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Abstract—We consider a peer-assisted Video-on-demand sys-
tem, in which video distribution is supported both by peers
caching the whole video and by peers concurrently downloading
it. We propose a stochastic fluid framework that allows to
characterize the additional bandwidth requested from the servers
to satisfy all users watching a given video. We obtain analytical
upper bounds to the server bandwidth needed in the case in
which users download the video content sequentially. We also
present a methodology to obtain exact solutions for special cases
of peer upload bandwidth distribution. Our bounds permit to
tightly characterize the performance of peer-assisted VoD systems
as the number of users increases, for both sequential and non-
sequential delivery schemes. In particular, we rigorously prove
that the simple sequential scheme is asymptotically optimal both
in the bandwidth surplus and in the bandwidth deficit mode,
and that peer-assisted systems become totally self-sustaining in
the surplus mode as the number of users grows large.

I. I NTRODUCTION

Video traffic over the Internet is growing at an impressive
rate, being responsible nowadays for the majority of data vol-
ume flowing through networks. According to Cisco forecasts
[1], the combination of all forms of video (live streaming,
video-on-demand and P2P file sharing) will exceed 90% of all
global consumer Internet traffic by 2015, posing a tremendous
challenge to both content providers and network operators.

Thanks to the proliferation of proxy servers and the adoption
of efficient distributed caching solutions, traditional (client-
server) Content Delivery Networks (CDNs) play a funda-
mental role in the distribution of bandwidth-hungry contents
such as video, since they permit to “move” contents close to
the users, thus reducing the impact on the transport network
backbone, and improving the user-perceived performance (e.g.,
reducing the latency). Increasing traffic volumes, however,
require large investments to continuously upgrade the CDNs
infrastructure. Observe, indeed, that the aggregate resources
required at the servers (bandwidth/storage/processing),and
the corresponding costs incurred by content providers, scale
linearly with the user demand and the data volume.

For this reason, the P2P approach, originally adopted by file-
sharing applications, has become very attractive also for video
distribution, as a viable solution to offload the servers and
dramatically reduce the bandwidth costs of video publishers
[2], [3]. In peer-assisted solutions, there are still servers
permanently storing the contents and supervising the video
distribution, but peers contribute their upload bandwidthto
the redistribution of downloaded pieces to other peers, making
the additional bandwidth requested from the servers potentially
very small and independent of the numbers of watching users.

In peer-assisted Video-on-Demand (VoD) systems, users
browse a catalog of available videos and asynchronously

issue requests to watch a given content, which are ideally
immediately satisfied by the system, with the optional support
for VCR actions such as pause and jump forward/backward. It
is important to distinguish VoD systems from live streaming,
in which users join the distribution of a given TV channel
at random points in time, but peers connected to the same
channel watch the content almost synchronously.

Peer-assisted applications for VoD and live streaming are
typically inspired by Bit-Torrent: the content is divided into
chunks which are disseminated among peers (or retrieved from
servers) in a fully distributed (swarming) fashion based onthe
exchange of bitmaps. However, differently from traditional
file-sharing, chunk and peer selection strategies for peer-
assisted video distribution must account for the fact that
users watch while downloading. In particular, to avoid service
interruptions/degradations: i) a minimum average download
rate equal to the video playback rate must be guaranteed; ii)
an “almost in order” delivery of chunks is required.

Several peer-assisted systems have already been deployed,
attracting millions of users, such as PPLive, GridCast, PP-
Stream, TVU, SopCast [4]. However, despite the wide pop-
ularity gained by existing applications, several fundamen-
tal questions remain unanswered about the design of video
streaming systems and the potential benefits of the peer-
assisted approach.

In our work we consider peer-assisted VoD systems, fo-
cusing our analysis on a given video whose distribution
is supported both by concurrently downloading users and
by peers caching a copy of it. Our main contribution is
a stochastic fluid framework that allows to derive general
upper bounds to the bandwidth requested from the servers
in the case of sequential chunk delivery, thus permitting to
analytically bound the performance achievable by any chunk
distribution scheme. In particular, our bounds allow to tightly
characterize the behavior of peer-assisted VoD systems as the
number of users increases, proving in a rigorous way the self-
sustainability (i.e., the desirable operating point at which no
additional server bandwidth is needed) of systems operating
in the bandwidth surplus mode.

We also show that the simple sequential delivery scheme is
asymptotically optimal both in the surplus and in the deficit
mode, under weak assumptions on the user behavior. For
the sequential scheme, we also propose a methodology to
derive exact estimate of the bandwidth requested from the
servers under the assumption that the peer upload bandwidth
is exponentially (or more generally phase-type) distributed.

We emphasize that our analysis is orthogonal to two on-
going streams of theoretical research: the one targeting opti-
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mal replication strategies and push/pull schemes for content
(re)placement [5], [6], [7], and the one dealing with practical
issues related to chunk scheduling [8] and peer selection [9].
This will become clear later on in the paper.

The paper is organized as follows. In Sect. II we describe the
system model; in Sect. III we first introduce the stochastic fluid
framework used by our theoretical analysis; then we obtain
general bounds in Sect. III-B and exact solutions for particular
cases in Sect. III-C; in Sect. IV we give an overview of the
related literature. We conclude the paper in Sect. V.

II. M ODEL

A. System assumptions

We model a peer-assisted VoD system where users1 run
applications that allow them to browse an online catalog of
videos. When a user selects a video, we assume that the
request is immediately satisfied and the selected video can
be watched uninterruptedly till the end,i.e., the system is able
to steadily provide to the user a data flow greater than or
equal to the video playback rate. Users contribute their upload
bandwidth to the video distribution, thus they can retrievepart
of the video (or even the entire video) from other peers, saving
servers resources.

We focus on a given video of sizeL bytes. We assume
that the video is downloaded by each user at constant rated
bytes/s, equal to the playback rate. Letτd = L/d be the time
needed to download the whole video. In general, the download
rate of a peer could be adapted over time, and even depend on
some peer’s characteristics (such as its upload bandwidth). By
assuming a constant download rated at each user we greatly
simplify the analysis, while obtaining a conservative prediction
with respect to the case in which the download rate can be
adapted over time maintaining an average value equal tod.

The amount of upload bandwidth with which peers con-
tribute to the redistribution of the video that they are down-
loading, instead, may or may not be under the control of the
system. In our analysis, we assume that the upload bandwidth
available at a peer is a random variable with a given distribu-
tion. This way, we encompass both the realistic case of users
with heterogeneous Internet connections (i.e., ADSL, fiber,
LAN) and cross-traffic fluctuations, and the case in which the
peer upload bandwidth allocated to the given video is tuned
by the system (such as in universal streaming architectures).
More specifically, the amount of upload bandwidth with
which users contribute at a given time to the redistribution
of the considered video is modeled as a random variable
U with cumulative distribution functionFU (w) and mean
U . The random variables denoting the instantaneous upload
bandwidths of the users are assumed to be i.i.d. (independent
and identically distributed).

B. Peers dynamics

We assume that the arrival process of requests for the
considered video follows a Poisson process of intensityλ.
Assuming that at a given time the arrival process is Poisson
is reasonable, since users behave independently of each other,
and their requests are immediately satisfied. Although in this
paper we consider a constant request rate, our analysis can

1In this paper we use the terms peer and user interchangeably.

be easily extended to the case of an inhomogeneous Poisson
process with time-varying intensityλ(t). The impact of non-
stationary traffic conditions on the system performance is
studied in our companion paper [10].

As soon as users issue their request to watch the considered
video, they start downloading it and assisting other peers.
We define asactivity period the duration of the interval
during which a peer contributes its upload bandwidth to
the distribution of the requested video. Activity periods of
the users are highly heterogeneous, as observed in several
measurement studies [3]: some users stop watching the video
after a very short time since the beginning, because they
realize they are no longer interested in it; most users who
decide to watch the video shut down the computer/Internet-
TV towards the end of it; some of them keep the application
running for prolonged time after the end of the video; those
running set-top-boxes can be considered to be always active
and serving other peers (while the set-top-box keeps a copy
of the considered video, contributing to its distribution). We
adopt a fairly general model of peer churn (or set-top-box
behavior), assuming that the activity period of each user is
described by an arbitrary random variableT with finite mean
T and cumulative distribution functionFT (x). The activity
periods of the users are assumed to be i.i.d.

It follows from our assumptions that the number of active
usersN at a certain time instant is distributed as the number
of customers in an M/G/∞ queue, hence it follows a Poisson
distribution with meanN = λT . In our analysis we need
to distinguish two classes of active users: those who are
still downloadingthe video, and those who have completed
the download (referred to asseedsin the following). The
number of downloadingpeers at a given time instant,Nd,
follows a Poisson distribution of meanNd = λT d, where
T d =

∫ τd
0

(1− FT (x)) dx is the average time spent download-
ing the video. Observe that in generalT d can be shorter than
τd due to peer churn (premature abandons).

Then, standard properties of Poisson processes allow to say
that the number ofseedsat a given time,Nseed, follows a
Poisson distribution of meanN seed= N −Nd = λ(T − T d).

We define as system load the quantity

γ ,
Ndd

U ·N
(1)

which is the ratio between the average aggregate rate requested
by downloading peers, and the average aggregate upload
rate provided by all active users. Borrowing the terminology
adopted in previous work [2], [11] we say2 that the system
operates indeficit mode ifγ>1, and insurplusmode ifγ<1.

C. Performance metrics

A fundamental goal of a VoD system is to minimize
the bandwidth requested from the servers. To save server
bandwidth, the system tries to exploit as much as possible
the upload capacity of the peers, under the strict constraints
of video distribution (i.e., delay, minimum rate). LetS be the
random variable denoting the additional bandwidth that the
servers must supply at a given time to satisfy all active down-
loads of the considered video. LetFS(w) be the cumulative
distribution ofS. At last, we denote byS the mean ofS. Since

2In this paper we do not consider the special caseγ = 1.
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TABLE I
NOTATION

Symbol Definition
d user download rate
U average user upload bandwidth
λ arrival rate of new requests for the video
T d average time spent downloading the video (s)
T average user activity period (s)
N average number of users
Nd average number ofdownloadingusers
N seed average number ofseeds
Sd average bandwidth requested by downloading users
Sseed average bandwidth offered by seeds
S average bandwidth requested from the servers
γ system load

in practice there are multiple videos to be served concurrently
by the system, statistical multiplexing arguments suggestthat
a good design goal is to minimize the mean valueS of the
servers bandwidth required by a single video. Therefore, this
will be the main metric that we will look at in our performance
analysis.

We define a VoD system to beself-sustaining if
limλ→∞ S = 0. Notice that servers must necessarily provide
some bandwidth when a new video is inserted in the system.
However, once the video has been replicated at peers, it is
possible that no additional server bandwidth is needed from
the servers, since the swarm can sustain itself. In our analysis
we neglect transient effect, and look at the stationary system
behavior. Table I summarizes the notation of our model.

III. A NALYSIS

A. Preliminaries and universal lower bound

Our goal is to characterize the random variableS denoting
the bandwidth requested from the servers at a given time.
We denote bySd the aggregate bandwidth requested by the
downloading users, and bySseed=

∑Nseed

i=1 Ui the aggregate up-
load bandwidth offered by the seeds. The bandwidth requested
from the servers is then given by the difference between
the bandwidth requested by the downloading users and the
bandwidth offered by seeds, provided that such difference is
positive:

S , max{0, Sd − Sseed}. (2)

We observe thatSseed is simple to characterize, sinceNseed is
a random variable with a Poisson distribution. ThenSseed is a
compound Poisson random variable whose moment generating
function isE[etSseed] = eN seed(φU (t)−1), whereφU (t) , E[etU ]
is the moment generating function of the peer upload band-
width U , which is known. In particular, the average ofSseed is
Sseed= N seedU . Notice also thatSseed is independent ofSd.

The difficulty then lies in characterizing the random variable
Sd. To analyzeSd, we first condition it on the number of
downloading users, defining

Sd(k) , (Sd | Nd = k) (3)

Focusing our attention toSd(k), we observe that an easy
lower bound to this quantity can be obtained assuming that
the upload bandwidth of each downloading user can be always
fully utilized by the system, irrespective of the arrival time of

the user into the system. We obtain

Sd(k) ≥ max{d, k d−
k

∑

i=1

Ui} ≥ k d−
k

∑

i=1

Ui

and thusE[Sd(k)] ≥ k(d − U). Deconditioning with respect
to k we obtainE[Sd] ≥ Nd(d− U).

At last, we observe that by construction
S = E[max{0, Sd − Sseed}] ≥ max{0,E[Sd − Sseed]} ≥

max{0, Nd(d− U)−N seedU} = max{0, dNd − U N} (4)

which provides a universal lower bound toS for any chunk
distribution scheme. The above lower bound is trivially zero
for γ<1, whereas it is equal todNd − U N for γ≥1.

B. Upper bounds

An upper bound to the bandwidth requested from the servers
can be obtained assuming that all peers must download the
video chunks sequentially. We observe that many implemented
applications inspired by BitTorrent allow also non-sequential
chunk dissemination in a swarm-like fashion, although thisis
typically only enabled within a limited portion of the videoto
meet the hard delay constraints of individual chunks. Actually,
an almost in-order download is the only choice when the
download rated is close to the video playback rate (and the
start-up delay is small).

Besides being analytically tractable (as we will see), the
sequential download is also simple to implement in a peer-
assisted VoD system, as it does not require the complex
chunk/peer selection mechanisms which are necessary in
BitTorrent-like swarms. In any case, the main point is that
the server bandwidth required under sequential download is
an upper bound to the bandwidth required by a more general
(non-sequential) download scheme.

Below we show how to obtain analytical upper bounds toS,
the average ofS, in the case of sequential download, obtaining
upper bounds valid for any distribution scheme.

We start looking at quantitySd(k) defined in (3). We
observe that, if all peers download the video sequentially at
common rated, a peer can only redistribute video pieces to
peers arrived later on in time.

When there is only one downloading user, we trivially have
Sd(1) = d. If there are two downloaders, the first arrived
makes its entire upload bandwidth available to the second,
and we have

Sd(2) = d+max{0, d− U1} = max{d, 2d− U1}

whered represents the external bandwidth necessary to sustain
the download of the first arrived peer andmax{0, d − U1}
represents the bandwidth needed to sustain the download of
the second arrived peer.

When there are three downloaders, the last arrived can
exploit the upload bandwidth of the second plus the residual
upload bandwidth of the first,i.e., a total upload rate of
U2+max{U1−d, 0}. Summing up the download rates needed
by the three peers, we obtain

Sd(3)=d+max{0, d−U1}+max{0, d−U2−max{U1−d, 0}}=

d+max{0, d−U1}+max{0,min{2d−U1−U2, d−U2}} =

max{Sd(2), 3d− U1 − U2} (5)
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The last equation descends from the fact that ifd − U2 <
2d − U1 − U2 then d − U1 > 0 and thusmax{0, d − U1} +
max{0,min{2d−U1 −U2, d−U2}} = max{0, d−U1, 2d−
U1 − U2}.

In general thek-th downloader (assuming downloaders to
be numbered in order of arrival) can receive the content from
every other downloader preceding it. However, if preceding
peers are not able to fully support the download of the
k-th downloader in addition to previous downloads, (i.e., if
∑k−1

i=1 Ui − kd < 0) the missing bandwidth must be provided
either by servers or by seeds. We obtain the following recursive
equation forSd(k):

Sd(k) =

{

d k = 1

max{Sd(k − 1), kd−
∑k−1

j=1 Uj} k > 1
(6)

If we iterate back up toSd(1) we can obtain an explicit
expression forSd(k) in terms of the upload bandwidths of
peersUi, for i < k, and of the download rated, as:

Sd(k) = d+max
{

0, d− U1, 2d− (U1 + U2),

3d− (U1 + U2 + U3), . . . , (k − 1)d−
∑k−1

i=1 Ui

}

= d+ max
1≤j≤k−1

{

0,

j
∑

i=1

(d− Ui)
}

(7)
We emphasize that (7) has already been obtained in [2], [11],
however in previous work authors have resorted to Monte-
Carlo approaches to evaluate it. To the best of our knowledge,
we are the first to provide an analytical characterization of
the solution to (7), and of the resulting server bandwidthS
defined in (2), considering also the impact of the seeds.

To proceed, we define the auxiliary variableZd(k), that will
come in handy in the following:

Zd(k) , max
1≤j≤k

{

j
∑

i=1

(d− Ui)
}

(8)

whereZd(k) = 0 if k = 0. ThenSd(k) can be expressed in
terms ofZd(k − 1) according to

Sd(k) = d+max{0, Zd(k − 1)}. (9)

Now, Zd(k) can be regarded as the maximum value (up
to time k) reached by a unidimensional random walk with
incrementsXi = d − Ui. Thus we can exploit the existing
literature on random walks, and especially their application to
risk theory, to characterize the distribution ofZd(k).

For our purposes, we need the following classic result,
known as the Lundberg’s inequality (see for example [12]).

Lemma 1: (Lundberg inequality ) Consider a sequence of
i.i.d. variables(Xi)i≥1, satisfying the following three proper-
ties: i)E[X1] < 0; ii) P(X1 > 0) > 0; iii) E[etX1 ] is finite in a
neighborhood of the origin. Define the r.v.Q(k) ,

∑k
i=1 Xi,

k ≥ 1, Q(0) , 0. Then, denotedθ∗ the strictly positive
solution of E[eθ

∗X1 ] = 1, which exists unique under i), ii),
and iii), we have, for alln ≥ 1:

P( max
1≤k≤n

Q(k) > w) ≤ e−θ∗w , ∀w ≥ 0. (10)

Remark:condition iii) requiresX1 to be light-tailed (i.e., to
have a tail that decays at least exponentially fast).

For completeness, in Appendix A we report a proof of Lemma
1 based on a Martingale approach.

Lundberg inequality can be generalized and adapted to our
context, to obtain an upper bound toP(Sd > w):

Theorem 1: Assume the following properties hold forU :
i) U > 0, ii) E[etU ] is finite in a neighborhood of the origin,
iii) FU (w) > 0 for every w > 0. For ǫ ∈ [(U − d)+, U),
defineA := d − U + ǫ (note thatmax{0, d − U} ≤ A < d).
Let θ∗ be the unique strictly positive solution of the equation
E[eθ(d−U−A)] = 1. For anyw ≥ 0, it holds

P(Sd > w) ≤

{

min
{

C2e
−θ∗(w−d), C3

}

w ≥ d
C1 0 ≤ w < d,

whereC1 , 1−e−Nd , C2 , e−θ∗Ae−Nd(eNde
θ∗A

−Nde
θ∗A−

1) andC3 , 1− e−Nd −Nde
−Nd .

A detailed proof of Theorem 1 is reported in Appendix
B. Observe that, whend < U , we can obtain an upper
bound onP(Sd > w) applying the Lundberg inequality to
P(Sd(k) > w) for any k. Instead, whend > U , since
E[d− Ui] > 0, we cannot apply Lundberg inequality directly
to P(Sd(k) > w). Therefore we need to define an auxiliary
sequence of random variables, tightly related toSd(k), on
which Lundberg bound can be applied. Then we can derive
a bound onP(Sd(k) > w). The approach of the auxiliary
sequence of variables is generalized also to the cased < U ,
to obtain a possibly tighter upper bound.

Exploiting the result in Theorem 1, we derive an upper
bound to the average bandwidthSd requested by the down-
loading peers:

Corollary 1: The average bandwidth requested by down-
loading peers satisfies:

Sd ≤

{

C1d+ C3(w
∗ − d) + C3/θ

∗ if C2 > C3

C1d+ C2/θ
∗ o.w. (11)

wherew∗ , 1
θ∗

log
(

C2

C3

)

+ d.
The proof of Corollary 1 can be found in Appendix C.

Remark:note that (1) and (11) hold under an arbitrary choice
of ǫ ∈ [(U − d)+, U). The tightest bound is obtained by
minimizing the expressions (1) and (11) with respect toǫ.

From Corollary 1 it immediately follows that the average
bandwidth requested by downloaders is finite even when
λ → ∞ (i.e., Nd → ∞), provided thatU > d. Indeed, by
selectingǫ = U−d (and thusA = 0), we obtainSd ≤ d+ 1

θ∗
,

beingθ∗ the unique positive solution toE[eθ(d−U)] = 1.
By taking into account also the impact of the seeds, we

obtain an upper bound to the average bandwidth requested
from the servers, according to (2):

Theorem 2: The following bound holds for the average
bandwidth requested from the server:

S ≤min

{

C1FSseed(d)d+ C2
eθ

∗d

θ∗
E[e−θ∗Sseed],

C1FSseed(d)d+C3

(

2

θ∗
+ w∗ − Sseed

+ E[eθ
∗Sseed]e−θ∗w∗

/θ∗
)}

(12)

wherew∗ = 1
θ∗

log
(

C2

C3

)

+ d.
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The proof of Theorem 2 is reported in Appendix D. We state
now our main result that completely characterizes the system
behavior as the number of users increases.

Theorem 3: AssumeU not constant. Then, asλ → ∞, the
following asymptotic regimes hold for any chunk distribution
scheme: Forγ < 1 and, additionallyT > T d, the average
bandwidth requested from the servers tends to zero,i.e.,
limλ→∞ S = 0. For γ > 1, the average bandwidth requested
to the servers grows linearly with the number of users. In
particular,limλ→∞

S
(Ndd−U N)

= 1.

The proof of Theorem 3 can be found in Appendix E. Notice
that for γ > 1 the upper bound becomes asymptotically tight
to the lower bound (4).

Theorem 3 suggests that, for very popular contents (large
number of users concurrently watching the same video), a
peer-assisted video distribution isself-sustaining, provided that
the system is in surplus mode (i.e., γ < 1) and users stay in
the system, on average, for a time larger (by an arbitrarily
small constant) than the time needed to download the whole
video (T > T d). This holds for any chunk distribution scheme,
including the simple sequential scheme.

In the deficit mode,i.e.,γ > 1, the system is obviously not
self-sustaining, since an additional bandwidth at least equal
to the bandwidth deficit (Ndd − U N ) must be provided
by servers. However, in this case there is (asymptotically)
no gain in adopting a non-sequential chunk delivery scheme
with respect to the simple sequential download. Indeed, as
the number of users grows large, the system in which users
download the content sequentially performs as well as an ideal
(unfeasible for VoD applications) system in which the content
can be downloaded in arbitrary order.

C. Exact solutions

In this section we derive a methodology to obtain an exact
solution of (7) when the bandwidth distribution is exponen-
tially or phase-type distributed.

The first step consists in deriving an integral equation
satisfied by the cumulative distribution function of the quantity
Zd(k) defined in (8). Observe thatZd(k) can be written as:

Zd(k) = max
{

d− U1, max
2≤j≤k

{

j
∑

i=2

(d− Ui)
}

+ d− U1

}

.

Now since theUi are i.i.d., we can permute the indicesi of
(Ui)i≥1, obtaining a new random variablêZd(k) defined as

Ẑd(k) , max
{

d− Uk, max
1≤j≤k−1

{

j
∑

i=2

(d− Ui)
}

+ d− Uk

}

which has the same distribution ofZd(k). Note thatẐd(k) can
be written as:

Ẑd(k) = max
{

d− Uk, Ẑd(k − 1) + d− Uk

}

. (13)

Denoting byFZ(w | k) the cumulative distribution function
of Zd(k) (and thus ofẐd(k)), we have:

FZ(w | k) = P(Ẑd(k) ≤ w) =

= P

(

max
{

d− Uk, Ẑd(k − 1) + d− Uk

}

≤ w
)

(14)

We now condition on the value assumed byXk , d− Uk:

Fz(w | k) =

=

∫ ∞

−∞

P

(

max
{

Xk, Ẑd(k − 1) +Xk

}

≤ w |Xk = α
)

dFXk
(α)

=

∫ w

−∞

P

(

Ẑd(k − 1) + α ≤ w
)

dFXk
(α)

=

∫ w

−∞

FZ(w − α | k − 1) dFXk
(α). (15)

Observing that by constructionFZ(α | 1) = FXk
(α), from

(15) we get:

FZ(w | k) =

∫ w

−∞

FZ(w − α | k − 1) dFZ(α | 1) (16)

Explicit solutions of the above functional equation can
be given when the peer upload bandwidth is phase-type
distributed. In particular, in the case of peer upload bandwidth
exponentially distributed, we obtain (see Appendix F):

FZ(w | k) = FZ(d | k)e
w−d

U Iw<0 + Iw>kd+

+ e
w−d

U

k
∑

i=0

(−1)iFZ(d | k − i)
(w − id)i

U
i
i!

e−id/U
Iid≤w≤kd,

(17)

whereI is the indicator function. In (17) the constantsFZ(d |
k) can be obtained imposing the conditionFZ(kd | k) = 1
for all k, as shown in Appendix F.

FromFZ(d | k) we immediately obtainP(Sd(k) > w):

P(Sd(k) > w) =

{

1− FZ(w − d | k − 1) if w ≥ d
1 if w < d

(18)
Finally, we can derive the average server bandwidthSd

requested by the downloading peers, and the average server
bandwidthS requested from the servers.

In the caseU > d, since the sequence of increasing random
variablesZd(k) converges w.p.1 to a finite random variable
Zd(∞) (as direct consequence of Lemma 1), we can find the
distribution ofZd(∞) from the stationary version of (16). We
state this result in the following theorem.

Theorem 4: Under the conditionU > d, the cumulative
function ofZd(∞) satisfies the stationary version of (16),i.e.,

FZ(w | ∞) =

∫ w

−∞

FZ(w − α | ∞) dFX(α) (19)

When theUk are exponentially distributed the solution of (19)
can be obtained following the approach described in Appendix
F, obtaining:

FZ(w | ∞) = FZ(d | ∞)e
w−d

U Iw<0+

+ FZ(d | ∞)e
w−d

U

∞
∑

i=0

(−1)i
(w − id)i

U
i
i!

e−id/U
Iw>id

where

FZ(d | ∞) = lim
k→∞

1
∑k

i=0(−1)i [(k−i)d]i

i! e(k−i)d/U

Notice thatZd(∞) provides a tight bound to the distribution
of the server bandwidth requested by a large number of
downloading users, when the system operates in the surplus
mode.
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We emphasize that the approach described in Appendix F
can be generalized in a rather straightforward way to obtain
the exact solution of (16) and (19) under any phase-type
distribution of peers upload bandwidth. On this regard, recall
that any distribution whose moment generating function is
finite in a neighborhood of the origin (i.e., it is light-tailed) can
be approximated by a phase-type distribution with an arbitrary
degree of accuracy (see [12, Ch.4]). Thus the methodology
presented in this section can be applied to derive analytical
approximations of the bandwidth requested from the servers
in the case in which the peer upload bandwidth is arbitrarily
distributed.

As a concluding remark, we wish to emphasize that up-
per bounds obtained in Section III-B and exact solutions
presented in this section are complementary tools for the
analysis of peer-assisted VoD systems properties. Indeed,
the upper bounds presented in Section III-B provide very
general and easy-to-handle expressions from which we can
derive qualitative/asymptotic properties of the system. The
methodology described in this section provides more accurate
estimates (which are exact for phase-type distributions) of the
bandwidth requested from the servers, but are computationally
more expensive, especially for large numbers of users.

D. Numerical Illustration

We provide a graphical illustration of our results considering
a scenario in which the average activity period of the users
is twice the time spent downloading the movie, representing
users who tend to keep their application/devices active after
watching the movie. We normalize the parametersd = 1 and
T d = 1, and thus we setT = 2.

 0.1

 1

 10

 100

 1000

 10  100  1000  10000

A
ve

ra
ge

 s
er

ve
r 

ba
nd

w
id

th

Average number of users

UB - γ = 1.3
exact - γ = 1.3

UB - γ = 1.1
exact - γ = 1.1

UB - γ = 0.9
exact - γ = 0.9

UB - γ = 0.7
exact - γ = 0.7
lower bounds

Fig. 1. Average server bandwidthS versus the average number of usersN ,
for different values of the system loadγ, in the cased = 1, T d = 1, T = 2,
and exponentially distributed upload bandwidth.

Figure 1 reports on a log-log scale the average server
bandwidthS as function of the average number of usersN ,
for different values of the system loadγ. The peer upload
bandwidth is exponentially distributed with meanU = 1/(2γ).
We compare the upper bound (12) (labeled UB) with the exact
solution presented in Section III-C. We also report forγ > 1
the lower bound (4).

In compliance to Theorem 3, we observe that, as the number
of users grows large, the average server bandwidth decreases to
zero forγ < 1 (self-sustainability), whereas it tends to increase
linearly with N for γ > 1, approaching asymptotically the
lower bound.

In the surplus mode (γ < 1), the average server bandwidth
reaches a maximum value for a certain number of users, which
increases asγ increases. Comparing the upper bound with the
exact solution, we observe that, although the bound can be
pessimistic up to a factor about4, the bound captures well the
qualitative behavior of the exact curve.
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Fig. 2. Average server bandwidthS versus the average number of users
N , for different values of the coefficient of variation (CV) ofuser upload
bandwidth, in the cased = 1, T d = 1, T = 2, γ = 0.9.

To show the impact of peer bandwidth heterogeneity, we
consider the same scenario as before, keeping the load fixed
to γ = 0.9 (surplus mode), and varying the coefficient of
variation (CV) of the upload bandwidth distribution of the
users. In particular, we assume that the upload bandwidth
is distributed according to a second-order hyper-exponential
distribution with balanced means, which could well describe
the situation in which we have many peers with low upload
bandwidth (e.g., behind ADSL lines) and few peers with large
upload bandwidth (e.g., connected with fiber or LAN). We
observe the strong impact of the CV on the resulting server
bandwidth. Sinceγ = 0.9 < 1, Theorem 3 guarantees that
S goes to zero asN → ∞, however the maximum value
of S is achieved for quite large number of users (in the
order of thousands) for large values of the CV. Again, the
analytical upper bound follows well the qualitative behavior
of the system, in all considered cases.

IV. RELATED WORK

We restrict ourselves to mentioning theoretical performance
studies of peer-assisted content distribution systems, which are
closely related to our work.

Stochastic fluid models for BitTorrent-like file-sharing sys-
tem, accounting for the dynamics of downloaders and seeds,
have been proposed for both transient and steady-state regimes
[13], [14], but they are not directly applicable to streaming
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systems. In [15], authors adapt the fluid model in [14] to VoD
systems, investigating the impact of different piece selection
policies (rarest-first and in-order) on download latency and
startup delay, in the case of homogeneous peers. In contrast
to [15], we focus on the self-sustainability of VoD systems
with strict service guarantees and heterogeneous user upload
bandwidths.

A stochastic fluid approach to analyze peer-assisted video
distribution has been proposed in [16] in the context of
live streaming, in which (heterogeneous) peers download and
playback content synchronously. Here we apply the stochastic
fluid approach to VoD systems, whose dynamics are quite
different from live streaming, since users can watch the video
asynchronously.

The mathematical formulation (7) for the server bandwidth
needed by a VoD system based on sequential delivery, ap-
peared in [3], in which authors resort to a Monte Carlo
approach to get basic insights into the system behavior (like
surplus and deficit modes).

The same formulation (7) has been considered in [11],
where authors explore by simulation the effectiveness of
different replication strategies to minimize the server load in
the slightly surplus mode, as well as distributed replacement
algorithms to achieve it. To the best of our knowledge, we
are the first to analytically study the stochastic process (7),
establishing its connection with random walks and risk theory.

In [17], a per-chunk capacity model is developed to show the
tradeoff that exists between system throughput, sequentiality
of downloaded data and robustness to heterogeneous network
conditions. Optimal content placement strategies to maximize
the upload capacity of (homogeneous) set-top-boxes (and thus
minimize the servers workload) in VoD systems have been
recently investigated in [7] under many-user asymptotic.

V. CONCLUSION

We have developed a stochastic fluid methodology that
allows to derive analytical upper bounds to the bandwidth
requested from the servers in peer-assisted VoD systems,
studying the performance achieved by the simple sequential
video distribution scheme. Our bounds hold under the only
assumption that the upload bandwidth distribution of peersis
light-tailed. We have also proposed an analytical methodology
to exactly estimate the bandwidth requested from servers when
peer upload bandwidth is phase-type distributed. Besides being
analytically tractable, the simple sequential delivery scheme
is also an attractive solution in real systems, for two main
reasons: i) it allows users to immediately start watching the
requested movie; ii) it is simple to manage and control.
Moreover, we have proved that the sequential delivery scheme
leads to an asymptotically optimal exploitation of the peers’
upload bandwidths as the number of users grows large. Indeed,
our bounds tightly characterize the asymptotic performance of
large-scale peer-assisted VoD systems employing both sequen-
tial and non-sequential delivery schemes.
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APPENDIX A
PROOF OFLEMMA 1

Consider a sequence of i.i.d. variables(Xi)i≥1, satisfying
the three properties: i)E[X1] < 0; ii) P(X1 > 0) > 0;
iii) E[etX1 ] is finite in a neighborhood of the origin. Define
Q(k) =

∑k
i=1 Xi, k ≥ 1, Q(0) := 0. Define the filtration

F0 := {∅,Ω}, Fk := σ{X1, . . . , Xk}, k ≥ 1 (i.e. the σ-
algebra generated by{X1 . . . Xk}). Consider the r.v.

τw := inf{k ≥ 1 : Q(k) > w}

where the infimum is equal to∞ if {k ≥ 1 : Q(k) > w} = ∅.
Note thatτw is the first time at which the processQ(k) exceeds
the quantityw.

Let θ∗ be such thatE[eθ
∗X1 ] = 1. It can be proved that

under the three conditions described above, there exists a
unique θ∗ > 0. It can be easily checked that the process
{eθ

∗Q(k)} is anFk-martingale. Therefore, using the stopping
theorem (note thatτw is an Fk-stopping time) the process
{eθ

∗Q(k∧τw)} is anFk-martingale, for eachw > 0.
Consequently, we have

1 = limk→∞ E[eθ
∗Q(k∧τw)]

≥ E[(lim infk→∞ eθ
∗Q(k∧τw))1{τw < ∞}]

= E[1{τw < ∞}eθ
∗Q(τw)]

≥ P( max
1≤k≤n

Q(k) > w)eθ
∗w
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where the first inequality follows by Fatou’s lemma.We con-
clude that

P( max
1≤k≤n

Q(k) > w) ≤ e−θ∗w, w ≥ 0.

APPENDIX B
PROOF OFTHEOREM 1

DefineXi , d−Ui−A, for all i ≥ 1 andQ(k) ,
∑k

i=1 Xi.
Since max{0, d − U} ≤ A < d we haveE[Xi] < 0 and
P(Xi > 0) > 0. Note that by (8),Zd(0) = 0, while, for
k > 0, it holds:

Zd(k) = max
1≤j≤k

j
∑

i=1

(d− Ui)

≤ max
1≤j≤k

{

j
∑

i=1

(d− Ui) + (k − j)A

}

=

(

max
1≤j≤k

Q(j)

)

+kA.

For k > 0

P(Zd(k) > w+kA)≤P( max
1≤j≤k

Q(j)+kA > w+kA) ≤ e−θ∗w,

and thenP (Zd(k) > w) ≤ e−θ∗weθ
∗kA.

By (9), Sd(k) = d + max{0, Zd(k − 1)}. It is easy to
prove that the event{max{0, Zd(k − 1)} > w′} is equal to
the event {Zd(k − 1) > w′}, for all w′ ≥ 0. Therefore,
P(Sd(k) > w) = P (Zd(k − 1) > w − d) for all w ≥ d and
P(Sd(k) > w) = 1 for w < d. Thus, forw < d it holds

P (Sd > w) =

∞
∑

k=1

P(Sd(k) > w)P(Nd = k)

=
∞
∑

k=1

P(Nd = k) = 1− P(Nd = 0) = 1− e−Nd = C1.

On the other hand, forw ≥ d, we have

P (Sd > w) =
∞
∑

k=1

P(Sd(k) > w)P(Nd = k)

=

∞
∑

k=1

P (Zd(k − 1) > w − d)
Nd

k
e−Nd

k!

≤ P (Zd(0) > w − d)Nde
−Nd+

e−θ∗(w−d)e−Nde−θ∗A
∞
∑

k=2

(eθ
∗ANd)

k

k!

= e−θ∗(w−d)e−Nde−θ∗A
∞
∑

k=2

(eθ
∗ANd)

k

k!
= C2e

−θ∗(w−d).

Moreover, if w ≥ d, we can get another simple bound as
follows:
P (Sd > w) =

∞
∑

k=1

P(Sd(k) > w)P(Nd = k)

=

∞
∑

k=1

P (Zd(k − 1) > w − d)
Nd

k
e−Nd

k!

=
∞
∑

k=2

P (Zd(k − 1) > w − d)
Nd

k
e−Nd

k!

≤
∞
∑

k=2

Nd
k
e−Nd

k!
= 1− e−Nd −Nde

−Nd = C3.

Therefore

P(Sd > w) ≤

{

min
{

C2e
−θ∗(w−d), C3

}

w ≥ d
C1 0 ≤ w < d

APPENDIX C
PROOF OFCOROLLARY 1

We compute the average bandwidth requested by download-
ing users:

Sd =
∫∞

0
P (Sd > w) dw

≤
∫ d

0
C1 dw

+
∫∞

d
min

{

C2e
−θ∗(w−d), C3

}

dw,

where the last inequality follows from Theorem 1. The quan-
tity min

{

C2e
−θ∗(w−d), C3

}

is equal toC3 if w < w∗ =

(1/θ∗) log
(

C2

C3

)

+ d. Thus, ifw∗ > d we have:

Sd ≤
∫ d

0
C1 dw +

∫ w∗

d
C3 dw +

∫∞

w∗
C2e

−θ∗(w−d) dw

= C1d+ C3(w
∗ − d) + C2e

−θ∗(w∗−d)/θ∗

= C1d+ C3(w
∗ − d) + C3/θ

∗

,

where the last equality comes from the fact thatC3 =
C2e

−θ∗(w∗−d) by the way we definedw∗.
On the other hand, ifw∗ ≤ d, we have:

Sd ≤

∫ d

0

C1 dw +

∫ ∞

d

C2e
−θ∗(w−d) dw

= C1d+ C2/θ
∗.

Note thatw∗ > d if, and only if, C2 > C3. Thus, we have:

Sd ≤

{

C1d+ C3(w
∗ − d) + C3/θ

∗ if C2 > C3

C1d+ C2/θ
∗ o.w.

APPENDIX D
PROOF OFTHEOREM 2

We compute the average bandwidth requested from the
servers (S). For everyx > 0 we have:

P(S > x) = P(Sd > Sseed+ x)

=

∫ ∞

0

P(Sd > w + x|Sseed= w) dFSseed(w)

≤

∫ max{0,d−x}

0

C1 dFSseed(w)

+

∫ ∞

max{0,d−x}

dFSseed(w)min{C3, C2e
−θ∗(w−d+x)}

≤

∫ max{0,d−x}

0

C1 dFSseed(w)

+

∫ ∞

0

dFSseed(w)C2e
−θ∗(w−d+x)

= C1FSseed(max{0, d− x}) + C2E[e
−θ∗Sseed]e−θ∗(x−d)

= C1FSseed(d− x) + C2E[e
−θ∗Sseed]e−θ∗(x−d)

In the last line the quantityFSseed(max{0, d − x}) is always
equal toFSseed(d−x): indeed ifd−x ≤ 0, thenFSseed(d−x) =
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FSseed(0) = 0, sinceSseedis a positive random variable. Finally,

S =

∫ ∞

0

P(S > x) dx

≤

∫ ∞

0

C1FSseed(d− x) dx+

∫ ∞

0

C2E[e
−θ∗Sseed]e−θ∗(x−d) dx

=

∫ d

−∞

C1FSseed(y) dy +

∫ ∞

0

C2E[e
−θ∗Sseed]e−θ∗(x−d) dx

≤ C1FSseed(d)d+ C2e
θ∗d

E[e−θ∗Sseed]1/θ∗ (20)

Observe that, ifC2 ≫ C3, i.e., w∗ ≫ d, the above bound
becomes weak. Thus, we obtain a tighter bound in this case
using a different approach:

S =

∫ ∞

0

∫

[0,∞)

P (Sd > w + x)FSseed(dw)dx

=

∫

[0,∞)

FSseed(dw)

∫ ∞

w

P (Sd > z)dz

=

∫

[0,d]

FSseed(dw)

∫ ∞

w

P (Sd > z)dz+

∫

(d,∞)

FSseed(dw)

∫ ∞

w

P (Sd > z)dz

=

∫

[0,d]

FSseed(dw)

[

∫ d

w

P (Sd > z)dz +

∫ ∞

d

P (Sd > z)dz

]

+

∫

(d,∞)

FSseed(dw)

∫ ∞

w

P (Sd > z)dz

≤

∫

[0,d]

FSseed(dw)

[

C1(d− w)+

∫ ∞

d

min{C3, C2e
−θ∗(z−d)}dz

]

+

∫

(d,∞)

FSseed(dw)

∫ ∞

w

min{C3, C2e
−θ∗(z−d)}dz

= C1dFSseed(d)− C1

∫

[0,d]

wFSseed(dw)

+ FSseed(d)

∫ ∞

d

min{C3, C2e
−θ∗(z−d)}dz+

+

∫

(d,∞)

FSseed(dw)

∫ ∞

w

min{C3, C2e
−θ∗(z−d)}dz

= C1dFSseed(d)− C1

∫

[0,d]

wFSseed(dw)

+ FSseed(d)

∫ w∗

d

min{C3, C2e
−θ∗(z−d)}dz+

+ FSseed(d)

∫ ∞

w∗

min{C3, C2e
−θ∗(z−d)}dz

+

∫

(d,w∗]

FSseed(dw)

∫ ∞

w

min{C3, C2e
−θ∗(z−d)}dz

+

∫

(w∗,∞)

FSseed(dw)

∫ ∞

w

min{C3, C2e
−θ∗(z−d)}dz

= C1dFSseed(d)− C1

∫

[0,d]

wFSseed(dw) + C3(w
∗ − d)FSseed(d)+

+ C2
e−θ∗(w∗−d)

θ∗
FSseed(d)

+

∫

(d,w∗]

FSseed(dw)

∫ ∞

w

min{C3, C2e
−θ∗(z−d)}dz

+ C2
eθ

∗d

θ∗

∫

(w∗,∞)

e−θ∗wFSseed(dw) (21)

Note that, ifw < w∗:
∫ ∞

w

min{C3, C2e
−θ∗(z−d)}dz =

∫ w∗

w

min{C3, C2e
−θ∗(z−d)}dz

+

∫ ∞

w∗

min{C3, C2e
−θ∗(z−d)}dz = C3(w

∗ − w) + C2
e−θ∗(w∗−d)

θ∗

(22)

Combining (21) e (22) we obtain:
S ≤ C1FSseed(d)d− C1

∫

[0,d]
wFSseed(dw)− C3FSseed(d)d+

+C2
e−θ∗(w∗

−d)

θ∗
FSseed(w

∗) + C3w
∗FSseed(w

∗)

−C3

∫

(d,w∗]
wFSseed(dw) + C2

eθ
∗d

θ∗

∫

(w∗,∞)
e−θ∗wFSseed(dw)

(23)
Using the bound

∫ d

0
(1 − FSseed(w)) dw ≤ d and the Cher-

noff bound (1 − FSseed(w)) ≤ E[eθ
∗Sseed]e−θ∗w, the integral

−C3

∫

(d,w∗]
wFSseed(dw) in (23) becomes:

−C3

∫

(d,w∗]
wFSseed(dw)

= −C3

(

w(FSseed(w)− 1)|w
∗

d−
+
∫ w∗

d
(1− FSseed(w)) dw

)

= −C3

(

w∗(FSseed(w
∗)− 1)− d(FSseed(d

−)− 1)+
∫∞

0
(1− FSseed(w)) dw −

∫ d

0
(1− FSseed(w)) dw−

∫∞

w∗
(1− FSseed(w)) dw

)

≤ C3

(

w∗ − w∗FSseed(w
∗) + FSseed(d)d− d− Sseed+ d

+
∫∞

w∗
(1− FSseed(w)) dw

)

≤ C3

(

w∗ − w∗FSseed(w
∗) + FSseed(d)d− Sseed

+E[eθ
∗Sseed]

∫∞

w∗
e−θ∗w dw

)

= C3

(

w∗ − w∗FSseed(w
∗) + FSseed(d)d− Sseed

+E[eθ
∗Sseed]e−θ∗w∗

/θ∗
)

Noting that in (23)−C1

∫ d

0
wFSseed( dw) ≤ 0, and that by

definition ofw∗, C2e
−θ∗(w∗−d) = C3, we have:

S ≤ (C1−C3)FSseed(d)d+C3FSseed(w
∗)/θ∗

+ C3

(

w∗ + FSseed(d)d− Sseed+ E[eθ
∗Sseed]e−θ∗w∗

/θ∗
)

+ C2
eθ

∗d

θ∗

∫

(w∗,∞)

e−θ∗wFSseed(dw)

≤ C1FSseed(d)d+C3

(

1/θ∗ + w∗ − Sseed

+ E[eθ
∗Sseed]e−θ∗w∗

/θ∗
)

+ C3
eθ

∗w∗

θ∗
(e−θ∗wFSseed(w)|

∞
w∗−
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+ θ∗
∫ ∞

w∗

e−θ∗wFSseed(w)dw)

≤ C1FSseed(d)d+C3

(

1/θ∗ + w∗ − Sseed

+ E[eθ
∗Sseed]e−θ∗w∗

/θ∗
)

+ C3
eθ

∗w∗

θ∗
(−e−θ∗w∗

FSseed(w
∗−)

+ θ∗
∫

(w∗,∞)

e−θ∗wdw)

= C1FSseed(d)d+C3

(

1

θ∗
+ w∗ − Sseed

+ E[eθ
∗Sseed]e−θ∗w∗

/θ∗ − FSseed(w
∗−)/θ∗ + 1/θ∗

)

≤ C1FSseed(d)d+C3

(

2

θ∗
+ w∗ − Sseed

+ E[eθ
∗Sseed]e−θ∗w∗

/θ∗
)

APPENDIX E
PROOF OFTHEOREM 3

We preliminarly recall that by Theorem 2, we have
S ≤ C1FSseed(d)d+ C2e

θ∗d
E[e−θ∗Sseed]/θ∗ , Sup,1. (24)

Moreover, the first term in the sum above goes to zero, as
λ → ∞. Indeed, sincelimλ→∞ Nd = ∞, we haveC1 → 1
asλ → ∞, and the claim follows noticing thatFSseed(d) tends
to zero, asλ → ∞ (i.e., the mean number of seedsN seedand
their offered bandwidth tend to infinity).

We first consider the caseγ < 1. If d ≤ U , by Theorem
1, ǫ may be freely chosen in the interval[U − d, U). We set
ǫ = U − d, obtainingA = 0. For the second term in the sum
(24), note that due toA = 0 we haveC2 = e−Nd(eNd −Nd−
1) = 1−e−NdNd−e−Nd . So, using againlimλ→∞ Nd = ∞,
we deduce thatC2 → 1 asλ → ∞. Combining this with the
relations:

E[e−θ∗Sseed] = eλT seed(φU (−θ∗)−1)

and φU (−θ∗) − 1 < 0 (this latter inequality holds since
φU (−θ∗) = E[e−θ∗U ] < 1), we easily have that even the
second term in the sum (24) tends to zero asλ → ∞.
Consequently, forγ < 1 andd ≤ U , we getlimλ→∞ Sup,1 =
limλ→∞ S = 0. Now, supposed > U . SinceU is not constant
the equation int: e−tǫ

E[et(U−U1)] = 1 has a unique solution,
sayθ∗(ǫ). The properties of the functionǫ 7→ θ∗(ǫ) are given
in Proposition 1 below. Forλ large, consider the sequence
{ǫλ} ⊂ (0, U − ess inf U1) defined by

ǫλ := (θ∗)−1(λ−1/2).

Note that by Proposition 1ǫλ → 0 and θ(ǫλ) → 0, as
λ → ∞. Furthermoreλθ∗(ǫλ) → ∞ as λ → ∞. We
neglect again the first term in (24), and we obtain3 Sup,1 ∼

C2e
θ∗d

E[e−θ∗Sseed]/θ∗ = C2e
θ∗deλT seed(φU (−θ∗)−1)/θ∗. We

can say thatSup,1 → 0 if and only if logSup,1 → −∞. Thus,

3With abuse of notation we will use the expressionf ∼ g to indicate that
f ∈ Θ(g), i.e., f is bounded both above and below by g asymptotically

we consider
logSup,1 ∼ logC2 − log θ∗ + θ∗d+ λT seed(φU (−θ∗)− 1).

Using the Taylor expansion (and neglecting the terme−θ∗A

that tends to1 asλ → ∞), we obtain that
logC2 ≤ −θ∗A+Nd(e

θ∗A − 1)

asλ → ∞. Using the Taylor expansion asλ → ∞, and the
choice ofǫλ above (thusθ∗A → 0 andθ∗ ≥ λ−1/2), we have

logSup,1 ≤ −θ∗A+Nd(e
θ∗A − 1)− log θ∗ + θ∗d+

N seed(φU (−θ∗)− 1)
≤ λT d(θ

∗A+ o(θ∗A))− log(θ∗)
+λT seed(−Uθ∗ + o(θ∗))

∼ λT dθ
∗A− log(θ∗)− λT seedUθ∗

≤ λθ∗(T dA− T seedU)− 1/2 log λ
→ −∞

since in the regimeγ = Tdd
UT

< 1, the quantityT dA−T seedU
is negative. Therefore, the theorem follows.

We consider the caseγ > 1. By Theorem 2 we have that

S ≤ C1FSseed(d)d+C3

(

2
θ∗

+ w∗ − Sseed

+E[eθ
∗Sseed]e−θ∗w∗

/θ∗
)

, Sup,2.
(25)

In (25) we can neglect the termC1FSseed(d)d ∼ 1. Note that
asλ → ∞, C3 ∼ 1. Thus, we obtain:

Sup,2 =
2
θ∗

+ w∗ − Sseed+ E[eθ
∗Sseed]e−θ∗w∗

/θ∗

The quantity w∗, as λ → ∞ becomes w∗ =
(1/θ∗) log(C2/C3) + d ∼ NdA ∼ λT d(d−U). Therefore, as
λ → ∞, it is easy to prove thatlog

(

E[eθ
∗Sseed]e−θ∗w∗

/θ∗
)

→
−∞; as before, we can conclude thatE[eθ

∗Sseed]e−θ∗w∗

/θ∗→0.
Finally, we obtain, forλ → ∞,

Sup,2 ∼ −Sseed+ w∗ + 1/θ∗ ∼ λ(−T seedU + T d(d− U)) + λ1/2

∼ λ
(

T d(d− U)− (T − T d)U
)

= λ(T dd− U T ),

or, equivalently:

lim
λ→∞

Sup,2

(Ndd− U N)
= 1.

Note that the quantityNdd − U N is a lower bound
for S, as described in (4). Therefore, necessarily

lim infλ→∞
S

(Ndd− U N)
≥ 1. Recalling thatS ≤ Sup,2,

we obtain,

1 ≤ lim
λ→∞

S

(Ndd− U N)
≤ lim

λ→∞

Sup,2

(Ndd− U N)
= 1

and the theorem follows.
Proposition 1: If d > U , then the equation int

E[et(U−U1−ǫ)] = 1 admits a unique solution forǫ ∈ (0, U −
ess inf U1). Furthermore,θ∗(ǫ) = argt>0(e

−tǫ
E[et(U−U1)] =

1) is strictly increasing andC1 on the interval (0, U −
ess inf U1). Finally, it holdslimǫ→0 θ

∗(ǫ) = 0.
Proof: We define the functionf(t, ǫ) = E[et(U−U1−ǫ)].
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Observe thatf(t, ǫ) is analytic in the domaint ≥ 0 andǫ ≥ 0,
as immediate consequence of the fact thatU −U1 ≤ U < ∞.

Observe also that i)f(0, ǫ) = 1 and f ′(0, ǫ) = −ǫ < 0

for any ǫ > 0; ii) f(t, ǫ) is convex in t, since ∂2f(t,ǫ)
∂t2 =

E[(U −U1− ǫ)2et(U−U1−ǫ)] > 0; iii) limt→∞ f(t, ǫ) = ∞ for
any ǫ < U − ess inf U1. This because, for allc ∈ R,

f(t, ǫ) =

∫ ∞

−∞

et(U−w−ǫ)dFU (w) ≥

≥

∫ c

−∞

et(U−w−ǫ)dFU (w) ≥ et(U−c−ǫ) Pr(U1 < c).

Since ǫ < U − ess inf U1, there existsa > 1 such that
(U − ǫ)/a > ess inf U1. Defining c = (U − ǫ)/a, we have
et(U−c−ǫ) → ∞ while Pr(U1 < c) > 0.

As a consequence of i) , ii) and iii), recalling thatf(t, ǫ) is
continuous w.r.t.t for any ǫ ≥ 0 and t ≥ 0 there is a unique
solutionθ∗(ǫ) = argt≥0(e

−tǫ
E[et(U−U1)] = 1).

The regularity ofθ∗(ǫ) with respect toǫ immediately fol-
lows by the implicit function theorem. At last the monotonicity
of θ∗(ǫ) can be derived again from the implicit function

theorem, according to whichdθ
∗(ǫ)
dǫ = −

∂f(θ∗(ǫ),ǫ)
∂ǫ

∂f(t,ǫ)
∂t

|t=θ∗(ǫ)

. Note

indeed that∂f(θ
∗(ǫ),ǫ)
∂ǫ < −θ∗(ǫ)f(θ∗(ǫ), ǫ) < 0 ∀ǫ > 0, while

∂f(t,ǫ)
∂t |t=θ∗(ǫ)> 0 by construction, sincef(t, ǫ) is convex

w.r.t. t andf(t, ǫ) < 1 for 0 < t < θ∗(ǫ) andf(t, ǫ) > 1 for
t > θ∗(ǫ).

At last, it is immediate to see that also forǫ → 0 θ∗(ǫ) → 0,
in light of the fact thatf(0, 0) = 1, andf(t, 0) > 1 for t > 0.

As immediate consequence of the fact thatθ∗(ǫ) is strictly
increasing (and thus invertible) and continuous over the do-
main (0, U−ess inf U1) with limǫ→0 θ

∗(ǫ) = 0, we have that
the following proposition holds.

Proposition 2: Provided thatd > U , andU not constant,
the image ofθ∗(ǫ) for 0 < ǫ < U − ess inf U1 is the open
interval (0, δ), with δ = limǫ→U−ess inf U1

θ∗(ǫ).
APPENDIX F

DERIVATION OF THE EXACT SOLUTION IN (17)

In this section we derive the solution of (16) for the case
in which the bandwidthsU are exponentially distributed.
We point out that the proof of Theorem 4 can be obtained
leveraging exactly the same arguments. Furthermore we wish
to emphasize that the same approach can be extended to the
case in which the bandwidthU has a general phase-type
distribution.

When the bandwidth is exponentially distributed we have:
dFZ(α | 1) = 1

U
e−

d−α

U Iα≤d dα. Thus, from (15), we have

FZ(w | k) =
∫ w

−∞
FZ(w − α | k − 1) 1

U
e−

d−α

U Iα≤d dα

=
∫min{w,d}

−∞
FZ(w − α | k − 1) 1

U
e−

d−α

U dα
(26)

If w < d, making the substitutiony = w − α in the integral,
we obtain:

FZ(w | k) =
e

w−d

U

U

∫ ∞

0

FZ(y | k − 1)e−
y

U dy.

Note that the integrand function does not depends onw, thus
the whole integral can be regarded as a constant. Moreover,
notice that

1

U

∫ ∞

0

FZ(y | k − 1)e−
y

U dy = FZ(d|k). (27)

Thus, it holds:
FZ(w | k) = e

w−d

U FZ(d | k) ∀w ≤ d (28)

Now consider equation (26) whend ≤ w ≤ 2d:

FZ(w | k) =
e

w−d

U

U

∫ ∞

w−d

FZ(y | k − 1)e−
y

U dy

=
e

w−d

U

U

∫ ∞

0

FZ(y | k − 1)e−
y

U dy+

−
e

w−d

U

U

∫ w−d

0

FZ(y | k − 1)e−
y

U dy. (29)

Note that the first term in the sum is equal toe
w−d

U FZ(d | k).
For the second integral, sinced ≤ w ≤ 2d, variabley is such
that 0 < y < w − d < d. Thus, using (27) we can write:

e
w−d

U

U

∫ w−d

0

FZ(y | k − 1)e−
y

U dy

=
e

w−d

U

U

∫ w−d

0

e
y−d

U FZ(d | k − 1)e−
y

U dy

=
(w − d)

U
e

w−2d

U FZ(d | k − 1). (30)

Thus, ford ≤ w ≤ 2d, we obtain

FZ(w | k) = e
w−d

U FZ(d | k)−
(w − d)

U
e

w−2d

U FZ(d | k − 1).

Now considering2d ≤ w ≤ 3d, we can still use (29) to express
FZ(w | k) in terms ofFZ(y | k − 1) over a domain in which
y ≤ w − d ≤ 2d. Again we know explicitly the expression
of FZ(w | k) over the considered domain in terms of the two
constantsFZ(d | k − 1) andFZ(d | k − 2). It turns out:

FZ(w | k) = e
w−d

U FZ(d | k)−
(w − d)

U
e

w−2d

U FZ(d | k−1)+

+
(w − 2d)2

2U
2 e

w−3d

U FZ(d | k − 2) 2d ≤ w ≤ 3d (31)

Proceeding in a similar way we can expressFZ(w | k) for
anyw ≤ kd in terms of the constantsFZ(d | 1). . .FZ(d | k),
while for w > kd we have triviallyFZ(w | k) = 1.

The constantsFZ(d | k) can be obtaining forcingFZ(kd |
k) = 1. Indeed, by imposingFZ(w | 1) |w=d= 1 we imme-
diately obtainFZ(d | 1) = 1. ImposingFZ(w | 2) |w=2d= 1
we obtain an algebraic linear equation betweenFZ(d | 2) and
FZ(d | 1), from which we can deriveFZ(d | 2). In general
imposingFZ(w | k) |w=kd= 1 we obtain a linear algebraic
equation containing all constantFZ(d | i) with i ≤ k. This
equation can be exploited to deriveFZ(d | k) as function of
FZ(d | i) with i < k.


