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Abstract—We consider a peer-assisted Video-on-demand sys-issue requests to watch a given content, which are ideally
tem, in which video distribution is supported both by peers jmmediately satisfied by the system, with the optional suppo
caching the whole video and by peers concurrently downloading o, \yCR actions such as pause and jump forward/backward. It

it. We propose a stochastic fluid framework that allows to . _ . - : . X
characterize the additional bandwidth requested from the serves is important to distinguish VoD systems from live streaming

to satisfy all users watching a given video. We obtain analytical in which users join the distribution of a given TV channel
upper bounds to the server bandwidth needed in the case in at random points in time, but peers connected to the same

which users download the video content sequentially. We also channel watch the content almost synchronously.

present a methodology to obtain exact solutions for special cases ncci ot ; ;
of peer upload bandwidth distribution. Our bounds permit to Peer-assisted applications for VoD and live streaming are

tightly characterize the performance of peer-assisted VoD sysms  tyPically inspired by Bit-Torrent: the content is dividedto
as the number of users increases, for both sequential and non- chunks which are disseminated among peers (or retrieved fro

sequential delivery schemes. In particular, we rigorously prove servers) in a fully distributed (swarming) fashion basedtan
that the simple sequential scheme is asymptotically optimal both exchange of bitmaps. However, differently from traditibna

in the bandwidth surplus and in the bandwidth deficit mode, & ._ ; ; ; _
and that peer-assisted systems become totally self-sustaining inflle sharing, chunk and peer selection strategies for peer

the surplus mode as the number of users grows large. assisted video distribution must account for the fact that
users watch while downloading. In particular, to avoid frv
|. INTRODUCTION interruptions/degradations: i) a minimum average dowshloa

Video traffic over the Internet is growing at an impressiveate equal to the video playback rate must be guaranteed; ii)
rate, being responsible nowadays for the majority of data vén “almost in order” delivery of chunks is required.
ume flowing through networks. According to Cisco forecasts Several peer-assisted systems have already been deployed,
[1], the combination of all forms of video (live streamingattracting millions of users, such as PPLive, GridCast, PP-
video-on-demand and P2P file sharing) will exceed 90% of &fream, TVU, SopCast [4]. However, despite the wide pop-
global consumer Internet traffic by 2015, posing a tremeadoularity gained by existing applications, several fundamen
challenge to both content providers and network operatorstal questions remain unanswered about the design of video

Thanks to the proliferation of proxy servers and the adopti¢treaming systems and the potential benefits of the peer-
of efficient distributed caching solutions, traditionali¢nt- assisted approach.
server) Content Delivery Networks (CDNs) play a funda- In our work we consider peer-assisted VoD systems, fo-
mental role in the distribution of bandwidth-hungry cortgen cusing our analysis on a given video whose distribution
such as video, since they permit to “move” contents close i® supported both by concurrently downloading users and
the users, thus reducing the impact on the transport netw®k peers caching a copy of it. Our main contribution is
backbone, and improving the user-perceived performamge ( @ stochastic fluid framework that allows to derive general
reducing the latency). Increasing traffic volumes, howevatpper bounds to the bandwidth requested from the servers
require large investments to continuously upgrade the CDNsthe case of sequential chunk delivery, thus permitting to
infrastructure. Observe, indeed, that the aggregate ressu analytically bound the performance achievable by any chunk
required at the servers (bandwidth/storage/processimgy, distribution scheme. In particular, our bounds allow tdtig
the corresponding costs incurred by content providerde scaharacterize the behavior of peer-assisted VoD systemtseas t
linearly with the user demand and the data volume. number of users increases, proving in a rigorous way the self

For this reason, the P2P approach, originally adopted by fiustainability (e., the desirable operating point at which no
sharing applications, has become very attractive alsoifteos additional server bandwidth is needed) of systems opeyatin
distribution, as a viable solution to offload the servers and the bandwidth surplus mode.
dramatically reduce the bandwidth costs of video publisher We also show that the simple sequential delivery scheme is
[2], [3]. In peer-assisted solutions, there are still sesveasymptotically optimal both in the surplus and in the deficit
permanently storing the contents and supervising the videwde, under weak assumptions on the user behavior. For
distribution, but peers contribute their upload bandwitth the sequential scheme, we also propose a methodology to
the redistribution of downloaded pieces to other peers,imgak derive exact estimate of the bandwidth requested from the
the additional bandwidth requested from the servers pialgnt servers under the assumption that the peer upload bandwidth
very small and independent of the numbers of watching useis exponentially (or more generally phase-type) distebolut

In peer-assisted Video-on-Demand (MoD) systems, usersVe emphasize that our analysis is orthogonal to two on-
browse a catalog of available videos and asynchronougjging streams of theoretical research: the one targetitig op



mal replication strategies and push/pull schemes for contde easily extended to the case of an inhomogeneous Poisson
(re)placement [5], [6], [7], and the one dealing with preali process with time-varying intensity(¢). The impact of non-
issues related to chunk scheduling [8] and peer selectipn [Stationary traffic conditions on the system performance is
This will become clear later on in the paper. studied in our companion paper [10].

The paper is organized as follows. In Sect. Il we describe theAs soon as users issue their request to watch the considered
system model; in Sect. lll we first introduce the stochastiiclfl video, they start downloading it and assisting other peers.
framework used by our theoretical analysis; then we obtaille define asactivity period the duration of the interval
general bounds in Sect. 1lI-B and exact solutions for paliic during which a peer contributes its upload bandwidth to
cases in Sect. llI-C; in Sect. IV we give an overview of théhe distribution of the requested video. Activity periods o

related literature. We conclude the paper in Sect. V. the users are highly heterogeneous, as observed in several
measurement studies [3]: some users stop watching the video

Il. MODEL after a very short time since the beginning, because they

A. System assumptions realize they are no longer interested in it; most users who

We model a peer-assisted VoD system where tisars decide to watch the video shut down the computer/Internet-

applications that allow them to browse an online catalog ¢fY towards the end of it; some of them keep the application
videos. When a user selects a video, we assume that tHaning for prolonged time after the end of the video; those
request is immediately satisfied and the selected video dARNING set-top-boxes can be considered to be always active
be watched uninterruptedly till the enice., the system is able @nd serving other peers (while the set-top-box keeps a copy
to steadily provide to the user a data flow greater than 8f the considered video, contributing to its distributiolfye
equal to the video playback rate. Users contribute theiagpl dopt a fairly general model of peer churn (or set-top-box
bandwidth to the video distribution, thus they can retripaet P€havior), assuming that the activity period of each user is
of the video (or even the entire video) from other peers rgavidescribed by an arbitrary random varialifewith finite mean
Servers resources. T and cumulative distribution functloWT(a_:). The activity

We focus on a given video of siz& bytes. We assume Periods of the users are assumed to be i.i.d. _
that the video is downloaded by each user at constantdrate 't follows from our assumptions that the number of active
bytes/s, equal to the playback rate. kgt= L/d be the time usersN at a certain time instant is distributed as the number
needed to download the whole video. In general, the downloghcustomers in an M/GL queue, hence it follows a Poisson
rate of a peer could be adapted over time, and even dependifsifibution with meanN' = AT In our analysis we need
some peer’s characteristics (such as its upload bandwigyh) t© distinguish two classes of active users: those who are
assuming a constant download ratat each user we greatIySt'" downloadingthe video, and those who have completed
simplify the analysis, while obtaining a conservative jicidn e download (referred to aseedsin the following). The

with respect to the case in which the download rate can pEmber ofdownloadingpeers at a given time instaniy,

adapted over time maintaining an average value equdl to 0llows a Poisson distribution of meaiv, = ATy, where
o (1= Fr(x))dx is the average time spent download-

The amount of upload bandwidth with which peers co@d =~ Jo ) =A
tribute to the redistribution of the video that they are dewrind the video. Observe that in genef@} can be shorter than
loading, instead, may or may not be under the control of tfie due to peer churn (premature abandons).
system. In our analysis, we assume that the upload bandwidttf hen. standard properties of Poisson processes allow to say
available at a peer is a random variable with a given distribfhat the number obeedsat a given time,Nseeq follows a
tion. This way, we encompass both the realistic case of us&@isson distribution of mealseeq= N — Na = A(T' — T'q).

with heterogeneous Internet connectione.( ADSL, fiber, ~ We define as system load the quantity
LAN) and cross-traffic fluctuations, and the case in which the 2 Nad 1)
peer upload bandwidth allocated to the given video is tuned v U-N

by the system (such as in universal streaming architeqtur&gnich s the ratio between the average aggregate rate reques
More specifically, the amount of upload bandwidth withy, gownloading peers, and the average aggregate upload
which users contribute at a given time to the redistributionte provided by all active users. Borrowing the terminglog
of the considered video is modeled as a random varialgopted in previous work [2], [11] we saghat the system

U with cumulative distribution functionfy;(w) and mean qperates irdeficitmode ify> 1, and insurplusmode if y< 1.
U. The random variables denoting the instantaneous upload

bandwidths of the users are assumed to be i.i.d. (independen Performance metrics

and identically distributed). A fundamental goal of a VoD system is to minimize

. the bandwidth requested from the servers. To save server

B. Peers dynamics bandwidth, the system tries to exploit as much as possible
We assume that the arrival process of requests for th upload capacity of the peers, under the strict consrain

considered video follows a Poisson process of intensity of video distribution i,e., delay, minimum rate). Le$ be the

Assuming that at a given time the arrival process is Poissgndom variable denoting the additional bandwidth that the

is reasonable, since users behave independently of eaeh otkervers must supply at a given time to satisfy all active down

and their requests are immediately satisfied. Although i® tHoads of the considered video. L&k (w) be the cumulative

paper we consider a constant request rate, our analysis @@ribution of S. At last, we denote by the mean of5. Since

1In this paper we use the terms peer and user interchangeably. 2In this paper we do not consider the special case 1.



TABLE |

NOTATION the user into the system. We kobtain .
Symbol| Definition -
d user download rate Sa(k) 2 max{d, k d — Z Ui 2 kd~ Z Ui
U average user upload bandwidth _ =t =1
A arrival rate of new requests for the video and thusE[S,(k)] > k(d — U). Deconditioning with respect
Tq average time spent downloading the video (s) to k£ we obtainE[Sy] > Ny(d — U).
T average user activity period (s) At last, we observe that by construction
N average number of users . S — E[max{O, Sy — Sseed}] > max{O,E[Sd . Sseed} >
Ng average number alownloadingusers — . = =
Neeea | average number ceeds max{0, Ng(d — U) — Ngeed/ } = max{0,dN;—UN} (4)
Sa average bandwidth requested by downloading users which provides a universal lower bound ffor any chunk
Sseed | average bandwidth offered by seeds distribution scheme. The above lower bound is triviallyazer
S average bandwidth requested from the servers for v<1, whereas it is equal td Ny — U N for y>1.
5 system load ' =

B. Upper bounds

in practice there are multiple videos to be served conctlyren  An upper bound to the bandwidth requested from the servers
by the system, statistical multiplexing arguments suggestt can be obtained assuming that all peers must download the
a good design goal is to minimize the mean vali®f the video chunks sequentially. We observe that many implendente
servers bandwidth required by a single video. Thereforis, thapplications inspired by BitTorrent allow also non-sedisn
will be the main metric that we will look at in our performancechunk dissemination in a swarm-like fashion, although this
analysis. typically only enabled within a limited portion of the vidéo
We define a VoD system to beself-sustaining if meet the hard delay constraints of individual chunks. Alttua
limy—,o, S = 0. Notice that servers must necessarily providen almost in-order download is the only choice when the
some bandwidth when a new video is inserted in the systegibwnload rated is close to the video playback rate (and the
However, once the video has been replicated at peers, itsiart-up delay is small).
possible that no additional server bandwidth is needed fromBesides being analytically tractable (as we will see), the
the servers, since the swarm can sustain itself. In our aisalysequemia| download is also simple to implement in a peer-
we neglect transient effect, and look at the stationaryesyst assisted VoD system, as it does not require the complex
behavior. Table | summarizes the notation of our model. chunk/peer selection mechanisms which are necessary in
BitTorrent-like swarms. In any case, the main point is that
. ANALYSIS the server bandwidth required under sequential download is
A. Preliminaries and universal lower bound an upper bound to the bandwidth required by a more general

. . . . (non-sequential) download scheme.
Our goal is to characterize the random variabléenoting Below we show how to obtain analytical upper boundsito

the bandwidth requested from the servers at a given tin}ﬁ : . e
. & average of, in the case of sequential download, obtainin
We denote byS; the aggregate bandwidth requested by tnfpper bognds valid for any distri(l])ution scheme. 9

Nseed
We start looking at quantityS;(k) defined in (3). We

downloading users, and Bseeq= ), U, the aggregate up-
load bandwidth offered by the seeds. The bandwidth reqdes})eoserve that, if all peers download the video sequentidlly a
mmon rated, a peer can only redistribute video pieces to

from the servers is then given by the difference betwe
ers arrived later on in time.

the bandwidth requested by the downloading users and
bandwidth offered by seeds, provided that such differesce’l : . .
When there is only one downloading user, we trivially have

positive: g - : :
a B 4(1) = d. If there are two downloaders, the first arrived
S = max{0, Sq — Sseed- @ makes its entire upload bandwidth available to the second,
We observe thabseeqiS simple to characterize, sin@éseqis and we have
a random variable with a Poisson distribution. Thgegis a Sa(2) = d + max{0,d — Uy} = max{d,2d — Uy}

compound Poisson random variable whose moment generat\;vr}%;ered represents the external bandwidth necessary to sustain
funct|0n iS]E[etSseed] - eNsee((¢U(t)*1), WhereQSU(t) é E[etU] p y

is the moment generating function of the peer upload banth-e download of the first arrived peer amehx{0,d — U\ }

. o . . presents the bandwidth needed to sustain the download of
width U, which is known. In particular, the average $kediS o <ocond arrived peer.
Sseed= Nseed/. Notice also thatSseeqis independent of;.

The difficulty then lies in characterizing the random valéab exV\I/Qi(tart]héhﬁrTo:(;eb;Tgv?/i d(ig\,\(l)r;l?r?gesféor; lﬁlj S; tﬁgi\r/g(sji d(l:;?
Sq. To analyzeSy, we first condition it on the number of P P P

; . upload bandwidth of the firsti.e, a total upload rate of
downloading users, def'g'”g _ Us +max{U; —d,0}. Summing up the download rates needed
Sa(k) = (Sa | Na = k) ©) by the three peers, we obtain
I Focm;)singdour arL]t_tention tSa (k). vk\)/e ott))sgrvedthat an_eas)r’]Sd(fS):d—FmaX{O,d—U1}+maX{O,d—Ug—maX{Ul—d,O}}z
ower bound to this quantity can be obtained assuming t B . o B _
the upload bandwidth of each downloading user can be alwa@gr max{0,d —Ur}+max{0, min{2d = U, = Us, d = Us}}
fully utilized by the system, irrespective of the arrivahg of max{S4(2),3d — Uy — Uz} (5)



The last equation descends from the fact that # U; < For completeness, in Appendix A we report a proof of Lemma
2d — Uy — U thend — Uy > 0 and thusmax{0,d — U1} + 1 based on a Martingale approach.
max{0, min{2d — Uy — Us,d — Uy }} = max{0,d — Uy, 2d — Lundberg inequality can be generalized and adapted to our
Uy — Us}. context, to obtain an upper bound®S,; > w):
In general thek-th downloader (assuming downloaders to Theorem 1: Assume the following properties hold fér:
be numbered in order of arrival) can receive the content frodnU > 0, ii) E[e!V] is finite in a neighborhood of the origin,
every other downloader preceding it. However, if preceding) Fy(w) > 0 for everyw > 0. Fore € [(U — d)*,U),
peers are not able to fully support the download of thdefine A := d — U + ¢ (note thatmax{0,d — U} < A < d).
k-th downloader in addition to previous downloadse.( if Let 6* be the unique strictly positive solution of the equation
S ¥ U; — kd < 0) the missing bandwidth must be providedE[e?(*~V~4)] = 1. For anyw > 0, it holds
either by servers or by seeds. We obtain the following reeeirs P(S ~ | min {026_9*(“’—‘1)7 C3} w=>d
equation forSg(k): (Sa>w) < Cy 0<w<d,
d k=1 .
Salk) = { max{Sa(k — 1), kd— Y5105} k>1  whereCy 21— N, 0y £ =0 A Na(eNue" N yef" A
6 1) andCs 21— e Na — Ny e Na,
If we iterate back up taS;(1) we can obtain an explicit A detailed proof of Theorem 1 is reported in Appendix
expression forSy(k) in terms of the upload bandwidths ofB. Observe that, whenl < U, we can obtain an upper

peersU;, for i < k, and of the download raté, as: bound onP(S; > w) applying the Lundberg inequality to
P(S4(k) > w) for any k. Instead, whend > U, since

Sk —=d 0,d—Uy,2d — (Uy + Us), E[d — U;] > 0, we cannot apply Lundberg inequality directly

alk) +maX{ ’ ' (G +02) to P(S4(k) > w). Therefore we need to define an auxiliary

3d— (U +Us+Us),...,(k—1)d— Z,’f:_f Ui} sequence of random variables, tightly relatedSigk), on
j which Lundberg bound can be applied. Then we can derive
=d+ max {O’Z(d_U’i)} a bound onP(S4(k) > w). The approach of the auxiliary
I<jsk-1 L~ sequence of variables is generalized also to the daselU,
(7) to obtain a possibly tighter upper bound.
We emphasize that (7) has already been obtained in [2], [11] Exploiting the result in Theorem 1, we derive an upper
however in previous work authors have resorted to MontBound to the average bandwid#y requested by the down-
Carlo approaches to evaluate it. To the best of our knowledgeading peers:

we are the first to provide an analytical characterization of Corollary 1: The average bandwidth requested by down-
the solution to (7), and of the resulting server bandwiith |oading peers satisfies:

defined in (2), considering also the impact of the seeds.  _ Cid + C3(w* —d) + C5 /6% if Co > Cs
To proceed, we define the auxiliary varialig(k), that will Sa < { Chd + Cy /0 O.W. (11)
come in handy in the following:
g wherew* £ Llog (&2 ) +d.
A 0+ C3
Za(k) = 1255k { ;(d B Ui)} ®) " The proof of Corollary 1 can be found in Appendix C.

Remark:note that (1) and (11) hold under an arbitrary choice
where Z4(k) = 0 if k = 0. Then S;(k) can be expressed inof ¢ € [(U — d)*,U). The tightest bound is obtained by
terms of Z;(k — 1) according to minimizing the expressions (1) and (11) with respect.to
Sa(k) = d+ max{0, Z;(k — 1)}. 9 From Corollary 1 it immediately follows that the average
bandwidth requested by downloaders is finite even when

Now, Z4(k) can be regarded as the maximum value (up_, (e, N, — o), provided thatU > d. Indeed, by

to time k) reached by a unidimensional random walk Wiﬂ%electinge — U —d (and thusA = 0), we obtainS,; < d+ -
incrementsX; = d — U;. Thus we can exploit the existing being0* the unique positive solution t&[e?(d—0)] 1 o
literature on random walks, and especially their apploato By taking into account also the impact of the seeds, we

risk theory, to characterize the distribution Z&(k)' . btain an upper bound to the average bandwidth requested
For our purposes, we need the following classic resuﬁOm the servers, according to (2):

known as the Lundberg's inequality (see for example [12]). Theorem 2: The following bound holds for the average
Lemma 1. (Lundberg inequality) Consider a sequence Ofbandwidth reduested from the server:

i.i.d. variables(X;);>1, satisfying the following three proper- o '

ties: i) E[X1] < 0; i) P(X; > 0) > 0;iii) E[e!*1] is finite in a g <min{chS (d)d + o E[e 0" S

neighborhood of the origin. Define the r@(k) 2 % | X, - seed 0+ ’

k > 1, Q(0) £ 0. Then, denoted* the strictly positive

solution of E[e’” X1] = 1, which exists unique under i), ii),

and iii), we have, for allh > 1:

* 0™ Sseed ,— 0" w* 1 p*
P(max Q(k) > w) <e v | ww>0. (10) +E[e” 7e /0 )} (12)

2 _
OlFSseeu(d)dm?) <9* + w* — Sseed

Remark:condition iii) requiresX; to be light-tailed {e., to wherew* = ei log (%) +d.
have a tail that decays at least exponentially fast). s



The proof of Theorem 2 is reported in Appendix D. We staté/e now condition on the value assumed Ky £ d — U,

now our main result that completely characterizes the syste F.(w|k) =

behavior as the number of users increases. oo
Theorem 3: AssumeU not constant. Then, as— oo, the :/ P (max {Xk, Zd(k -1+ Xk} <w|Xg = a) dFx, (a)

following asymptotic regimes hold for any chunk distrilaurti

— 00

scheme: Fory < 1 and, additionallyl’ > T,, the average [ 5
bandwidth requested from the servers tends to zes, B _OOP(Zd(k D+as w) P, ()
limy_,~ S = 0. Forvy > 1, the average bandwidth requested w
to the servers grows linearly with the number of users. In :/ Fz(w—oalk—1)dFx,(«). (15)
particular,limy_, oo ——2—— = 1. e
(N4d—U N) . , B

The proof of Theorem 3 can be found in Appendix E. Notic l%servmg tt.hat by constructiofiz(a | 1) = Fx, (), from
that for~ > 1 the upper bound becomes asymptotically tig 11 ) we get: w
to the lower bound (4). Fz(w| k) = / Fz(w—oa|k—1)dFz(a|1) (16)

Theorem 3 suggests that, for very popular contents (large —o0

number of users concurrently watching the same video), aExplicit solutions of the above functional equation can
peer-assisted video distributiongslf-sustainingprovided that be given when the peer upload bandwidth is phase-type
the system is in surplus modee(, v < 1) and users stay in distributed. In particular, in the case of peer upload badtw
the system, on average, for a time larger (by an arbitrariégkponentially distributed, we obtain (see Appendix F):

small constant) than the time needed to download the whole w—d

video (T" > T). This holds for any chunk distribution scheme, Fz(w | k) = Fz(d| ke 7 Luco + Lu>rat

including the simple sequential scheme. wea , (w—id)’
- % . —id/U
In the deficit modej.e.y > 1, the system is obviously not +¢ > (~)'Fz(d| k—1) ¢ W4 w<ra,
self-sustaining since an additional bandwidth at least equal i=0 v (17)

to the bandwidth deficit ¥4d — U N) must be provided
by servers. However, in this case there is (asymptoticallwherel is the indicator function. In (17) the constaritg (d |
no gain in adopting a non-sequential chunk delivery schemé& can be obtained imposing the conditidfy (kd | k) = 1
with respect to the simple sequential download. Indeed, fas all &, as shown in Appendix F.

the number of users grows large, the system in which users=rom F;z(d | k) we immediately obtaifP(S;(k) > w):

download the content sequentially performs as well as aal ide 1-Fz(w—d|k—1) ifw>d
(unfeasible for VoD applications) system in which the coihte P(Sa(k) > w) = 1 if w<d
can be downloaded in arbitrary order. (18)

Finally, we can derive the average server bandwidth
. requested by the downloading peers, and the average server
C. Exact solutions bandwidthS requested from the servers.

In this section we derive a methodology to obtain an exactIn the casd/ > d, since the sequence of increasing random

solution of (7) when the bandwidth distribution is exponenZ rlabledeék) converges w.p.1 ;EOLa f|n|te1random V?.r"’(ijblﬁ
tially or phase-type distributed. (c0) (as direct consequence of Lemma 1), we can find the

- . . distribution of Z;(oco) from the stationary version of (16). We
The first step consists in deriving an integral equatiof},ia this result in the following theorem.

satisfied by the cumulative distribution function of the oytity Theorem 4: Under the conditionl7 > d. the cumulative
Za(k) defined in (8). Observe thal,(k) can be written as:  nction of Z,(co) satisfies the stationary version of (16§,

Zd(k:):max{d—U1,2I£1]a<xk{2(d—Ui)}—i—d—Ul}. Fz(w | oo):/_w Fz(w—al]oo)dFx(a)  (19)

Now since thel; are i.i.d., we can permute the indice®f When theU;, are exponentially distributed the solution of (19)
(U:)i>1, obtaining a new random variablé; (k) defined as ~ €an be obtained following the approach described in Appendi

j F, obtaining:
~ A w—d
Za(k) = max {d = Uy, 15??,?_1 { Z;(d - U%)} +d— Uk} Fz(w] o) =Fz(d|oo)e T Lyco+
- . w_d — i (w —id) —id/U
which has the same distribution &f,(k). Note thatZ, (k) can + Fz(d|c0)e’ T Y (—1) T © g
be written as: i=0 2
Z4(k) :max{d—Uk,Zd(k— 1)+d—Uk}. (13) where !

. . N . FZ(d\oo):hm A —
Denoting by Fz(w | k) the cumulative distribution function koo S (—1)i =0l o (k—i)d/T

of Z4(k) (and thus ofZ4(k)), we have:

. Notice thatZ,(co) provides a tight bound to the distribution
Fz(w | k) =P(Zy(k) < w) = of the server bandwidth requested by a large number of

_p (max{d _ Uk72d(k ) 4d- Uk} < w) (14) ?noc\)/(\;réloading users, when the system operates in the surplus



We emphasize that the approach described in Appendix Hn compliance to Theorem 3, we observe that, as the number
can be generalized in a rather straightforward way to obtadfiusers grows large, the average server bandwidth desrease
the exact solution of (16) and (19) under any phase-tygero fory < 1 (self-sustainability), whereas it tends to increase
distribution of peers upload bandwidth. On this regardallec linearly with N for v > 1, approaching asymptotically the
that any distribution whose moment generating function lewer bound.
finite in a neighborhood of the origimn.é., it is light-tailed) can In the surplus modey(< 1), the average server bandwidth
be approximated by a phase-type distribution with an ahyjtr reaches a maximum value for a certain number of users, which
degree of accuracy (see [12, Ch.4]). Thus the methodologgreases as increases. Comparing the upper bound with the
presented in this section can be applied to derive analytiéxact solution, we observe that, although the bound can be
approximations of the bandwidth requested from the servgrsssimistic up to a factor abodt the bound captures well the
in the case in which the peer upload bandwidth is arbitrarityualitative behavior of the exact curve.
distributed.

As a concluding remark, we wish to emphasize that up- ;4

T T

per bounds obtained in Section IlI-B and exact solutions eg?:t_-écv:lloo:
presented in this section are complementary tools for the UB-CV=5-----
analysis of peer-assisted VoD systems properties. Indeed, exact- QY =T
the upper bounds presented in Section IlI-B provide verys 100F  exact-CV=3-—=
general and easy-to-handle expressions from which we caf o N
derive qualitative/asymptotic properties of the systerhe T §&
methodology described in this section provides more ateura 8 T [
estimates (which are exact for phase-type distributiohsh® & 10 et
bandwidth requested from the servers, but are computdifona g Lo e T T
more expensive, especially for large numbers of users. g
<
D. Numerical lllustration F . : A
We provide a graphical illustration of our results consiigr \'\‘ !
a scenario in which the average activity period of the users o1 ‘ ‘ Y
is twice the time spent downloading the movie, representing ‘ 10 100 1000 10000
users who tend to keep their application/devices activer aft Average number of users
watching the movie. We normalize the parametérs 1 and
T4 =1, and thus we sef’ = 2. Fig. 2. Average server bandwidthl versus the average number of users
N, for different values of the coefficient of variation (CV) aber upload
bandwidth, inthe caséd =1, T, =1,T =2, v =0.9.
1000¢ UB-y=13 — ‘ ] To show the impact of peer bandwidth heterogeneity, we
eﬁét_z; H —— e consider the same scenario as before, keeping the load fixed
exact-y=11---—- to v = 0.9 (surplus mode), and varying the coefficient of
100 'e)gl%t‘_ﬁg'g - o 1 variation (CV) of the upload bandwidth distribution of the
UB—y:8:7 ------ e users. In particular, we assume that the upload bandwidth
exact-y=0.7 ------ e

is distributed according to a second-order hyper-expaalent
> E distribution with balanced means, which could well deserib

- 2 . the situation in which we have many peers with low upload

"""" , ' bandwidth €.g, behind ADSL lines) and few peers with large

: upload bandwidth €.g, connected with fiber or LAN). We

observe the strong impact of the CV on the resulting server

bandwidth. Sincey = 0.9 < 1, Theorem 3 guarantees that

10+ lower bounds---~

Average server bandwidth

ol S AW} S goes to zero asV — oo, however the maximum value
10 100 1000 10000 of S is achieved for quite large number of users (in the
Average number of users order of thousands) for large values of the CV. Again, the

analytical upper bound follows well the qualitative beloavi
Fig. 1. Average server bandwidf$ versus the average number of usafs  of the system, in all considered cases.
for different values of the system load inthe casel =1, T, =1,T = 2,
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PROOF OFLEMMA 1
V. CONCLUSION

We have developed a stochastic fluid methodology th tg?ﬁfeﬂerisggiﬁhﬁ;;& '}Ii \éér:gblﬁ,@é‘g’zg st;tls;fylgg
allows to derive analytical upper bounds to the bandwid X, properties: L ’ v~ i,
requested from the servers in peer-assisted VoD systefty, El¢ ],ls finite in a neighborhood of the origin. Define
studying the performance achieved by the simple sequentidik) = >i_; Xi, k > 1, Q(0) := 0. Define the filtration
video distribution scheme. Our bounds hold under the onfp = {0,Q}, Fi == o{X1,..., Xi}, k > 1 (i.e. the o-
assumption that the upload bandwidth distribution of péersalgebra generated byX; ... X, }). Consider the r.v.
light-tailed. We have also proposed an analytical methugiol Tw :=1nf{k > 1: Q(k) > w}
to exactly estimate the bandwidth requested from serveesaiwh o ) )
peer upload bandwidth is phase-type distributed. Besidiegh Where the infimum is equal teo if {k > 1: Q(k) > w} = 0.
analytically tractable, the simple sequential deliverpesne Note thatr, is the first time at which the proceg¥ k) exceeds
is also an attractive solution in real systems, for two mathe quantityw.
reasons: i) it allows users to immediately start watching th Let 6* be such thafE[e’ X1] = 1. It can be proved that
requested movie; ii) it is simple to manage and contrainder the three conditions described above, there exists a
Moreover, we have proved that the sequential delivery sehegihique #* > 0. It can be easily checked that the process
leads to an asymptotically optimal exploitation of the geer ?" @)} s an F,-martingale. Therefore, using the stopping

upload band\_/vidths as the nu_mber of users grows large. Indegforem (note that,, is an F,-stopping time) the process
our bounds tightly characterize the asymptotic perforreasfc {0"Q(ATw)) is an Fy-martingale, for each > 0

large-scale peer-assisted VoD systems employing bottesequ c " h
tial and non-sequential delivery schemes. onsequen .y, we avc;,\* .
1 limy,_, oo B[e?” QAT

E[(lim infj,_, o e QFAT))1{7, < o0}

[1] “Cisco Visual Networking Index: Global Mobile Data Tfaf Forecast E[1{r, < oco}e’ Q(T"’)j
Update, 2010-2015,” White paper published on Cisco web 2@#&]1. ]P>( max Q(k) > w)ee w
[2] C. Huang, J. Li, and K. W. Ross, “Can Internet Video-onazend Be 1<k<n
Profitable?” inACM SIGCOMM 2007.
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where the first inequality follows by Fatou’s lemma.We con- - N e Ni NN
E =1- — Va = L3
k=2

clude that
P( ma: >w)<e v, w>o0.
(1<k§nQ( ) )< - Therefore _ o (w—d)
P(Sy > w) g{ Iélln{Cge ’03} Ogiid
APPENDIXB ! -
PROOF OFTHEOREM 1 APPENDIXC
DefineX; £ d—U;— A, foralli > 1 andQ(k) £ Z . PROOF OFCOROLLARY 1
Since max{0,d — U} < A < d we haveE[X;] < 0 a d We compute the average bandwidth requested by download-
]P(X > 0) > 0. Note tha.t by (8) Zd( ) 0 h |e fOI‘ |ng users:
k>0, it holds: Sq = fo (Sq > w) dw
J < f Cqdw
Zalk) = jmax 3 (4= U) + 7% min {Coe=" (-0, G} o,

J where the last mequallty follows from Theorem 1. The quan-
< max {Z(d—Ui)—F(k—j)A} = (fgjaé{kQ( )>+kA. tity min {Coe=? (=49 C3} is equal toC; if w < w* =
' (1/6%)log (02) +d. Thus, ifw* > d we have:

0* Sd<f0 Cldw+fd C,gd’w—f—f 026 (w— d)dw
P(Z4(k) > w+kA)<]P’( max Qj)+kA > w+EkA) <e 7Y, = Cyd + Cy(w* — d) + 02679 Zw 7d)/9*

=Cid+ Cd(w* — d) + 03/9*
and thenP (Z,(k) > w) < e*" wel kA, _
By (9), Su(k) = d + max{0, Zy(k — 1)}. It is easy to Where the dlast equality comes from the fact thaf =
prove that the evenfmax{0, Zy(k — 1)} > w'} is equal to Coe™ " (w"=4) by the way we defined”.
the event{Zy(k —1) > w'}, for all w' > 0. Therefore, ©On the Sther hand, itv* < d, we have:
P(Sq(k) > w) = P(Zg(k—1) >w —d) forall w > dand 4 6% (w—d)
P(S4(k) > w) = 1 for w < d. Thus, forw < d it holds Sa < 0 Crdw+ p Cae duw
=Crd+ Cy/0™.
P(Sq>w) = ZIP’Sd )P(N, = k) 1 2/
Note thatw* > d if, and only if, Co > C3. Thus, we have:
oo - 5, < Cld+C3(’w*—d)+Cg/9* if Cy>Cjs
Z (Ng=k)=1-P(N;=0)=1-e N =(|. 4= Crd+ Cy /0 0.w.

APPENDIXD

On the other hand, fow > d, we have PROOF OFTHEOREM 2

P(Sqy > w) ZIP’ Sa(k JP(Ng = k) We compute the average bandwidth requested from the
servers §). For everyz > 0 we have:

N, e Na
P(Zy(k—1)>w—d) € 7 P(S > x) = P(Sq > Sseedt )

=2 k! o0

k=1 o o - / P(Sd >w + 33|Sseed: 'LU) dFSseed<w)

<P (Z4(0) > w —d) Nge Nt { {0z}

max xT
0 9% ART \k
o0 (w—d) ,~N,,—0"A Z (e” “Ng) < /0 C1 dFsgew)
k=2 o0 «
L 9*ANd ) —|—/ dFs, (w) min{Cs, Coe™ (w7d+$)}
—9 (w—d) —Nde—e AZ 026—9 ('w—d)- max{0,d—z}

max{0,d—z}
</ O dFs, )
Moreover, if w > d, we can get another simple bound as 0

follows oo o (wdia)
F w L+
P(Sa > w) = S B(Si(k) > w)B(Na = ) [ arsucae
- k=1 o w = C) Fs, (max{0,d — z}) + CQE[efe*Sseed}efa*(Ifd)
- d _ * _ * T—
= P(Za(k—1) > w—d) Nd% = 1 Fs, (d — x) + CyE[e ¥ Sseed=0" (2=
k=1 :

oo ~ k _ N
— Zp (Za(k —1) > w — d) Ny e In the last line the quantitys,_(max{0,d — x}) is always
P k! equal toFs,(d—x): indeed ifd—2 < 0, thenFs_ (d—z) =



o0

Fs...{0) = 0, sinceSseeqis a positive random variable. Finally, + / Foei( dw) / min{Cs, Che 0 =D} d
— > (d,w*]
S = / P(S > z)dx

0

o0

< CiFs (d—x)dz +/ CQE[B*Q*Sseed]efa*(mfd) da
0 0

w

0 d
+Cz / ™7 Fo o dw) (21)
(w*,00)
Note that, ifw < w*:
d oo oo w™
= / C1Fs,.(y)dy + / CyE[e™0 Sseed =07 (2=d) gy / min{Cs, Coe % G=D}dz = / min{Cs, Coe % G=D}dz
—00 0 w

< ClFsseed(d)d + C’gee*dIE[e’e*Sseed]l/G* (20) e 0" (w"—d)
0*
(22)

+/ min{Cs, Coe™? G=D1dz = Cy(w* — w) + Cy

Observe that, iiCy > Cs, i.e, w* > d, the above bound Combining (21) e (22) we obtain:
becomes weak. Thus, we obtain a tighter bound in this cas¢ < C;Fs_ (d)d — C, f[o p wFg (dw) — C3Fs_ (d)d+

using a different approach: —o* <w —a)

+C2 Fsseed( ) + ng Fsseed( )
/ /0 - P(Sq > w + 2) Fso{dw)da —Cy f(dw*] wFsy o dw) + Cy " f(w 8 Fa(duw)
(23)
_/ Fsseed(dw)/ P(Sq > z)dz Using the boundf0 (1 - Fs, (w))dw < d and the Cher-
[0,00) v noff bound (1 — Fs, (w)) < E[e? Sede=0 % the integral
— Fsseed(dw)/ P(Sy > 2)dz+ —C3 [(4.10+) WF e dw) in (23) becomes:
[0,d] w - _03 f(d,w*] wFSseed(dw)
/(d . FSSQEd(dw)/ P(Sg > z)dz = —C3 | w(Fsw) — )Y + f;)*(l — Fs_.(w)) dw>
B / FSseed dw / Sd > Z dZ +/ P(Sd > Z)dz‘| - _03 w*(FSseed(w*> - 1) - d(FSseed(d_) - 1)+
0. “ ! fO Fsseed dw - fod(l - Fsseed(w)) dw—
+ /(d OO) FSSeEd(dw) / P(Sd ~ z)dz f ( FSseed( )) d’UJ)
< / Fsseed(dw){Cl(d w) / min{Csy, Cye? (z—d) }dz} <4 <w —w*Fs (w*) + Fs(d)d — d — Sseea+ d
[0,d]
+/ ngeed(dw)/ min{Cs, Coe™? *=D}dz +J = Fseeew)) dw)
(d,00) w _
< Cg| W' — W FsgoW*) + Fogo(d)d — Sseed
= CldFSseed(d) - Cl / wFSseed(dw) ( . d( ) . d( ) >
[0,d] [0 Sseed [ 6w dw>
+ Fsseed(d) / min{c?ﬂ 026_9*(2_(1)}(12’4— B
¢ e’} = C3 (w* - w*FSseed(w*) + FSseed<d)d - Sseed
+/ Fs_. dw)/ min{Cs, Coe™? *=D}dz L.
(d.o0) d( w { } —|—]E[€9 Sseed]e—9 w /0*)
= C1dFs_[(d) — C / wFg, (dw
10F 50l d) = O [0,d] S 1) Noting that in (23)—C; [ wFs, (dw) < 0, and that by
w . —0%(2—d) definition of w*, Coe 0" (W —d) = Cs, we have:
+ FSSSSd(d) /d mln{CB’ Cze }dZ+ g S (Cl_ 03)Fsseed(d)d+C3FSseed(w*)/0*
+ FSseed(d) / min{c?ﬂ 026_9*(2_60}(12: + CB <’U)* + FSseed(d)d - SSEECH_ E[ee*sseed]e—e*w* /0*>
w* - b
—|—/ ngeed(dw)/ min{Cs, Coe™? (Z_d)}dz + CgeaT/ efe*wFsseed(dw)
(d,w*] w (w*,00)

+ / Fs, (dw) / min{Cs, Coe™ " *=MNdz < Oy Fs_ (d)d+Cs (1 /6" + w* — Sseed
(w*,00) w

= CldFSseed(d) - Cl /
[0,d]

e—@* (w*—d)

+ CQ TFSseed(d)

0" w*

9*

*—

WE o dw) + C3(w" — d) Fgyee(d)+ + E[e? Seede 07" /9*) + Oy (e Py )]




+ 6" / e Vv Eg  (w)dw)
< Oy Fsuf d)d+Cs (1/9* "~ Sageq

0% w* B
(_6_ v Fsseed(w*_)

+ E[eQ*SSeed]e_e*w* /9*> + C3 ¢

+ 0" / e " dw)
(w*,00)

1 _
= ClFsseed(d)d—l—CS (9* + w — Sseed

+ B[ S 07 — F(w”) /07 + 1/9*>

2 _
< C1Fs,, (d)d+C5 <9* + w" — Sseed
APPENDIXE

PROOF OFTHEOREM 3

We preliminarly recall that by Theorem 2, we have
S < C1Fs o d)d + Coe? Ele™0 5=ed jg* 2 G 1. (24)

Moreover, the first term in the sum above goes to zero,

A — oo. Indeed, sincdimy_ oo Ng = 0o, we haveC; — 1
as\ — oo, and the claim follows noticing thafs,,.(d) tends
to zero, as\ — oo (i.e, the mean number of seed&eeqand
their offered bandwidth tend to infinity).

We first consider the case < 1. If d < U, by Theorem
1, e may be freely chosen in the intervlll — d,U). We set

10

we consider

log Sup.1 ~ log Cy — log 0* + 0*d + AT seed v/ (—0*) — 1).

Using the Taylor expansion (and neglecting the termi 4
that tends tal as A — oo0), we obtain that

logCy < —0*A+ Ng(e? 4 —1)

as A — oo. Using the Taylor expansion as — oo, and the
choice ofey above (thu$*A — 0 and6* > A\~1/2), we have

loggup,l < —6*A —&—Wd(e‘g*A —1) —log0* + 0*d+

Njeec(¢U(_9*) - 1)

< AT4(6*A+ o(0*A)) — log(6*)
A Toeed —T0" +0(07)

~ AT 0% A —log(0*) — AT 'seed/ 0"

< A0 (TdA - Tsee(U) —1/2log A
— —00

Tyd

since in the regime = < 1, the quantityl’ g A—Tseed/
is negative. Therefore, the theorem follows.
We consider the case > 1. By Theorem 2 we have that

? S ClFSseed(d)d—i—C3 (92* + w* - gseed
(25)

s HET S ) 25

In (25) we can neglect the terf Fs,,.(d)d ~ 1. Note that
as\ — oo, C3 ~ 1. Thus, we obtain:

EUD,Z = 0% + w* — gseed+ E[ee*sseed]e—Q*w*/e*

The quantity w*, as A — oo becomes w*

e = U — d, obtaining A = 0. For the second term in the SUM(1 /6*) log(Ca/Cs) +d ~ NyA ~ ATd(d 7). Therefore, as

(24), note that due tol = 0 we haveC, = e~ N (eNa — Nd—
1) =1—eNaN,—eNa, So, using agaitimy_,e Ng =
we deduce that’s — 1 as A\ — oo. Combining this with the

relations: _
E[efe*sseed] — eATseec(d)U(*o;k)*l)

and ¢y (—
du(—

second term in the sum (24) tends to zero)as— co.
Consequently, fory < 1 andd < U, we getlimy_, o Supl_

0*) — 1 < 0 (this latter inequality holds since
0*) = E[e=?"Y] < 1), we easily have that even the

A — oo, it is easy to prove thdbg (E[e! Ssede=0"v" /6*) —

—o0; as before, we can conclude tife?” Ssede=0"w" /6*— 0.
Finally, we obtain, for\ — oo,

—Sseedt w* +1/0% ~ M(~Tseed/ + Ta(d —U)) + A/2

(T -Ta)U) =\NTad - U T),

SupZN
~A(Ta(d—-T) -

or, equivalently:

limy 0, S = 0. Now, suppose@ > U. SinceU is not constant Note that the quantityNq,d — U N is a lower bound

the equation irt: e **E[¢!(U~U1)] = 1 has a unique solution, for S,

say0*(e). The properties of the function— 0*(¢) are given

in Proposition 1 below. Fon\ large, consider the sequence

{ex} € (0,U — essinf U;) defined by
@) HA2).

Note that by Proposition k5, — 0 and f(e,) — 0, as
A — oo. Furthermore\d*(e)) — oo as A — oo. We
neglect again the first term in (24), and we obtaly,; ~
Cgee*dE[e’e*Sseed]/ﬁ* = Cgee*de/\TseEU(‘i’U(*‘9*)*1)/9*. We
can say thatSy,1 — 0 if and only if log Syp.1 — —oo. Thus,

€E) —

3with abuse of notation we will use the expressipn- g to indicate that
f € ©(g), i.e, fis bounded both above and below by g asymptotically

as described in (4). Therefore,

kS _
liminfy_, o0 —= ——— > 1. Recalling thatS < Syp 5,
A— dd—UN)_ g > LDup,2
we obtain, -
1< lim — 5 SUDZ

" < lim =4
Aoo (Ngd—U N) — =0 (Ngd—TU N)

and the theorem follows.

Proposition 1: If d > U, then the equation int
E[etU=U1=9)] = 1 admits a unique solution for € (0,U —
essinf Uy ). Furthermoref*(e) = arg, (e “E[e!V~U1)] =
1) is strictly increasing andC' on the interval (0,U —
essinf Uy). Finally, it holdslim,_, 8*(¢) = 0.

Proof: We define the functiorf(t,e) = E[e!(U~V1—9)],

necessarily
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Observe thaff (¢, ¢) is analytic in the domain > 0 ande > 0, Note that the integrand function does not dependswpthus
as immediate consequence of the fact fiat U; < U < co. the whole integral can be regarded as a constant. Moreover,

Observe also that i¥(0,e¢) = 1 and f/(0,¢) = €< 0 notice tha{
for any e > 0; ii) f(t,€) is convex int, since 244 — :/ Fy(y |k —1)e & dy = Fz(d|k). 27)
E[(U — Uy — ¢)2e/T~U=9] > 0; i) limy_so0 f(t,€) = oo for U Jo
anye < U — essinf U;. This because, for at € R, Thus, it holds: »
o Fz(w|k)=eT Fz(d|k Yw < d 28
f(t,€) :/ et(U—w—e)dFU(,w) > Z( | ) Z( | ) = ( )
g Now consider equation (26) wheh< w < 2d:
> t(U—w—e)dF > t(U—c—e) Pr(U, < o). w—d o )
,/_Ooe v(w)>e r(Ur < c) Fz(w|k):e§ / Faly |k —1)e ¥ dy
_ w—d
SE]cee < U — essinf Uy, there existia > 1 such that wod oo
(U — €)/a > essinf U,. Definingc = (U — €)/a, we have =7 / Fr(y | k—1)e ¥ dy+
etU=c=9) 5 o0 while Pr(U; < ¢) > 0. v 7o .
As a consequence of i) , ii) and iii), recalling thAft, ¢) is eT [T _y
continuous w.r.tz for any e > 0 andt > 0 there is a unique T Fzly [k =1De v dy. (29)
solution 6% (€) = arg,~,(e *“E[e!(V -] =1).

The regularity of¢* () with respect toc immediately fol- Note that the first term in the sum is equaldto” Fz(d | k).
lows by the implicit function theorem. At last the monotdtjc For the second integral, singé< w < 2d, variabley is such
of 6*(¢) can be derived again from the implicit functionthat0 <y < w —d < d. Thus, using (27) we can write:

theorem, according to whicHZ(<) = _ 2SS Note S u
’ % = TmE [ Rk ety
indeed that£@ (19  _p«(¢) f(6*(e), ¢) < 0 Ve > 0, while vl o
9L |, _y. > 0 by construction, sincef(t,¢) is convex _ev /w T (d |k —1)e ¥ dy
w.rt. ¢t and f(t,e) < 1 for 0 <t < 6*(e) and f(t,e) > 1 for U Jo
t > 6*(e). (w—d)

w—2d

At last, it is immediate to see that also for~ 0 6*(¢) — 0, -~ T °F Fa(d]k=1). (30)

in light of the fact thatf(0,0) = 1, and f(¢,0) > 1 for ¢ > 0. Thys, ford < w < 2d, we obtain
|| w—d w—d) w24

As immediate consequence of the fact thage) is strictly Fzw|k)=eT Fz(d|k) - ( 7= )e U Fz(d|k—1).
increasing (and thus invertible) and continuous over the d
main (0, U —ess inf U; ) with lim,_, 6*(¢) = 0, we have that
the following proposition holds.

Proposition 2: Provided thatd > U, andU not constant,
the image ofg*(e) for 0 < ¢ < U — essinf U; is the open
interval (0,4), with 6 = lim__77_egs ¢ 1, 07 (€)-

Row considerin@d < w < 3d, we can still use (29) to express
Fz(w | k) in terms of Fz(y | kK — 1) over a domain in which

y < w—d < 2d. Again we know explicitly the expression

of Fz(w | k) over the considered domain in terms of the two
constantstiz(d | k — 1) and Fz(d | k — 2). It turns out:

w= —d) w
APPENDIXF Fy(w|k)=e"T Fy(d| k)_Wi)e T Fy(d | k—1)+
DERIVATION OF THE EXACT SOLUTION IN(17) ) U
In this section we derive the solution of (16) for the case + @ew‘?d Fz(d|k—2) 2d <w <3d (31)
in which the bandwidthsUU are exponentially distributed. 2U

We point out that the proof of Theorem 4 can be obtaing@roceeding in a similar way we can expreSg(w | k) for
leveraging exactly the same arguments. Furthermore we wisty w < kd in terms of the constant8z (d | 1)...Fz(d | k),
to emphasize that the same approach can be extended towh#e for w > kd we have trivially Fz (w | k) = 1.
case in which the bandwidtl/ has a general phase-type The constants’;(d | k) can be obtaining forcind”z (kd |
distribution. k) = 1. Indeed, by imposing’z(w | 1) |y=¢= 1 we imme-
When the bandwidth is exponentially distributed we haveliately obtainFz(d | 1) = 1. Imposing £z (w | 2) |y=24= 1
dFz(a]l) = %e‘d%ﬂagd da. Thus, from (15), we have we obtain an algebraic linear equation betwéerid | 2) and
Fz(d | 1), from which we can derivéFz(d | 2). In general
Fzw|k) = [" Fzlw—alk- 1)%e‘d_7a]la§d da  imposing Fz(w | k) |w=ka= 1 we obtain a linear algebraic
_ floiz{w,d} Frlw—al|k— 1)%(3*% dey equat!on containing al[ constaﬂz(d | i) with ¢ < k..Th|s
(26) €quation can be exploited to derivé;(d | k) as function of
If w < d, making the substitutioy = w — « in the integral, £z(d|%) with i <F.
we obtain:

Fz(w|k)=

w—a

—d

evu o y
= F k—1)e T dy.
— [ Felie-netay




