A Framework for the Server-Side Management of

Conversations with

Web Services

Liliana Ardissono, Davide Cardinio, Giovanna Petrone and Marino Segnan
Dipartimento di Informatica, Universita di Torino
Corso Svizzera 185
10149 Torino, Italy

{liliana, giovanna, marinp@di.unito.it

ABSTRACT

The emerging standards for the publication of Web Servioe$oa
cused on the specification of the static interfaces of theatipas
to be invoked, or on the service composition. Few effortehzen
made to specify the interaction between a Web Service ariddie
vidual consumer, although this aspect is essential to tbeessful
service execution. In fact, while “one-shot” services mayify-

voked in a straightforward way, the invocation of servicsguiring

complex interactions, where multiple messages are needzmit-

plete the service, depends on the fact that the consumezatsspe
business logic of the Web Service.

In this paper, we propose a framework for the server-side-man
agement of the interaction between a Web Service and its con-
sumers. In our approach, the Web Service is in charge oftassis
ing the consumer during the service invocation, by manatieg
interaction context and instructing the consumer aboutoier-
ations that can be invoked and their actual parameters, cit ea
step of the conversation. Our framework is based on the exgha
of SOAP messages specifying the invocation of Java-basexop
tions. Moreover, in order to support the interoperabilifytvother
software environments, the conversation flow specificaisoex-
ported to a WSDL format that enables heterogeneous consumer
invoke the Web Service in a seamless way.

Categories and Subject Descriptors

D.2.11 [Software Engineering: Software Architectures; D.2.12
[Software Engineering: Interoperability

General Terms
Languages, Standardization

Keywords

Service Oriented Architectures, Tools and Technologies/eb
Services Development

1. INTRODUCTION

Web Services are subject to several limitations that retheie
applicability to realistic domains. For instance, the egeg ser-
vice publication standards, such as WSDL [32], support flees
ification of the static interfaces of elementary servicesweler,
these standards do not enable the service provider to gpeeif
flow of the operations to be invoked by the consumer during the
Copyright is held by the author/owner(s).

WWW2004May 17-22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

service execution. Therefore, the management of the tttera
between the consumer and the service provider is difficaless
very simple tasks are requested. Moreover, these stansigpgsrt
the invocation of operations characterized by very spesifjoa-
tures that fail to enable the peers to dynamically speciéyattual
parameters of the operations to be performed. Althoughighist

a problem when the requirements for the service can be sgecifi
by the consumer in a pre-determined way, it challenges the pr
vision of highly interactive services, such as those sugpmpthe
customization of complex services and products. In facthat
case, the Web Service has to identify the product featurdseto
configured at run time, depending on the product structudeoan
the consumers’ requirements.

The current work on workflow management is focused on the
service composition in the Web but most of the proposed aures
assume a rather simple type of interaction with the supplidrose
services have to be invoked. For instance, BPELAWS [13] sup-
ports the specification of complex service compositionsaffets
advanced solutions to the management of transactions ftifpd-
ure recovery during the service execution [14]. Howeves, d6r-
vice compositions are defined as aggregations of standadl\WS
operations with fixed parameters. Therefore, the servioeedy-
raphy has to be specified at the same level of detail. Diftdrem
BPEL4WS, Maamar etal [22] specify a service compositiomia
work that also handles conversation aspects, but they aceowed
with the establishment of the interaction with the servioevjaler,
more than with the management of the interaction during éne s
vice execution.

In order to make the service execution possible even wheinthe
volved suppliers require complex interactions, the intiocehas to
be modeled as a conversation where the peers may exchange sev
eral messages before the service is completed; e.g., eeggrts
acquisition, negotiation and so forth. For instance, dutire inter-
action with a Web Service supporting the configuration of ioned
complexity products, the specification of the item featuoas re-
quire more than one step; moreover, failures may occur awel ha
to be repaired before the solution for the consumer is géeatra
Finally, in some cases, the Web Service may require to sdsjpen
interaction, e.g., waiting for a sub-supplier or a humanrafoe to
contribute to the generation of the solution.

In this paper, we present a framework for the management of
the communication between Web Service consumers and gravid
The conversation model we propose supports complex iritensc
where several messages have to be exchanged before thessrvi
completed, and the conversation may evolve in differentsyeg-
pending on the state and the needs of the two participanthiawe
defined our model by taking the speech-act theoretical mofiel

dialog management as a starting point [26, 12], but we hawplsi
fied it in order to meet the scalability and applicability ueg@ments
of Web Services. Our proposal has the following peculiesiti

e The conversation model clearly separates communicative be
havior from the domain-level actions that the conversation
participants perform during the service execution.

In the conversation flow specification, the signatures of the
operations admit generic arguments that can be instatitiate
with the actual parameters during the service execution.

Our conversation model introduces explicit methods that en
able the Web Service provider to guide the consumer during
the service invocation, e.g., by informing it about the alge

to which the generic parameters of the operations have to be
bound.

Our contribution concerns the service execution, leaviegervice
discovery apart, as this represents a separate, compleiyado
be carried out by exploiting UDDI registries [30] and meitiat
agents [21].

The remainder of this paper is organized as follows: Section
2 provides some background about the dialog models based on
Speech Act Theory and discusses some issues that limitapeir
plicability to Web Services. Section 3 describes the apgrda
conversation flow specification we propose and Section 4ptes
our conversation management framework at the conceptuell le
Section 5 sketches the infrastructure for the developmenbe-
versational Web Service providers and consumers we ardéogeve
ing. Section 6 addresses the exploitation of our frameworknf
the viewpoint of the Web Service consumer. Section 7 conspare
our proposal to the related work and Section 8 concludesaherp

2. BACKGROUND

Starting from the approach proposed in the Speech Act Theory
[7, 26], the communication between agents has often beeelewd
by exploiting communicative actions, called speech abtg,define
the roles (speaker, hearer) played by the participants epakate
the illocutionary force of the agents’ messages from theaidgvel
actions underlying the execution of the conversation turns

As the speech acts represent individual communicativerssti
various approaches have been proposed to model inter-egent
munication at the conceptual level. For instance, in [28]itEi
State Automata have been applied to specify the possiblesegs
of conversation turns to be performed. Moreover, plan-thage
proaches have been introduced to model goal-oriented tmetzand
to separate the management of the conversational behestiotiie
domain-dependent activities carried out by the agentsl1225].

Two of the most important contributions provided by the S$ipee
Act Theory and the related dialog management models arethe i
troduction of explicit conversation roles played by thesharcting
agents and the clear separation of communicative and deleah
behavior. Specifically, the dialog management models asshat
the agents interact with each other to coordinate the doieael
activity they are cooperating at. These contributions Heaen rec-
ognized as basic elements for the management of the comaaunic
tion between distributed processes and, especially indbearch
about Multi-Agent systems, speech acts have been wideljeapp
to manage the inter-agent communication. For instancethsee
KQML [16] and the FIPA ACL [17] agent communication lan-
guages.

Although the speech-act based languages have been sutlyessf
applied to support the communication between large, bugeclo

communities of interacting agents, we believe that theyharely
applicable to Web Services, given the scalability and appiliity
requirements of the open Internet environment. The poittias

in order to exploit Web Services in an effective way, the consrs
should be able to start several e-business interactiomsheiero-
geneous providers, also outside well established B2Boeksttips.
This means that the management of the communication between
Web Service consumers and providers should be loosely edupl
and that the conversation management should be lightweaght
least at the consumer side. Unfortunately, the traditispakch-act
based approaches fail to meet these requirements in segpeaits.

In particular:

e From a pragmatic point of view, the imposition of complex
speech acts on Web Services is not realistic because current
services are published by means of very simple languages
such as RPC invocations or WSDL operations.

e At the conceptual level, these approaches propose a mixed-
initiative model of dialog management, opposed to the tlien
server interaction adopted in the interaction with Web Ser-
vices. In order to correctly interact with each other, therdg
have to agree on a shared interaction protocol, to sepgaratel
handle the interaction context and to autonomously regulat
the turn management activity. Each agent is expected to
maintain an internal representation of the information ex-
changed during the conversation and to exploit this inferma
tion to track the evolution of the conversation with respect
to the agreed protocol. In the world of Web Services, this
requirement raises serious interoperability issues. df) fa
order to track the evolution of the conversation and to selec
at each step the next speech act to be performed, the con-
sumer has to locally execute a copy of the possibly complex
conversation management tool (e.g., a finite state autarnato
employed by the provider.

In the rest of this paper, we describe a conversation modehiif
dresses these requirements while preserving most of theepts
introduced in the speech-act based dialog management sadtlel
define a flexible, but simple representation formalism st
the specification of the correct sequence of turns to be exgth
between Web Service provider and consumer without the eaerh
of the pure speech-act model. Moreover, being based on thegem
ing standards for the publication of Web Services, our maodel
be applied to current Web Service providers and consumess in
reasonably straightforward way.

3. CONVERSATION FLOW
SPECIFICATION

One way to satisfy the scalability and interoperability uiee-
ments described in the previous section is to place the eaerh
of the communication management on the service provideghwh
should assist the consumers during the service invocagign, by
controlling and guiding the invocation of the operationseath
conversation step. Given the public specification of theagens
offered by the service provider, the provider should maingelo-
cal interaction context for each active conversation. Muoee, at
each conversation step, the provider should enrich theoauatb
messages for the consumer with contextual and turn manageme
information, in order to make the consumer aware about tige el
ble turns it may perform. In this way, the consumer can piadie
to the conversation by interpreting the instructions ierees and
selecting the operation to invoke next.

LR
Initinteraction ‘/2-\ Ref usal 1 =_,3\
1) SendMC, S, g SendM S, C, KQ(res)) < ’l
I ni t Conversation()) .
Agr eenent Ref usal 2
SendM S, C, &K,
nex{V(Ops, ctx) SendM C, S, KQ(res)))
Error >/, _Setbata
SendM S, C, Faul t (res, SendM C, S, Set Dat a(ar gs
conment), next Qps, ct x) MG S, (args)) 7"\
5 10]
n?®
Confirmation Accept
SendM S, C, OK(res)
next 0ps, ot x) endM C, S, OK(res))
Pr oposePr oduct ‘fg
SendM S, C, Recei veResul t (prod),
next Ops, ct x)
Suspendl nt eracti on2
Resunel nteractionl Unr ecover abl eEr r oF Request (C, S, Suspend)
SendM S, C, Resune, SendM S, C, "*a
next Ops, ct x) Faul t(res, corment))-_ 7} Resunel nteraction
. Nat SendM C, S, Resune,
Suspendl nteractionl next Qps, ct x)

Request ('S, C, Suspend)

Figure 1: Conversation flow specification of a product custornization Web Service.

This approach explicitly puts the service provider in cohof e Operation operation that the sender invokes on the recipi-
the interaction, with the following advantages in the mamagnt ent. It should be noted that the actor of the requested oper-
of the overall service: ation may be omitted because it coincides with the recipient

of the message. In other words, each message is aimed at
requesting that the recipient performs the operation tedor
as the argument of the message.

e At each conversation step, the consumer is guaranteed to in-
voke an operation that is eligible in the provider’s bustnes
logic, without managing the interaction context. This aspe
reduces the probability of a failure in the overall service. o NextOps list of the possible continuations of the conversa-

tion. As the service provider has the control of the inter-

action, this argument is only present in the messages to be
received by the consumer. The argument includes the set of
alternative operations offered by the provider which the-co
sumer may invoke in the next conversation step. For each
operation, the actual arguments are reported, togethér wit
theirldomains, i.e., the sets of values that the arguments ca
take:

¢ In the dynamic specification of the operations that can be
invoked, a highly interactive provider may also specify the
actual parameters of these operations. For instance, geonfi
uration Web Service may guide the consumer in the choice
of a large number of features by specifying, at each step, the
features to be considered and the admissible values that the
consumer may select.

With respect to the original representation of Speech Agts,
propose to simplify the specification of the interaction flojymod-
eling the interaction turns as generic conversationaviéiets where
the performed speech act (e.Bequest, Informetc.) is not speci-
fied. Moreover, in order to assist the consumer in the invooaif
the operations offered by the service provider, the intevadurns
have to be enriched with the necessary turn-managemenmiriafo
tion. Each conversational action is thus represented ang@ifed
speech actyendMmessage) where the sender asks the recipient to
perform the operation specified as an argument. The corigrab
actions have the following structure:

SendM(sender, recipient, operation, nextOps, ctx)
where the last two arguments are optional. The argumentseof t

actions have the meaning reported below. The domain of a variable may change during the interactidgh wi
]) the Web Service and thus has to be specified each time thékearia
e Sender message sender, which may be either the consumer occurs as an argument of an operation. For instance, duniag t
C, or the service provides. configuration of a product, the set of admissible featureeslis
progressively narrowed by constraint propagation (domedgtuc-
e Recipient receiver of the message (similar). tion).

e Ctx context argument, storing information about the state of
the interaction. Similar to theextOpsargument, thetx one
is only present in the messages directed to the consumer. The
structure of the context argument depends on the applicatio
domain. For instance, the context object can be empty in
simple and deterministic interactions, where the consumer
has at most one conversation turn to choose from, i.e., the
next operation argument of tfgendMmessage includes at
most one element. We will not consider the context argument
in the rest of this presentation.

The conversation flow of a Web Service can be specified by defin-

SendM nessage:

ing the sequence of (simplified) speech acts that each czatian operation = Faul t (nrGear

partner has to perform. At the conceptual level, this candreed "inval i d parameter val ue"):
by applying Finite State Automata (FSA), which ar a simplellw next Ops = {Set Feat ures(nrGear);

known and easily understandable formalism, and have be#iedp Post poneSet (nr Gear) ;

in several proposals for the management of Web Service abore Suspend(id)};

raphy; e.g., see [8, 9]. ctx = null;

We have selected the customization of bicycles as a samplie ap
cation domain to present our conversation model. Figureotvsh
the FSA representing the conversation flow specificatioheer-
vice. The states of the automaton represent the dialogssttte
plain circles denote the conversation states and the thekstate -
1) is the initial state. The thick dotted states (3, 7, 10)faral N another and thus they cannot be concurrently satisfigd. |
states of the dialog. The conversation turns are represastsend however, the cust.omlzatlon process succeeds, the provier
messagegendN activities specifying the related arguments: mes- tinues the interaction by proposing t_he produ%to(oosgProduc)t
sage sender, recipient, invoked operation, and so fortle tliims The consumer may react in thrge d|fferelnt ways. If it accéps
to be performed by each of the peers are specified as labdig of t proposal fccep), the conversation t.erlmmate.s; nqte that a pay-
arcs. The states having more than one output arc represeat si ment phase should start, but we omit it for simplicity. If tten-

tions where alternative turns may be performed by the peaticél sumer rejects th? pr oposdtéfusalg, the conver.sation. goes back
that we have also labeled the arcs with a boldface identifisirh- to the data acquisition phase to start the configuration offem

plify the identification of the conversation turns in thetreSthis product. OtherW|.se, the consumer might sus.pend the interac
presentation. (Suspendinteraction2 and resume it later on
The interaction starts with the consun@te.g., the personal as- (Resumeinteraction2 This alternative behavior enables the con-

sistant of an end-customer) asking the service progdesstart the sumer t.o submit the prppogal to the end-customer and getithe a
interaction (nitinteraction: SendM(C, S, InitConversatiyn The thorlz_atlon to accept/reject it. . .

provider may accept to perform the requesgieement: SendM(S, LooIgng at the FSA, we can see that wo k|nd§ of object-lepel o
C, OK, nextOps, cty)or rejectit Refusall: SendM(S, C, KO(rek)) erations may be the arguments of a conversation turn:

If the provider accepts the interaction, a data acquisitibase
starts during which the consumer specifi§gtDataarc) the end-
customer’s data and her/his requirements on the produa to$-
tomized. The consumer informs the provider about thesestppe
information by invoking theSetData(argspperation on the list of
data/features to be set. For instance, the consumer migkiese
number of gears of the bicycle equal to 4. Notice that the waoes
may retrieve this list from theextOpsargument of the last message
it received.SetDatais an example of the generic kind of operation
we have introduced in our conversation model. Specific#tiy,
args parameter does not refer to any particular end-customer dat

or product feature. When the consumer invokes the opegation messagesent by the service provider to acknowledge the service
binds the parameter to the actual list of features to bé set. 9 y : P 9
execution and communicate results.

When the consumer specifies a set of data, e.g., some features Figure 2 shows a samplBendMmessage sent by the service
of the bicycle, the service provider may react in differertys. provider to the consumer during the configuration of a biey¢h

Specifically, it may: the message, the provider sends a failure message:

e Confirm the successful data acquisiticdoffirmationarc) Fault(nrGear, “invalid parameter value”) This message notifies
and enable another invocation of tBetDataoperation. the unsuccessful execution of a previously invoked opematihe
consumer previously set tmeGear parameter to an invalid value.
« Notify the consumer that there was a failure in the product The provider also specifies that the consumer may inBgt®ata
customization proces$dilure) and enable the consumer to to set the number of gears agaifastponeSeb postpone the set-
select other values for the conflicting features. ting to a later stage of the interaction, or it may suspendtmger-
sation.

Figure 2: SampleSendM message.

e Domain-dependent operatiansuch asSetData offered by
the service provider to execute its service.

e Domain-independent operationsuch asnitConversation
OK, Fault, SuspendResumendReceiveResylfocused on
the coordination of the conversation between the partners.

Except for special cases, such laiConversation the domain-
independent operations have to be offered by the provideretls
as by the consumer. For instance, the consumer must offer the
ReceiveResuliperation, which corresponds to the WSbutput

e Notify the consumer that the interaction is suspended
(Suspendinteractionl and resume it later on
(Resumelnteraction1The possibility to suspend and restart

4. INTERACTION MANAGEMENT

the interaction enables the service provider to syncheoniz In order to manage the conversation at both sides, the tws pee
with its own sub-suppliers, if necessary. should run, respectively, @onversation Manageand aConversa-

tion Clientmodules. The former is employed by the provider to
Finally, the data acquisition phase can end negatively sitipely. manage the interaction with the consumers, which would ceily
The first case happens when an unrecoverable error occurs; fo on the lightweight Conversation Client to parse the incantires-
instance, the end-customers’ requirements are incon@atitth sages and return the responses. The situation is showntirefFg

2The selection of the feature values would not be possibleowit that sketches the architecture of the proposed framework.
a suitable binding phase, where the consumer analyzesdbagir Notice that each turrlendMmessage) is an asynchronous mes-

structure specified in the Web Service ontology. Sharingtbe- sage that one of the participants should send to continueother-
uct ontology is thus necessary to let the consumer understen sation. If the message does not reach the recipient. theaatien
individual product features to be set. See Section 6. has to be suspended, by the conversation module, with a titne o

Rfiliest

Egégonse

Sane{sation
en

consuner

_) Y,

7/ Vb server

WSDL éeryice
description

service provider

Suppl i er

Figure 3: Interaction with a web service provider.

4.1 Conversation Manager

The Conversation Manager should exploit a conversation au-
tomaton, such as the one depicted in Figure 1, to controléhe s
vice provider's behavior. For each interaction sessioi\&iton-
sumer, the Conversation Manager of the provider should taiain
the active state of the interaction as a description of titestual
information concerning the specific conversation, movinggtate
from the initial state of the automaton to the other oneseddjng
on the messages it sends or receives. The Conversation ktanag
would also be in charge of computing the next operationsl-avai
able to the consumer and to include them in the outbdsedM
messages.

The operations that the consumer may perform in the next con-
versation turn can be identified by performing a look-ahestthé
conversation automaton, starting from the active statéadp the
arcs of the automaton are associated to the signatures optre
ations to be invoked. However, if the next operations havesge
parameters, such as tBetDataoperation of the product configura-
tion service, their signature is underspecified and the Esagion
Manager has to retrieve the actual parameters to includeinext
operations specification. A highly interactive servicevider has
thus the responsibility of exposing the list of data that rbapec-
ified, at each step of the interaction.

We are not concerned about how the service provider addresse
this issue because it strictly depends on the provider'deampn-
tation and has thus to be solved case by case. We want however
to point out that the inference engines typically exploitedarry
out problem solving activities are designed to stop andtiprethe
calling modules when they need to set some variables in aoder
carry the problem solving activity out. For instance, thefiu-
ration systems based on constraint satisfaction, sucheald @G

operations, such aSuspendResumg ReceiveResyltetc.,
that have to be offered by the consumer in order to manage
the interaction with the service provider.

2. Interpreting the inbound messages that the consumevesce

from the service provider. The Conversation Client exgact
the eligible continuations of the interaction by parsing th
nextOpsargument of the inbound messages. For each oper-
ation, this list reports the parameters and their domains. |
[24, 5], we provide an XML schema specifying the format
adopted in the definition of the operations. Notice thategiv
the list of alternatives, the consumer is responsible foosh

ing the most convenient option and deciding the detailsef th
invocation, depending on its own business logic.

. Guiding the consumer in the instantiation of the seleofed

eration. When the consumer sets the values of the parameters
of the invoked operation, the Conversation Client performs
type checks to ensure that the selected values belong to the
associated domains. The Client does not finalize the instan-
tiation of the operation until all the parameters are cdlyec

set by the consumer.

4. Generating the outbourg8endMmessages and sending them

to the service provider.

JConfigurator [20], explores the solution space by germegaiar-
tial solutions, which can be further specified, until all trgiables
of the problem are instantiated, in an interactive way. Biryj,
BDI agent development tools, such as JACK [2], support tivelde
opment of agents that can interleave planning activiti¢h séns-
ing actions, aimed at acquiring the values of their unbouad v
ables.

Item 3 deserves further discussion because it plays aaritide
in the enforcement of the correct invocation of the provideere-
fore reducing the occurrences of failures in the serviceeien.
In fact, the consumer might make a mistake when binding the ar
guments of the object-level operation to be invoked. Faiaimse,
the SetDataoperation could be invoked by specifying values that
violate the parameter domains, with a consequent failutiearex-
. . ecution of the operation at the provider side and the needno ¢
4.2 Conversation Client pensate the failure. Of course, although the local chegiysstithe
The Conversation Client is a lightweight conversation comp repair to several problems within the consumer, they do reaemt
nent and has to be downloaded by the consumer before invokingthe failure of the overall product customization. Problemight
the Web Service. This component enriches the consumenscon occur, for instance, if the overall set of features specifiadng
sation capabilities with the following functionalities: the customization of the product is inconsistent. This galrtgpe
of failure is detected at the service provider side and isdleah
1. Establishing an endpoint to catch the incoming messages.as specified in th&lnrecoverableErrottransition of the automaton
The Conversation Client provides the domain-independent depicted in Figure 1.

5. AFRAMEWORK FOR THE
SERVER-SIDE MANAGEMENT OF
COMPLEX INTERACTIONS

We are developing a set of Java libraries aimed at facitigati
the development of a Conversation Manager and a Convarsatio
Client modules supporting the communication between Web Se
vice providers and consumers. For the implementation, ee®s
ploiting the Sun Microsystem Web Service Developer Pachk [29
and in particular the JAXP-RPC package of the Pack.

only be run in a Java-based environment. The idea is therefor
that other versions of the Client should be implemented ¢oige
advanced conversation capabilities in different envirenta such
as, for instance, .Net.

5.1 WSDL Specification of Operations

It should be noticed that JWSDP allows the development af Jav
code that is automatically translated to SOAP messagesfiolg
the WSDL specification. In our work, we have exploited thia-fe
ture to support the interoperability of a Java-based WelviGer

We have developed a Java-based Conversation Manager modulgyith consumers developed in heterogeneous environments.

that enables the Web Service provider to control the comoauni
tion with the interacting consumer applications. The pegabar-
chitecture of the Web Service Provider is shown in Figure 3. A
Servlet supports the (SOAP) HTTP-based communication théh
consumer, by catching the incoming requests and forwarttieig

to the Conversation Manager for their management.

The Conversation Manager is the core of the Servlet listenin
to the incoming requests, invoking the appropriate comptng
execute the services and sending the SOAP response messages
the consumer applications. Depending on the binding to teb W
Service provider’s business logic, this module can invaKernt
types of components to provide the service. For instancer-a s
vice could rely on an internal component, such as Componént A
Figure 3, or by an external Supplier.

The Conversation Manager may execute a conversation flow au-
tomaton for the management of the interaction sessions thvith
consumers in order to compute the possible continuatioescif
interaction. Although a general infrastructure, suppartihe def-
inition of general purpose conversation automata, is nbayail-
able, we have developed a prototype Conversation Manager th
implements the FSA shown in Figure 1 and that can be easily cus
tomized to satisfy the interaction requirements of differ@pplica-
tion domains.

As previously mentioned, for interoperability purposes neky
on an XML representation of the signatures of the operatioms
of the parameter domains. In our infrastructure, the geioeraf
Java classes and objects starting from the XML representadi
carried out by exploiting the JAXB tool offered by the Pack.

We have also developed a Java-based Conversation Clignt tha
may be downloaded by the consumer and run in order to hanglle th
interaction with a Web Service.

The Conversation Client catches the messages that the Web Se
vice sends to the consumer and extracts the operations #yaben
invoked on the Web Service nexidxtOp3. Moreover, the Client
supports the generation of tfBendMmessages to be sent in re-
sponse to the Web Service; for the generation of messageksats
of the libraries available to the Conversation Manager gaited.

Similar to the Conversation Manager, the execution of thertl
has the prerequisite that the consumer binds the invocafitime
operations to its own business logic. This issue is disclssde-
tail in Section 6. Here, we only mention the fact that the Con-
versation Client offers suitable APIs for the invocatioriteffunc-
tionalities; e.g., extraction of next operations with paeders and
domains, instantiation of operations and message gemeratn
particular, the instantiation of the operations enablescinsumer
to set the values of the parameters. During the executiomeoint
stantiation procedure, the Conversation Client checkshenehe
selected values belong to the domains of the parameteusnirej
a failure in case of type violation.

It should be noted that the XML representation of BendM
messages supports the interoperability between servitaioters
and providers, but the Conversation Client we implementad c

More specifically, we enable the service provider running ou
Conversation Manager to handle inbound and outbound messag
by applying the SOAP communication protocol to exchanga-Jav
based messages. However, we also provide a declarativesezpr
tation of the format of th&&endMmessages, including the WSDL
specification of the object-level operations requested bgama of
the SendMmessages. Following the WSDL specification, the
schema defining datatypes and object-level operationb,asiet-
Data, are generated, as well as the ports and bindings needed to
interpret WSDL messagésThus, a generic consumer, which does
not exploit our Conversation Client, may invoke the Conaton
Manager by conforming to the WSDL specification of its segsic
Moreover, the consumer may be guided by the provider in the co
rectinvocation of services if it correctly parses BendMmessages
it receives, by suitably extracting thextOperationsnformation
stored in the messages.

From our perspective, thBendMoperation is a service offered
by both conversation participants. In fact, the consumeds¢o of-
fer theSendMoperation in order to receive messages from the ser-
vice provider. Therefore this operation must be added to\B®OL
specification of both types of peers. However, the publcatf
the SendMoperation does not impose any development overhead
because it is automatically generated by our framework.ur€ig
4 shows a portion of the WSDL declarations generated to stippo
the management @endMmessages and includes the specification
of the SetDataobject-level operation specific for the customization
of products. For readability purposes we have removed some i
formation from the WSDL specification. See [3] for the contple
representation of this portion of the product customizaservice.

6. DISCUSSION

In this section, we discuss the binding requirements inghase
our approach on the administrator of the service consumkis T
aspect is very important, as binding the consumer’s busiloggc
to the invocation of operations on the Web Service is a preség
to the service execution.

The first proposals for the management of Web Services assume
a synchronous type of interaction between service provéaet
consumer. Although this requirement imposed that the aoesu
waits for the result message each time it invokes an operatio
the provider, the synchronization facilitated the set ughefcom-
munication. The consumer could in fact associate the iniacaf
operations to its own business logic by inspecting the WSbDitsp
published by the provider and by connecting the invocatioope
erations to its own internal processes. The results of theked
operations could then be collected by the consumer by eipioi
an implicit return channel.

In order to overcome the limitations of synchronous communi

3The infrastructure enforces the WS-I standards on compiigco
type to ensure interoperability between Web Services gergiand
consumers developed in heterogeneous environments.

<?xm version="1.0" encodi ng="UTF-8""?>

<definitions name="M/Conversati onServi ce" target Namespace="urn: Foo"
xm ns:tns="urn: Foo" xm ns="http://schenmas. xm soap. org/ wsdl /"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ " >

<types>
<schema t ar get Nanmespace="http://java. sun.conijax-rpc-ri/internal"
xmns:tns="http://java.sun.com jax-rpc-ri/internal" ">
<i nport nanespace=..."/>

<conpl exType nane="vector"> ..
<conpl exType nane="col | ecti on">
<conpl exCont ent >
<restriction base="soapll-enc:Array">
<attribute ref="soapll-enc:arrayType" wsdl:arrayType="anyType[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

<conpl exType nane="SendMAr gs" >
<sequence>
<el erent name="context" type="anyType"/>
<el emrent name="convld" type="string"/>
<el erent name="current Operation" type="string"/>
<el ement name="next Qper ati ons" type="ns2:vector"/>
</ sequence>
</ conpl exType>
</ schema>
</types>

<message nane="Conversati on_sendM >
<part name="SendMArgs_1" type="tns: SendMArgs"/ >
</ message> ... DEFIN TION OF OBJECT-LEVEL OPERATIONS, i.e

<port Type nane="Conversation">
<oper ati on name="sendM' paraneter O der =" SendMArgs_1" >
<i nput message="tns: Conversati on_sendM'/ >
<out put message="t ns: Conversati on_sendMResponse"/ >
</ operati on>
</ port Type>

<bi ndi ng nane="Conver sati onBi ndi ng" type="tns: Conversation">
<oper ati on nane="sendM' >
<i nput >
<soap: body encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/" ..
</i nput >
<out put >
<soap: body encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/" ..
</ out put >
<soap: operati on soapAction=""/>
</ operati on>
<soap: bi ndi ng transport="http://schenmas. xm soap. org/ soap/ http" style="rpc"/>
</ bi ndi ng>

<servi ce nanme="M/Conversati onService">
<port nane="ConversationPort" bindi ng="tns: Conversati onBi ndi ng">
<soap: address | ocati on="REPLACE_W TH_ACTUAL_URL"/ >
</ port>
</ servi ce>
</ definitions>

Figure 4: Portion of the WSDL specification of a product custanization service.

, SetData, FOLLOAS .

/>

/>

cation, the emerging Web Services standards have receotiyee
to support asynchronous communication basedahback mes-

sages; see [1]. This change has made the binding phase nm+e co

tracting from the next operations information the actual pa
rameters to be applied to the invoked operations.

plex because now the Web Service has to publish differertt por AS already mentioned, our conversation model handles tpesa

types, one for each conversation participant, and the coesbe-
comes itself a Web Service that offers the ports requiredhbydle
it wants to play in the interaction. For instance, in our cgifation
example, the consumer would playarchaserrole that specifies
all the operations to be offered in order to participate tocase
business interaction. Roughly speaking, the role-basettyjmes
represent the participants’ viewpoints on the sharedastem pro-
tocol.

In our approach, binding the consumer’s business logic s no
dramatically different from the previous case. Similar @B.4WS1.1,

our conversation model relies on the definition of convéosat
roles for the specification of the services that have to beredf by
each participant; e.g., consider the domain-dependendamein-
independent operations offered by service providers ansisoers.
Moreover, our model assumes that the service provider ghasi
the conversation flow specification, so that the consumerircan
spect the specification and bind the invocation of servicesst
own internal processes. At the same time, the conversatam m
agement features offered by our framework are partiallydregh
by the Conversation Client libraries we offer. Specifically

having generic arguments in order to overcome the limitatiof
the emerging Web Service publication standards. Indeedexh
ploitation of operations characterized by fixed parameterald
not support a concise and efficient specification of the cwat®n
flow of highly interactive service providers. Moreover, ibwd not
take priorities in the assignment of parameters into adcotihe
sample domain that we selected provides an example of this pr
lem. For instance, in the configuration of complex produtis,
operations to be performed can be clearly defined, e.g.ifgper
the needed components and their features. However, thardeat
whose values have to be set depend on the optionals reqyited b
consumer and the expressed requirements may change tiegtra
adopted by the configuration Web Server in the specificatidheo
other product features. Therefore, assuming that the comshas
bound the setting of all the possible features to its ownrmss
logic, the Web Service has to dynamically determine thesmbin-
vocation of operations during the exploration of the seamdce,
by taking contextual information about the interactiomiatcount.

7. RELATED WORK

« The public conversation flow specification published by the The Semantic Web community [27] is defining standards for the
service provider describes all the possible sequencesraf tu ~ Publication of Web Services that support the specificatibthe
between the interactants and the next operations reprasent domain ontology underlying the service, the meaning of the o
subset of those sequences. Therefore, the next operations a €rations to be invoked and the service choreography. The mai
not discovered by the consumer starting from zero knowl- advantage with respect to the pure XML approach is that the se

edge. The consumer can analyze the conversation flow at vice offered by a provider can be unambiguously understgdtid

business logic binding time; it then acquires at run time the

(UDDI) registries, therefore enhancing their capabiliyrédirect

subset of operations that can be invoked in the context of the CONSumers to the most suitable providers. In order to fatdithe

individual interaction session.

interoperability between service consumers and provjderse re-
cent work also proposes prototype infrastructures for timetime

e The presence of operations having generic arguments addsconversation management. These infrastructures rely ers¢h

complexity to the specification formalism, hiding the indi-

mantic representation of the services to guide the intemace.g.,

vidual parameters of the operations from the conversation by instructing the consumer during the service invocats].[

flow specification. However, the type of information needed

Although the semantic Web approach is the most promising so-

to enable the consumer to bind the invocation of operations lution to the interoperability in the internet, the curr@moposals
(with instantiated parameters) to its own business logic is are still too complex to be applied in real-world examplest iR-
the same as that of the standard fixed parameters approachstance, these approaches rely on sophisticated représastaf

The only difference is that, instead of directly analyzihg t

the services to be invoked; although translation toolssashe

parameters specified in the signatures of the operatioas, th binding to the consumers’ business logics, this remainstieera
consumer has to analyze a separate representation séuctur Complex process. Moreover, the selection of the operatiore
published by the service provider, where the possible param invoked, depending on the service choreography, is basettieon
eters are described. For instance, in our sample domain, theexploitation of inference engines, such as rule-based, omg®s-
Service must publish the specification of the list of product ing relevant overhead on the management of the interadtioour

features that can be arguments of 8&Dataoperation. The

publication of this information enables the consumer talbin

work we are deeply concerned with the scalability and applity
constraints imposed by the Web. For this reason, we try toced

the possible invocations of the operations to its own busi- the complexity added by semantic information as much asiposs
ness logic. For example, the operation could have as actual ble, and to handle the interaction between service consamer

parameters the product features defined in the public spec- provider in a lightweight fashion, at least at the consuniae.s

ification of the product structure; e.g., gears, frame, and s

forth.

Other XML-based standards for the specification of the conve
sation flow in e-business interactions with Web Servicee tteen
recently proposed and are currently submitted as W3C stdsida

e Our Conversation Client implements and publishes the do- For instance, WSCL (Web Services Conversation Languagg [31
main independent operations that the consumer has to offerand WSCI (Web Services Choreography Interface [6]) intoedu
in order to receive the provider's messages, interpret them an explicit representation of Web Services interactiorcesses,
and send the responses to the provider. Therefore, no over-aimed at defining the admissible sequences of messages 16 be e
head is imposed on the consumer to set up the conversationchanged by the peers. To this purpose, WSCL exploits a sequen
framework; it only has to download the Client and associate diagram model that the peers should interpret to handlediweet-

internal processes to object-level actions. Moreoveruat r

sation, while WSCI introduces the notion of interaction qass,

time, the Conversation Client supports the consumer by ex- with the specification of timing constraints on the serviceoca-

tion. Moreover, cpXML (IBM’s Conversation Support [18])-in
troduces an explicit notion of Conversational Policy as &mmse
readable specification of a pattern of message exchangedn-a c
versation, which can be used to make the interaction withpbexn
Web Services easier from the consumer application viewtpoin

Our interaction model differs from the previously mentidne
ones because they assume that the participants sharedtaetian
protocol and autonomously plan the conversational behagin
cording to that protocol. In those approaches each paatitipep-
arately maintains its own internal record of the conveosatitate,
which is necessary to understand how to continue the irtterac
In contrast, we propose that only the service provider raaistthe
state of the conversation and that the consumer appliciias-
sisted in the service invocation. Another difference wibpect to
WSCL and WSCI is the fact they conform to WSDL in the spec-
ification of request-responsandsolicit-respons@perations; thus,
they cannot support a fine-grained specification of the asation
turns.

Among the mentioned approaches, cpXML deserves a more thor-

ough comparison with our work, because it aims at developing
implementation framework supporting the communicatiohjlev
the other approaches only contribute with a specificaticen@dm-
munication protocol. In cpXML the consumer and provideesol
require the same effort from the conversational point ofwién
contrast, we try to simplify the implementation of the comsu;
moreover, the consumer is supplied with the minimum amoéint o
information needed to interact with the provider. This isitioe,
because it supports the implementation of lightweight oorers.

implement specific procedures for the service invocatidthcugh
the current Web Service specification frameworks addréssdm-
straint by providing stubs that can be invoked by consumees,
aim at providing interactivity between the peers and we fai@
account the fact that the consumer has to be additionallgegli
by the provider whenever the sequence of operations to lo&eav
and their actual parameters have to be specified during thiese
fruition. To this extent, we propose a framework that ensiiphe
consumer to correctly invoke the service provider and tallgc
perform simple type checks aimed at enforcing the correa-in
cation of operations and at minimizing the occurrence diifas,
with the consequent need to exchange repair messages.

Our framework supports the consumer by offering a Conversa-
tion Client that may be downloaded and run to handle the-inter
action with a Web Service after having bound the invocatibn o
operations to the consumer’s business logic. Moreoveifréme-
work offers the libraries needed by the service providercioegate
the messages guiding the consumer in the correct invocatiesr-
vices and the libraries for the specification and implentéreof
the conversational flow automaton held by the Web Service.

Atthe current stage, the automaton specifying the servimégter’s
conversation flow is represented in an XML language that we de
fined by taking inspiration from the WSFL flow specificatiomda
guage; see [24, 4, 5]. Moreover, our infrastructure offees@on-
versation Manager module that can be exploited by the servic
provider to control the interaction with the customer, adoag to
the conversation automaton. As discussed in Section elreth
resentation of the conversation turns is compatible wighwsDL

At the same time, our approach does not impose extra overheadformat: the only difference is that the arguments of $#smdMop-

on the service provider, for two reasons. First, the pravitks
to maintain the context for each interaction session, otiser, it
would not be able to correctly execute the service requests.-
ond, the provider knows the details of the execution of ite ger-
vices. Therefore, it may suitably guide the consumers duitire
management of complex interactions.

Both cpXML and our work aim at decoupling the peers’ busi-
ness logics by mediating their interaction by means of theweo
sational activity. However, our model has the potentialdpasate
the consumer from the provider in a clearer way because & doe
impose the execution of a specific conversation policy.

8. CONCLUSIONS

We have presented a conversational model aimed at filling the
conversational gap between consumers and service previdtre
internet. Our approach is based on the idea that the aciiigsib
Web Services and the establishment of short-term interastvith
consumers are facilitated by the following factors:

¢ A flexible but simple conversation model supporting the ex-
change of asynchronous messages during the interaction.

The provider-side control of the interaction, aimed at etxfo

ing the correct invocation of services and at minimizing the
communication overhead posed on the consumer. Our con-
versation model supports the participation of the consumer
in the interaction with the service provider by dynamically
specifying the eligible operations that can be invoked ehea
step.

The possibility to perform local type and consistency clseck
at the consumer side, before invoking the operations on the
provider.

As discussed in [15], the invocation of Web Services shoeléib
seamless as possible for the consumers that should notdeesl ftar

erations may be object-level operations, or turn-managémgor-
mation. The conversation flow could therefore be represeinta
standard process language, such as, for instance, BPELAWS1
our future work, we want to investigate this issue and seetvene

a different version of our Conversation Manager can be dpesl
and plugged into a suitable flow engine, e.g., BPWS4J [19r4in
der to integrate workflow management and conversation neanag
ment into a single process.

9. REFERENCES

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. T. I. Trickovic,
and S. Weerawarana. Business Process Execution Language
for Web Services version 1.1j. http://www-
106.ibm.com/developerworks/webservices/library/\psih
2003.

[2] AOS. JACK Intelligent Agents [tm].
http://www.agent-software.com/shared/products/iniatexl,
2002.

[3] Appendix. Automatic generation of a WSDL interface for
the invocation of a service provider.
http://www.di.unito.itliliana/appendix.txt, 2003.

L. Ardissono, A. Goy, and G. Petrone. Enabling

conversations with Web Services.Pmoc. 2nd Int. Joint.

Conf. on Autonomous Agents and MultiAgent Systpates

819-826, Melbourne, Australia, 2003.

[5] L. Ardissono, G. Petrone, and M. Segnan. Enabling flexibl
interaction with web services. Forthcoming.

[6] A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi,
D. Orchard, S. Pogliani, K. Riemer, S. Struble,
P. Takacsi-Nagy, I. Trickovic, and S. Zimek. Web Service
Choreography Interface 1.0.
http://ifr.sap.com/wsci/specification/wsci-specpith
2002.

(4]

[7]
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

J. Austin.How to Do Things with WorddHarvard University
Press, Cambridge, Mass, 1962.

B. Benatallah, F. Casati, F. Toumani, and R. Hamadi.
Conceptual modeling of Web Service conversation®ric.

Advanced Information Systems Engineering, 15th Int. Conf.

CAISE 2003Klagenfurt, Austria, 2003.

D. Berardi, F. D. Rosa, L. D. Santis, and M. Mecella. Fenit
state automata as a conceptual moded-eérvices. IrProc.
Integrated Design and Process Technology (IDPT 2003)
Austin, Texas, 2003.

F. Cabrera, G. Copeland, T. Freund, J. Klein, D. Landkor
D. Orchard, J. Shewchuk, and T. Storey. Web Services
Coordination (WS-Coordination).
http://www-106.ibm.com/developerworks/library/wseth
2002.

J. Chu-Carroll and S. Carberry. Collaborative respons
generation in planning dialogugSomputational Linguistics
24(3):355-400, 1998.

P. Cohen and H. Levesque. Rational interaction as thisba
for communication. In P. Cohen, J. Morgan, and M. Pollack,
editors,Intentions in communicatiopages 221-255. MIT
Press, 1990.

F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller,

S. Thatte, and S. Weerawarana. Business Process Execution

Language for Web Services, version 1.0. http://www-
106.ibm.com/developerworks/webservices/library/\psih
2002.

F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawara
The next step in Web ServicelSommunications of the ACM,
Special Issue on Service-Oriented Computé(10), 2003.
H. Deo. The need for a dynamic invocation framework.
WebServices.org
http://www.webservices.org/index.php/article/adigew/
469/1/24, 2002.

T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent
communication language. In J. Bradshaw, edismftware
Agents MIT Press, Cambridge, 1995.

FIPA. Foundation for Physical Intelligent Agents.
http://www.fipa.org/, 2000.

J. Hanson, P. Nandi, and D. Levine. Conversation-ethbl
Web Services for agents and e-Busines$1ioc. of the Int.
Conf. on Internet Computing (IC-02)ages 791-796, Las
Vegas, Nevada, 2002.

[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

IBM AlphaWorks. BPWS4J.
http://www.alphaworks.ibm.com/tech/bpws4j, 2003.
ILOG. ILOG JConfigurator.
http://www.ilog.com/products/jconfigurator/, 2002.

M. Klusch and K. Sycara. Brokering and matchmaking for
coordination of agent societies: A survey. In A. Omicini,

F. Zambonelli, M. Klusch, and R. Tolksdorf, editors,
Coordination of Internet Agents: Models, Technologies an
Applications chapter 8, pages 197-224. Springer-Verlag,
2001.

Z. Maamar, B. Benatallah, and W. Mansoor. Service chart
diagrams - description & application. Proc. of
WWW'2003 Budapest, 2003.

M. Paolucci, K. Sycara, T. Nishimura, and N. Srinivasan
Toward a semantic web e-commercePlroc. of 6th Int.
Conf. on Business Information Systems (BIS'20G8)orado
Springs, Colorado, 2003.

G. Petrone. Managing flexible interaction with Web Segzs.
In AAMAS-03 workshop on Web-services and agent-based
engineeringpages 41-48, Melbourne, Australia, 2003.

C. Rich, D. McDonald, N. Lesh, and C. Sidner.
COLLAGEN: Java middleware for collaborative agents
services with multiple suppliers.
http://www.merl.com/projects/collagen, 2002.

J. Searle. Indirect speech acts. In P. Cole and J. Morgan
editors,Syntax and Semantics: Speech Aetdume 3, pages
59-82. Academic Press, New York, 1975.

Web Services Coalition. DAML-S: Web Service desciopti
for the Semantic Web. IRroc. Int. Semantic Web
Conferencepages 348-363, Chia Laguna, Italy, 2002.

A. Stein and E. Maier. Structuring collaborative
information-seeking dialogueKnowledge-Based Systems
8(2-3):82—93, 1994.

Sun Microsystems, Inc. Java Web Services Development
Pack 1.3.
http://java.sun.com/webservices/webservicespack,htm
2003.

UDDI Org. Universal Description, Discovery and Intaon
of Business for the Web. http://www.uddi.org/.

[31] W3C. Web Services Conversation Language (WSCL).

http://www.w3.0rg/TR/wscl10, 2002.

[32] W3C. Web Services Definition Language.

http://www.w3.org/TR/wsdl, 2002.

