
A software architecture for dynamically generated adaptive Web stores
�

Liliana Ardissono, Anna Goy, Giovanna Petrone and Marino Segnan
Dipartimento di Informatica - Università di Torino

Corso Svizzera 185, Torino, Italy�
liliana,goy,giovanna,marino@di.unito.it �

Abstract

We provide technical details about the soft-
ware and hardware architecture of SETA, a
prototype toolkit for the creation of Web stores
which personalize the interaction with cus-
tomers. SETA is based on a multi-agent ar-
chitecture and on the use of MAS technolo-
gies, which support a seamless communication
among the system agents and an easy distribu-
tion of such agents on different computers.

1 Introduction
Personalization has recently become a central focus of
attention for Web-based systems [Riecken, 2000]. This
paper describes the software and hardware architecture
of SETA [Ardissono et al., 1999; 2000], a prototype
toolkit for the creation of adaptive Web stores, which
tailor the suggestion and the presentation of products to
the individual customer’s needs. We will provide details
about the SETA multi-agent architecture, the class hierar-
chy which defines the internal architecture of the system
agents and the technologies used to support agent distri-
bution, communication and specific agent activities. The
main prototype store created using our system presents
telecommunication products, like phones and faxes.

Sections 2 and 3 sketch the application domain and
the adaptivity functionalities offered by the Web store.
Section 4 describes multi-agent architecture. Sections 5
and 6 describe the management of multi-user access and
communication among system agents. Sections 7 and 8
specify the internal design of a SETA agent and the ex-
ternal software used to obtain specific system functional-
ities. Section 9 provides technical details and section 10

�
This paper describes the evolution of a system developed

at the CS Department of the University of Torino, within the
project “Servizi Telematici Adattativi”, funded by Telecom
Italia. We thank L. Console, L. Lesmo, C. Simone and P.
Torasso for their comments to this work.

compares our approach to the one of other commercial
Web-based systems. Section 11 closes the paper.

2 Application domain
We designed our system to satisfy personalization
requirements in the Business to Customer area of
e-commerce, focusing on the presentation of massively
sold, medium-complexity products, such as home ap-
pliances. In this area, personalizing the presentation of
goods is important because the customer has to select
items out of a rich pool of alternatives. This decision
depends on factors ranging from the price of the items to
their features and the customer needs a lot of information
to choose the item suiting her needs at best. Moreover,
depending on her interests, not all the product features
might be equally important: thus, the presentation can be
dramatically improved by focusing on the most relevant
information. Another reason for personalization is that
the customer might not be aware of all the functionali-
ties offered by a product class, therefore needing to be
assisted in the identification of the relevant goods. Thus,
the system should both personalize the presentation of the
catalog and elicit information about the user’s needs, in
order to actively suggest alternative products.

Although e-commerce has strong adaptivity demands,
it constraints the development of user interfaces in sev-
eral ways. For instance, Web stores must be accessible
via standard equipments, such as a personal computer, a
(usually slow) Internet connection and a Web browser.
Moreover, the time needed to browse the catalog and find
the needed products must be as short as possible and the
run-time efficiency of the system is essential. Finally,
Web store shells, such as SETA, must satisfy the require-
ments of the store designer, possibly reducing the over-
head in the configuration of a new Web store.

3 Adaptivity in SETA
A Web store catalog generated by SETA is organized as
a hypertext containing two main page types:



(1) Pages presenting product classes in a synthetic style,
specifying the main functionalities offered by the related
items: e.g., the description of the faxes product class
specifies that faxes transmit documents and some of them
also make photocopies. These pages also provide the user
with the hypertextual links for navigating the catalog.
(2) Pages showing detailed information about the items
of a product class. These pages present the features of-
fered by the individual items and provide the user with
rich interaction functionalities: e.g., they enable her to
ask for technical details, to create comparison tables “on
the fly” and to put items into the shopping cart.

SETA dynamically generates the pages of a Web store
catalog by exploiting personalization strategies for se-
lecting the information to be presented on the basis of the
user’s interests and familiarity with the products. More-
over, the system presents the available items for a prod-
uct class (e.g., the available fax models) sorting them
on the basis of the user’s preferences [Ardissono and
Goy, 2000]. During the interaction, the system moni-
tors the user’s selections to identify her needs for product
functionalities and suggest potentially interesting product
classes which the user has not visited. In this way, the as-
sistance is extended to the search for alternative products.

4 Architecture of SETA
The management of personalized interactions results
from the coordination of several activities like user mod-
eling, dynamic page generation, etc., requiring the ex-
ploitation of different knowledge and techniques; e.g.,
specific strategies are needed for tailoring layout, con-
tent and structure of the pages to the users. To address
such complexity, modular architectures, integrating com-
ponents devoted to the different tasks, are applied in the
design of adaptive systems on the Web. The exploita-
tion of agent-based technologies is even more effective,
as MAS technologies support the development of dis-
tributed systems where heterogeneous agents offer spe-
cialized services and interact to produce the overall ser-
vice in an open environment; e.g., [Jennings et al., 1998;
Giampapa et al., 2000; Macho et al., 2000].

In the development of our system, we have exploited
knowledge representation techniques and agent-based
technologies to improve the configurability of the toolkit
and its scalability. SETA is based on a multi-agent ar-
chitecture where specialized agents fill the main roles for
the management of personalized interactions with cus-
tomers; e.g., user modeling and generation of Web pages
[Ardissono et al., 1999]. Each agent handles multiple
user sessions and maintains session-specific data in par-
allel session environments. In the following we sketch
the most relevant agents.
At the Web store starting time, the Session Manager cre-
ates the SETA agents and provides them with the ref-

Dispatcher

DialSession-i DialSession-j

Actions

State-i State-j

Actions

Interpreter Interpreter

messages
from/to 
other 
agents

Dispatcher

PersSession-i PersSession-j

Figure 1: Parallel sessions within two SETA agents.

erences to the other SETA agents they might need to
send messages to. During the life-span of the Web store,
the Session Manager handles the communication with
the browsers, catching the user’s actions and forwarding
them to the Dialog Manager.
The Dialog Manager monitors the user’s actions and
maintains an interaction context storing information
about the navigation in the catalog; after each user ac-
tion, this agent choses the page to be produced next, asks
the Personalization Agent to generate it and forwards the
page to the Session Manager, to send it to the browser.
The User Modeling Component (UMC) maintains the
models of customers, revising them during the interac-
tion, on the basis of their behavior.
The Product Extractor supports the personalized sug-
gestion of goods by ranking items on the basis of how
strictly they match the user’s preferences.
The Personalization Agent dynamically generates the
code for the catalog pages by exploiting the information
about the user provided by the UMC and a set of person-
alization rules for selecting information about products
and type of description to be produced [Ardissono and
Goy, 2000].

5 Management of parallel user sessions
The multi-user access to the Web store is managed by
performing the session tracking within the Session Man-
ager (a Servlet), and forwarding the session-specific mes-
sages to the agents of the architecture, so that they can
process such messages and perform the related activities.

Each SETA agent is composed of an interface, the
“Dispatcher”, which handles the delivery and reception
of messages, and of a set of user-session agents which
maintain the session-dependent environments and carry
on the activities to be performed within each user ses-
sion; e.g., in Figure 1, the Dialog Manager and the
Personalization Agent use two user-session agents each:
“DialSession-i,j” and “PersSession-i,j”. Each dispatcher
acts as a wrapper and supports a uniform communi-
cation with the other SETA agents, by separating the
communication flows related to the active sessions and
forwarding incoming messages to the appropriate user-
session agent. Moreover, the dispatcher creates and re-
moves user-session agents, depending on the users con-
nected to the store. The presence of dispatchers and user-
session agents supports a simple management of session-
dependent activities: user-session agents have separate



UMC

Dialog Manager

HTTP

HTTP

Clients

user-a

user-b

Apache Web Server

Servlets

Ms Explorer

Netscape
Navigator

Unix workstation

Unix workstationUnix workstation

Extractor Agent

Windos NT machine

Products 
DBManager

Users 
DBManager

JDBC

JDBCRMI

RMI

Figure 2: Parallel threads in the management of multiple user sessions.

internal states and work in parallel threads of execution
within a SETA agent, performing services and activities
related to the active sessions in an independent way.

6 Communication among SETA agents
As the number of distinct roles in the system architecture
is fixed and well-determined, each agent knows which
agents have to be contacted for requesting services and
only needs their references; thus, there is no need to ex-
ploit middle agents: the Session Manager communicates
such references after the creation of agents.

Our approach is integrated in the environment of the
ObjectSpace Voyager tool [ObjectSpace, 2000], which
we used to wrap the SETA agents, enabling them to run in
parallel and to communicate via synchronous and asyn-
chronous messages. The messages can be mapped to
a subset of the KQML performatives. At the moment,
the SETA agents do not need to communicate externally,
therefore we did not comply with the FIPA ACL. Ac-
cording to the Voyager specification, the SETA agents
exchange messages whose parameters contain, respec-
tively, the name of the method to invoke and the array
of its arguments. Voyager transforms the parameters of a
message in a Java method call, so that the invocation of
methods offered by a SETA agent is straightforward.1

Each Dispatcher is a Voyager Object and handles the
incoming messages in parallel threads of execution, in-
voking the appropriate user-session agent to perform the
requested task. As more than one message related to the
same user session can be received at the same time, a
user-session agent can perform parallel tasks; this fact
raises mutual exclusion issues, resolved by inhibiting
concurrent accesses to shared resources by means of Java
synchronization facilities.

Figure 2 shows an example where two browsers (“user-
a”, represented as a dotted rounded square, and “user-b”,
a dashed one) access the system. The black oval rep-
resents the Servlet running within the HTTP server and

1For instance, an asynchronous message without return
value, such as the following one: OneWay.invoke(agtReceiver,
methodName, methodArgs); is translated by Voyager into:
agtReceiver.methodName(methodArgs[0],methodArgs[1]).

Dispatcher

- agentReferences
- userSessions
- init()
- addAgentReference()
- addUserSession()
- removeUserSession()
- forwardMessage()

Personalization 
Agent
- init()
- addUserSession()

Dialog Manager

- init()
- addUserSession()

UMC

- init()
- addUserSession()

...

- ...
- ...

Figure 3: Class hierarchy defining a SETA agent.

the grey circles represent SETA agents: we have shown
only the Dialog Manager, Extractor Agent and UMC. The
figure shows multiple threads, related with the two ac-
tive user sessions (“user-a”, “user-b”), running within the
HTTP Server and the SETA agents; the lines used to de-
pict the threads correspond to the related sessions.

7 Design of a SETA agent
Figure 3 shows the class hierarchy defining the agents:
the “Dispatcher” class specifies that a SETA agent has a
list of references to the SETA agents it may send mes-
sages to (“agentReferences”); moreover, it has a set of
user-session agents (“userSessions”). The class also of-
fers the methods for initializing a SETA agent (“init()”),
setting references of other SETA agents (“addAgentRe-
ference()”), creating and removing a user-session agent
(“add/removeUserSession()”) and forwarding messages
to a user-session agent, to process a session-dependent
request (“forwardMessage()”). The Dispatcher uses the
communication facilities offered by Voyager for interact-
ing with the other SETA agents.

Each SETA agent extends the “Dispatcher” class and
may override the definition of its variables and meth-
ods. This is very useful for the definition of the user-
session agents: to support the development of hetero-
geneous agents, specialized in the execution of differ-
ent tasks, the SETA agents have to exploit user-session
agents based on different technologies and designed fol-
lowing different approaches. For instance:

� In addition to the provision of services to the other
SETA agents, the activities carried on by the Dia-



log Manager and the UMC include, respectively, the
conditional execution of state transitions represent-
ing the evolution of the interaction with the user and
the autonomous management of internal tasks. To
satisfy these requirements, we have designed action-
based user-session agents, where the agent state and
the tasks to be performed are explicitly represented.
Tasks are described as actions with preconditions
determining the state conditions where they can be
performed. In the Dialog Manager, the declarative
representation of tasks supports an easy definition
of the admissible state transitions in the interaction
with the user. In the UMC, the presence of an in-
terpreter selecting and performing actions, given the
agent state, enables the agent to autonomously trig-
ger its own internal activities, as soon as they can be
performed [Ardissono et al., 2000].

� In contrast, the action-based formalism is not suit-
able to other SETA agents, such as the Personaliza-
tion Agent. In fact, the offered services can be han-
dled by user-session agents responding to method
invocations associated to potentially complex, but
deterministic, tasks. Moreover, as such services
must be based on the most recent information about
the interaction with the user (situation of the user
model, etc.), these agents do not need to explicitly
manage an internal state: in fact, they have to re-
trieve such information from the other SETA agents,
at each incoming request.

Figure 4 shows the class hierarchy of the action-based
user-session agents defined in SETA. The “ActUserS-
essionAgent” class specifies their variables and generic
behavior: it defines an explicit “state”, representing
the session-dependent data, an action list (“actionList”)
specifying the list of actions they can perform, and a
pending list (“pendingList”) used to store the suspended
tasks. Moreover, the class offers an initialization method
(“init()”) and the “interpreter()”. The user-session agents
extend this class by redefining their own state (which may
contain specific session-dependent data) and the action
list, where their actions are listed. For clarity, the figure
also shows the “Action” class, which provides the generic
definition of an action specifying the basic components,
i.e., the action type, preconditions, body and the method
to check the preconditions, when the action is selected
for execution; see [Ardissono et al., 2000] for details.

8 Integration of heterogeneous software
We have integrated in the SETA agents external software
tools for the management of very specific tasks. The
modularity of the architecture enabled us to make them
harmonically cooperate with the other components of the
SETA agents. For instance, the UMC exploits the JESS
rule-based system [Sandia, b] to maintain a structured

ActUserSessionAgent

DialSession UMCSession

- state
- actionList
- pendingList

- init()
- interpreter()

- state
- actionList

- init()

- state
- actionList

- init()

Action
- type
- preconditions
- goal

- body ()
- checkPrecond ()

Figure 4: Class hierarchy defining an action-based user-
session agent.

representation of the interaction context and to produce
a synthetic description of the user’s behavior: such de-
scription is then used within a Bayesian Network to rea-
son about the user’s interests and preferences.

The Natural Language Generator module of the Per-
sonalization Agent exploits JTg2 [DFKI and CELI, 2000]
to generate the linguistic descriptions to be included in
the Web pages presenting products and items. The JTg2
engine performs efficient and flexible generation in natu-
ral language. In its simplest conception it takes an object
as input and returns a string. The crucial source of infor-
mation is represented by the grammar rules: to integrate
the engine in a new application, rules mapping the in-
put object to the string have to be defined. The rules are
augmented “if-then” statements spanning the input object
top-down, left to right; to perform their task, the rules can
access external modules that can be plugged into JTg2 to
increase its own flexibility. In SETA, we have designed
and implemented a set of NL grammar rules and two ex-
ternal modules: a test performer, which enables the en-
gine to perform complex tests on the input object or on
external sources, and a parameter getter, which enables
the insertion of strings based on data coming from exter-
nal sources. The input is a complex Java object repre-
senting a product and the output is the NL description to
be included in the Web page. The grammar rules are used
to fill in the slots in the templates defining descriptions.
JTg2 offers applicability tests to specify when a rule can
be applied. In SETA, such tests are handled by the test
performer and enable the grammar rules to be partially
context-sensitive. In fact, they are essential to provide
the NL Generator with the personalized content of the
descriptions. Such content is represented by a selection
of features, provided as a sorted list by the Personaliza-
tion Agent on the basis of the contents of the user model.
The applicability tests are used in SETA to integrate con-
tent personalization and NLG. In fact they make the NL
Generator sensitive to the variation of input data (rep-
resented by the personalized list of product features to
be described) and directly to the data in the user model;
the NL Generator module, generates different linguistic
descriptions, depending on the user’s domain expertise.
The use of NLG techniques reduces the amount of pre-
compiled information to be defined at configuration time,



as the information about products is stored in a unique
internal format. Moreover, it supports the generation of
multilingual text (Italian and English) and the production
of descriptions tailored to different user characteristics.

9 Technical details
The SETA system is implemented in Java (JDK 1.2) and
is based on a Three-Tier architecture. The first tier runs
on standard Java-enabled browsers, such as Netscape
Navigator and Microsoft Explorer. In the second tier, the
communication with the Web is supported by the Apache
HTTP Server; moreover, we have exploited the function-
alities offered by the Servlets to track the interaction with
browsers. The bulk of the system resides in this tier and
runs on a Unix environment: the SETA agents are dis-
tributed on two workstations for experimental purposes.
The third tier includes the databases storing data about
products and users and resides on a Windows NT com-
puter. As shown in Figure 2, the communication between
the second and the third tier is based on RMI (for histor-
ical reasons), while the agents in the middle tier commu-
nicate by exchanging Voyager messages.

10 Comments
10.1 Other three-tier architectures
As n-tier architectures are a popular solution for complex
Web-based systems, the relation between our architec-
ture and the other approaches has to be discussed, with
specific reference to frameworks like J2EE [Sandia, a],
which are industry standards for developing Web-based
systems. The most important differences are in the orga-
nization of the middle tier of such architectures:

� The middle tier of SETA exploits Servlets for the
communication with the Web, while it relies on the
facilities offered by Voyager to exploit permanent
distributed objects (SETA agents), which cooperate
to carry on the interaction with the user. The whole
logic for the generation of the Web pages resides in
such permanent objects, with a specific object, the
Dialog Manager, in charge of the selection of each
interaction step, i.e., of choosing the next page to
be produced, on the basis of the whole interaction
context and of the last action performed by the user.

� The middle-tier of the J2EE framework uses Java
Server Pages (JSPs) for the communication with the
Web, and it uses Enterprise Java Beans (EJBs) to
implement the other modules of the system.

The combined JSP-EJB paradigm is suited to a page-
centric Web based system, where the interaction with the
user is mostly based on the presentation of forms to be
filled in and of pages containing the results of a (possibly
complex) query. The typical content of such pages is the
presentation of the results of a query to a database.

In contrast, the interaction with a Web store developed
using SETA is not limited to a question-answer sequence:
the user can navigate the catalog handling parallel con-
texts, searching for goods addressed to several beneficia-
ries during the same session. The system maintains paral-
lel navigation contexts and supports the user in the switch
among them. Moreover, the system can take the initiative
and suggest alternative products to be analyzed, possibly
interrupting the user’s navigation. All these functional-
ities require the presence of an agent specialized in the
management of the dialog with the user: this agent has
to identify the next interaction step by using a declarative
representation of the admissible turn sequences (e.g., a
Finite State Automaton).

Of course, within a commercial application develop-
ment, JSPs have a noticeable advantage with respect to
pure Servlet-based approaches: the exploitation of JSPs
facilitates the cooperation between Web authors and Java
developers, letting Web authors concentrate on the de-
velopment of HTML templates within the JSPs and the
Java developers write the EJBs implementing DB access,
legacy system interfaces, and so forth.

10.2 Technical user-interface issues
Although the exploitation of Applets has enhanced the
functionalities offered by the user interface of SETA, we
have experienced serious drawbacks. The most relevant
problem is the fact that, to run an Applet containing non
basic User Interface components (SWING), the browsers
need to use plug-ins, sometimes incompatible with those
installed on the computers. This requirement could make
the access to the Web store complex and time-consuming,
seriously reducing the portability of the system.

A second drawback concerns the combined use of
Servlets and Applets within a system. On the one hand,
the Servlets used to send HTML code to browsers can
only receive String return values; on the other hand, for
security purposes, Applets downloaded outside a LAN
can only return values to the same HTTP Server from
which they are downloaded, and firewalls forbid the com-
munication with RMI servers. Together, these constraints
impose that, whenever complex objects have to be re-
turned by an Applet as the results of the decentralized in-
teraction with the user, different Servlets within the same
HTTP Server have to be exploited in the same applica-
tion: one Servlet will forward Web pages to the browser
and the other one will catch the complex return values
produced by Applets. This approach has a subtle impact
on the capability to track the state of the user sessions be-
cause it introduces parallel interaction flows between the
browsers and the HTTP Server.

11 Conclusions
We have provided architectural and technological in-
sights of SETA, a prototype toolkit for the development



of adaptive Web stores developed at the CS Department
of the University of Torino. While this architecture has
been described at the abstract level in [Ardissono et al.,
1999; 2000], this paper specifies the implementation of
the system and the class hierarchy underlying the defini-
tion of the agents composing the multi-agent architecture.

In the development of our system, we exploited a basic
and light agent-building tool, such as Voyager, to manage
a seamless communication among agents, but we pre-
ferred to design our own infrastructure for developing the
system agents because, as SETA is a specialized archi-
tecture for the creation of Web stores, it does not need
the full capabilities offered by general-purpose agent-
building tools, which typically provide facilities for agent
communication, coordination, self-diagnosis, mobility,
and many other functionalities. For example, SETA does
not support the development of open systems interacting
with middle agents. Thus, popular coordination models,
such as ABS [Barbuceanu and Teigen, 1999], exceed the
demands of our application example, because they are fo-
cused on a more complex issue, i.e., describing the exter-
nal behavior of social agents. Other tools for the devel-
opment of multi-agent systems, such as DECAF [Graham
and Decker, 2000], seem to exceed our needs as well, as
they support complex activities such as the coordination
of a multiagent system to reach non-local goals and real
time flexibility in the execution of tasks. In our system
one agent is associated to each main role of the archi-
tecture; thus, we do not need to exploit schedulers for
distributing tasks among alternative agents.

Scalability is a critical aspect and concerns several is-
sues, among which load balancing. Being SETA a pro-
totype, we did not explicitly address such aspect in our
implementation; however, this problem can be bypassed
by using the Voyager 3.3 Professional edition, which pro-
vides services that would take care of this issue.

We are now working to enhance the configurability of
SETA, to support its instantiation on new domains for
creating new Web stores, or generic recommender sys-
tems. A graphical tool currently enables the store de-
signer to introduce the knowledge about customer classes
(Stereotype KB) without writing any Java code. More-
over, the knowledge base containing information about
products and their features, is automatically created by
the system, given the structure of the Products DB (which
contains a classification of items in product classes). Fi-
nally, we are integrating XML-based representations of
the content of the Web pages generated by the system:
different page types are defined in a DTD (Document
Type Definition) and XSLT (eXtended Stylesheet Lan-
guage Transformations) are used to produce the final user
interface, on the basis of the personalized content of the
page, encoded as an XML object: in the simplest case,
such interface is generated as HTML code.

References
[Ardissono and Goy, 2000] L. Ardissono and A. Goy.

Tailoring the interaction with users in web stores. User
Modeling and User-Adapted Interaction, 10(4):251–
303, 2000.

[Ardissono et al., 1999] L. Ardissono, C. Barbero,
A. Goy, and G. Petrone. An agent architecture for
personalized web stores. In Proc. 3rd Int. Conf. on
Autonomous Agents, pp. 182–189, Seattle, WA, 1999.

[Ardissono et al., 2000] L. Ardissono, A. Goy,
G. Petrone, and M. Segnan. Configurability within a
multi-agent web store shell. In Proc. 4th Int. Conf. on
Autonomous Agents, pp. 146–147, Barcelona, 2000.

[Barbuceanu and Teigen, 1999] M. Barbuceanu and
R. Teigen. Higher level integration by multi-agent
architectures. In P. Bernus, ed., Handbook of In-
formation System Architectures. Springer Verlag,
1999.

[DFKI and CELI, 2000] DFKI and CELI. JTg2.
www.celi.it/english/tecnologia/tecLing.html/, 2000.

[Giampapa et al., 2000] J.A. Giampapa, M. Paolucci,
and K. Sycara. Agent interoperation across multia-
gent system boundaries. In Proc. of 4th Int. Conf. on
Autonomous Agents, pp. 179–186, Barcelona, 2000.

[Graham and Decker, 2000] J. Graham and K. Decker.
Tools for developing and monitoring agents in dis-
tributed multi agent systems. In Proc. of the
Agents’2000 workshop on Infrastructure for scalable
multi-agent systems, Barcelona, 2000.

[Jennings et al., 1998] N.R. Jennings, K.P. Sycara, and
M. Wooldridge. A roadmap of agent research and de-
velopment. In Autonomous Agents and Multi-agent
Systems, pp. 275–306. Kluwer Academic Publishers,
Boston, 1998.

[Sandia, a] Sandia National Laboratories. Java 2 Plat-
form Enterprise Edition. http://java.sun.com/j2ee/.

[Sandia, b] Sandia National Laboratories.
JESS, the Java Expert System Shell.
http://herzberg.ca.sandia.gov/jess/.

[Macho et al., 2000] S. Macho, M. Torrens, and B. Falt-
ings. A multi-agent recommender system for plan-
ning meetings. In Proc. of the Agents’2000 workshop
on Agent-based recommender systems (WARS’2000),
Barcelona, 2000.

[ObjectSpace, 2000] ObjectSpace. Voyager.
http://www.objectspace.com/index.asp, 2000.

[Riecken, 2000] D. Riecken, editor. Special Issue on
Personalization, volume 43. 2000.


