are misaligned, with a temporal shift about Tv = 2 h.
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Fig. 5. Temporal evolution of video request rate (top plot, left y axes), number
of downloaders/seeds (top plot, right y axes), and average server bandwidth
S(t) (bottom plot), in the software-based system.

The effect of this misalignment on the required average
server bandwidth is depicted on the bottom plot of Fig. 5,
by the solid line labeled ‘non-stationary’, which exhibits a
peak preceding the point at which the video request rate is
maximum. Fig. 5 reports also a curve labeled ‘stationary’,
representing the server bandwidth that would be necessary if
the content request rate were constant and equal to λ = 1 (the
maximum request rate). We observe that the performance of
the non-stationary system is worse than that of the stationary
system, both in terms of peak server bandwidth and average
server load. This occurs even if the content request rate is
always larger in the stationary system.

If we increase the activity time after the end of the video,
while keeping the same per-user system load γp (either by
reducing the upload bandwidth of the users, or equivalently
by increasing the download rate of the video, i.e., its resolu-
tion/quality), the negative effect of the misalignment problem
become worse. As an extreme case, we consider a P2P-VoD
system relying on set-top-boxes which are always active and
serving the last watched video. To mimic the behavior of set-
top-boxes with our model of peer dynamics, we assume that
the activity time after watching a movie is much longer than
before (in the order of a day), representing a set-top-box which
remains always on before the user downloads the next video.
In particular, we consider an additional activity time of 22 h,
which added to the watching time of a movie leads to T = 1
day. To obtain the same per-user load of the software-based

system, we set U = 0.7 · 3/24.
Fig. 6 reports analytical results for this scenario, analogous

to those in Figure 5. We have also reported on the bottom plot
of Fig. 6 a sample path obtained from simulation, to confirm
the analytical prediction. In this case the instantaneous system
load γ(t) is severely unbalanced across the day. During peak
hours, the bandwidth requested at servers grows very large,
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Fig. 6. Temporal evolution of video request rate (top plot, left y axes) number
of downloaders/seeds (top plot, right y axes), and average server bandwidth
S(t) (bottom plot), in the set-top-box system.

while for the rest of the day it is negligible. The problem is
that the upload capacity of the seeds, which are very numerous
and almost stable along the day (see top plot of Figure 6) is
totally wasted for a large fraction of the day. Notice that we
are not saying that set-top-boxes are not useful: increasing the
activity time of peers (up to the point of having always-on user
devices) is very beneficial to the system performance, since
the per-user load γp is reduced. However, one must be careful
that the instantaneous system load γ(t) can vary significantly
around γp, and peak traffic demand cannot be absorbed well
by large populations of seeds (set-top-boxes) each devoting a
small amount of upload bandwidth to the video distribution.
Indeed, to minimize the bandwidth deficit at peak times, the
ratio U/d should not become too small. In [7] we show
how our model can be applied to design resource-allocation
strategies (under server capacity constraints) to address the
above misalignment problem.

VI. CONCLUSIONS

We have proposed a computationally-efficient methodology
to analytically estimate the server bandwidth requested in non-
stationary peer-assisted VoD systems. Our approach is highly
flexible, and can account for several important effects such
as peer upload bandwidth heterogeneity and churning. By
applying our performance evaluation methodology under vari-
ous parameters setting, we have discovered several interesting
properties of P2P-VoD systems.
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