
Towards an Ontology-based Software Documentation Management
A Case Study

Anna Goy1, Diego Magro1
1Dipartimento di Informatica, Università di Torino, C. Svizzera 185, Torino, Italy

{annamaria.goy, diego.magro}@unito.it

Keywords: Software Documentation, Documentation Management, Ontology, Semantics.

Abstract: One of the main issues that a company has to face is the generation and maintenance of product
documentation. In particular, several software houses have to take into account the frequent need of rapidly
updating software applications, and the corresponding technical documentation, as a consequence of
changes in the administrative rules and laws. In order to support documentation generation and maintenance
processes, we performed an ontological analysis of these processes in a large Italian software house that
produces and sells enterprise applications for small-to-medium sized enterprises. The goal of such a domain
analysis was to build a conceptual model enabling a formal characterization of the main elements involved
in software documentation. Such a formalization represents the “competence” of a system supporting
documentation processes, since it enables it to answer competency questions representing the information
needs of the documentation writers (e.g., “In which technical sheets/application manuals/operating manuals
is used a given concept?”; “Which technical sheets belonging to a given operating manual do mention a
given functionality/screenful/form field?”; “Which are the functionalities/screenfuls/technical sheets
potentially impacted by the change of a given software module/file?”).

1 INTRODUCTION

In this paper we present the outcomes of the
ontological analysis we performed on the
documentation processes of a large Italian software
house that produces and sells enterprise applications
for small-to-medium sized enterprises. One of the
main problems of the software house is the
generation and maintenance of product
documentation. In particular, the company has to
face the need of modifying software applications,
and the corresponding software manuals, as a
consequence of the change of administrative rules
and laws (e.g., accounting rules). These kinds of
updates, concerning both applications and manuals,
must be rapid and occur frequently. For example, if
a new information item is required within an
administrative process, e.g., due to a change in the
law, a new field must be added in the application
user interface and in the database; moreover, the
update must be reported in the proper places within
the documentation.

Another process that impacts the generation and
maintenance of software documentation is software
localization, which requires the translation of the

corresponding instruction manuals. Moreover, the
different linguistic versions must be kept aligned in
order to avoid mismatches between, for instance, the
English manual and the Italian one.

Currently, the documentation and maintenance
processes are completely manual: company experts
write the documentation, update it, and know “by
heart” which are the relationships between software
modules, functionalities, and document parts, as well
as the relationships between different parts of the
documentation itself (e.g., the same functionality can
be mentioned in different parts of an instruction
manual, or in different manuals). The process is
quite complex, also because many writers take part
in it. A partial automation would help writers and
would reduce the introduction of errors within the
documentation (e.g., missing or outdated parts).

In order to study the feasibility of a tool
supporting the mentioned processes, we performed a
domain analysis aimed at identifying the main
concepts and relationships that characterize the
documentation itself and the software products,
considered as subjects of the documentation. The
domain analysis was conducted through interviews
and informal discussions with the experts from the

company, coupled with a detailed analysis of the
existing software documentation.

The goal of this paper is to show that a company
documentation generation and maintenance
processes can be effectively supported by exploiting
a semantic model of the concepts and relationships
involved in them. In particular, the explicit and
formal representation of such a semantic model
represents a “documentation map” which can be
browsed by a software tool in order to provide
documentation writers with a guide based on the
relationships between products and documentation
items describing them. In other words, the semantic
model represents the system “competence” and
enables it to answer competency questions
expressing the information needs of the
documentation writers. Some examples of such
questions are the following: “Which are the concepts
used within glossary definitions?”; “In which
technical sheets (application manuals/operating
manuals) is used a given concept?”; “Which are the
concepts (not) defined in the glossary and used
within a given technical sheet (application/operating
manual)?”; “Which technical sheets do mention a
given functionality?”; “Which are the functionalities
(screenfuls/technical sheets) potentially impacted by
the change of a given software module (file)?”; and
so on. A complete list of the competency questions
can be found in Appendix.

In the following, we will present the ontological
analysis (Section 2), by explaining the role of
general and domain-specific concepts and
relationships; then we will show how the semantic
model can be applied to a concrete case (Section 3),
and exploited to model documentation-related
concepts/relations and to perform useful inferences.
Finally, we briefly survey some related work
(Section 5) and conclude the paper (Section 6).

2 ONTOLOGICAL ANALYSIS

Several definitions for the notion of ontology in
Computer Science have been proposed. Here,
following Studer, Benjamins and Fensel (1998), we
consider an ontology as a “formal and explicit
specification of a shared conceptualization”. Thus,
an ontology is an artifact represented in a machine-
understandable way (“formal” in the terms of Studer
and colleagues), which accounts for a set of
concepts, relations and other entities providing a -
possibly simplified - view of some area of interest
(“conceptualization”) and which makes explicit the
assumptions and constraints on the usage of the

above-said concepts, relations, and entities
(“explicit”). Moreover, the conceptualization
accounted for should be accepted by a group of
people (“shared”).

The ontological analysis that we conducted on
the considered domain was mainly aimed at
identifying and explicitly representing the concepts,
relations and entities involved in software
documentation generation and maintenance
processes, as well as at providing an explicit account
for their main characteristics.

The derived ontology can be represented in a
machine-understandable language and can be used
to build and maintain an explicit characterization of
the elements involved in the documentation-related
processes. Such a characterization and the ontology
itself can then be exploited by the software
applications that support the documentation-related
processes, in order to answer the set of competency
questions listed in Appendix and, ultimately, to
support people involved in the documentation
generation and maintenance processes.

In the following, we will illustrate the outcome
of our ontological analysis by discussing the main
features of the resulting ontology. We will depict
concepts and relations of the ontology by means of
Entity/Relationship diagrams, since this approach is
well-known within Italian software companies,
which are still more familiar with
Entity/Relationships and relational databases than
with formal ontology languages based on XML.

The concepts and relationships that the domain
analysis has identified as relevant for the task at
hand can be grouped into two categories. First, there
are “general” concepts/relationships, representing
more general entities. These notions are directly
related to conceptual frameworks provided by upper
level core ontologies (Oberle, 2006), and are
characterized in the upper level of the produced
ontology. Second, there are domain “specific”
concepts/relationships representing notions relevant
to the company products and product
documentation. The latter are characterized in a
lower (domain) level of the produced ontology.

2.1 General Concepts

Among the concepts belonging to the more general
level of the ontology, a major role is played by those
representing information items. In order to account
for these concepts, and the relationships among
them, we exploited the semantic model defined by
the Ontology of Information Objects (OIO)
(Gangemi, Borgo, Catenacci and Lehmann, 2005),

developed at the Laboratory of Applied Ontology
(ISTC-CNR, www.loa-cnr.it), and by O-CREAM
(Ontology for Customer Relationship Management)
(Magro and Goy, 2012), developed at the Computer
Science Department of the University of Torino. In
the conceptual framework proposed by these two
models (suitably adapted to fit the modeling needs
of the considered domain), every Information Item
has three aspects: (a) Its meaning, i.e., the
Information Content itself; (b) The Language(s) in
which the meaning is expressed; (c) The support that
physically realizes the information object
(Information Physical Realization). Figure 1 shows
some of the upper level concepts and their
taxonomic relations.

Figure 1: Partial view of the taxonomy of upper level
concepts.

2.2 Domain Specific Concepts

Domain specific concepts are those concepts
specifically characterizing software documentation
or software products.

The software documentation produced by the
company can be classified into four main categories:
(1) Application manuals (where the main
functionality of the software application is
described); (2) Operating manuals (where
instructions about how to operate on the user
interfaces are provided in details); (3) Update notes
(explaining software updates); (4) Glossary
(explaining the business and technical terminology;
currently including more than 1.600 entries).

Figure 2 shows a fragment of the taxonomy
related to documentation concepts. A
Documentation Resource, which is a top level
concept representing a specific type of Information
Item, besides being internal (Internal Documentation
Resource) or public (Public Documentation
Resource), can belong to different typologies
(represented by its subclasses): Product
Documentation, Glossary, Glossary Entry, Technical
Sheet. Moreover, Product Documentation is
superclass of Application Manual, Operating

Manual, and Update Note, while a Technical Sheet
can belong to any of these, thus being an
Application Manual Technical Sheet, an Operating
Manual Technical Sheet, an Update Note Technical
Sheet, or a Glossary Technical Sheet.

Figure 2: A fragment of the taxonomy of documentation-
related concepts.

The main concepts modeling the company
products are those related to software, as partially
shown in Figure 3. In particular, a Software Element
is a specific type of Information Item (according to
the notion of software specified in Oberle et al,
2006) and can be a Software Module or a Software
Module Suite, i.e., an integrated set of software
modules. Moreover, both the concepts of Source
Code and Executable Code are particular types of
Software Elements.

Figure 3: A fragment of the taxonomy of product-related
concepts, showing concepts modeling software.

This part of the ontology also includes concepts
modeling software functionality and user interfaces,
which play a major role in software documentation.
Figure 4 shows the main concepts involved in the
user interface model, together with their taxonomic
relationships. User Interface Element, which is a
type of Information Physical Realization, has two

subclasses: Screenful, which can be simple (Simple
Screenful) or complex (Complex Screenful), and
Screenful Element, which has several subclasses
referring to user interface elements, such as form
fields (Field).

Figure 4: A fragment of the taxonomy of user interface-
related concepts.

As far as the functionality is concerned, the most
important concept is Functionality, which represents
the general functions of a software products (e.g.
complaints management) and is distinct from the
actual activities involved in the provision of such a
functionality. The role of the Functionality concept
within some ontological relations can be seen in
Figure 5 and 6.

2.3 General Relationships

The most general relationship is the has_part
relation, modeling the relationship between an object
and its parts. Moreover, there are relationships
connecting information items to their meanings
(expresses), to the languages used to express them
(is_encoded, is_completely_encoded), and to their
physical realizations (is_realized,
is_completely_realized). In addition, there is a
relationship linking semantically equivalent
information items (semantically_equivalent), and
there are relationships linking meanings
(Information Content) to the elements they are about
(talks_about), to the elements they identify
(identifies), and to the concepts they use (uses,
defines, characterizes).

These general relations can obviously be used to
characterize items belonging to more specific
classes; for instance, it is possible to specify the
parts of: an application manual, a technical sheet, a

glossary entry, a software suite, a single software
module, a functionality, a screenful, and so on.

2.4 Domain Specific Relationships

The most relevant specific relationships are those
connecting each Software Element to elements of a
user interface (User Interface Element) and to the
functionality implemented by that software element
(specifies_UI_element, implements_functionality), as
shown in Figure 5.

Figure 5: Relationships linking software to functionality
and user interface elements.

3 APPLYING THE
ONTOLOGICAL MODEL

In this section we present some examples exploiting
the ontological conceptualization presented in
Section 2, in order to characterize elements
belonging to the company documentation system.

3.1 Modeling

The first example we would like to introduce shows
how the model supports the distinction between
linguistic representations and information contents.
This distinction enables us to represent both
common aspects and different features
characterizing distinct information items.

For example, consider the glossary, which is
composed of technical sheets. The ontology enables
us to state that a Glossary Technical Sheet is part of
a Glossary, which is expressed in some Language
(e.g., Italian or English). Now, let’s imagine that the
company decides to produce an Italian and an
English version of the glossary: the Language in
which the two Glossary instances are expressed are
different (i.e., Italian and English), but all the other
involved concepts and relations characterizing
information contents are shared. In order to see in
some more details these common aspects, let’s
consider the “Studi di settore” technical sheet. The

expression “Studi di settore” (business sector
analysis) refers to a methodology used to estimate
company and self-employed worker receipts, by
taking into consideration several parameters,
including their kind of business. By means of the
ontology, we can formally specify that the
considered technical sheet contains a Glossary Entry
which is composed of two parts, i.e., Glossary Entry
Name and Glossary Entry Definition. The Glossary
Entry Name identifies a specific Concept (i.e.,
business sector analysis) and the Glossary Entry
Definition expresses a Concept Definition, which
defines the named concept by using other elements
defined in the ontology, such as company, self-
employed worker, receipt, etc. By separately
representing linguistic and content information, the
ontology enable us to characterize the two instances
(the Italian and the English glossaries) by exploiting
the same semantic elements (concepts, relations, and
instances).

Another important aspect that is worth pointing
out is how the proposed ontology enables us to
represent the connections between software modules
and functionalities, as well as between software
modules and the files containing the corresponding
code. These connections enable us to link files to
functionalities, and this is an issue of major
importance: for example, if some code files are
modified, thanks to the mentioned relations writers
know which are the impacted functionalities, and
thus the manual parts that need to be updated. In the
following, we illustrate this case with an example.

In Figure 6, each node represents an instance and
is labeled by an instance name (in boldface),
followed by the name of the ontology class it
belongs to (in uppercase). In particular, the figure
shows two software modules, ma_base_mod and
ma_cost_mod; both are instances of the
Management Accounting Module class: the first one
represents the basic management accounting
software module, while the second one represents
the cost accounting module. Analogously, the figure
shows two functionality instances, ma_base_func
and ma_cost_func; both are instances of the
Management Accounting Functionality class, and
represent, respectively, the basic management
accounting and the cost accounting functionalities.
The relationship linking the software modules with
the implemented functionalities are instances of the
implements_functionality relation. Moreover, the
figure shows two file blocks (file_block_01 and
file_block_02), each one composed of some files;
the relationship linking the software modules with
the corresponding file blocks are instances of the

is_completely_realized relation, i.e., the relation that
links each information item to the entities providing
complete physical realizations for them.

Figure 6: Characterization of the relationships between
software modules, functionalities and files.

The semantic model described in Section 2
enables us to provide both a “physical”
characterization (which files realize the mentioned
software modules) and a “logical” characterization
(which functionalities are provided by the mentioned
modules). From both these perspectives, we can
specify sub-parts, i.e., parts of the file block, and
parts of the overall functionality.

The main functionality implemented by the
module ma_base_mod is the ma_base_func
functionality (see Figure 6), which is composed of
some sub-parts, including, for instance,
doc_mgm_mabase, which is an instance of
Management Accounting Functionality, and
represents the management of documents related to
the basic functions of management accounting;
analogously, the ma_cost_func functionality is
composed of some sub-parts, including, for instance,
doc_mgm_macost, which is an instance of
Management Accounting Functionality, and
represents the management of documents related to
the cost accounting functions.

Both doc_mgm_mabase and doc_mgm_macost
have, in turn, sub-parts (sub-functionalities), among
which doc_mgm_gen (referring to those aspects of
doc_mgm_mabase and doc_mgm_macost which can
be considered generic document management
functions). Finally, doc_mgm_gen includes, as a
part, the upload functionality.

As we will see in the next section, this
characterization enables us to answer competency

questions like, for example, “Which are the
functionalities implemented by the x module?”, “In
which software modules is implemented the y
functionality?”, “Which are the functionalities
potentially impacted by a change in the z file?”.
Moreover, the ontology enables us to express the
links between the documentation resources and the
functionalities they are about, therefore the system
can also answer questions such as “Which are the
technical sheets potentially impacted by a change in
the z file?”. These questions (and others, all listed in
Appendix) are of major relevance in generation and
maintenance documentation processes.

3.2 Inferences

Typically, only a part of an information system
knowledge is explicitly represented: other
knowledge, in fact, can usually be inferred, and
made explicit, by applying reasoning mechanisms to
the explicit knowledge. In the following, we will
describe, with the help of some examples, the role
that such inferential mechanisms can play within a
documentation system.

First of all, for each individual in the
characterization, a reasoning process can infer all the
classes that individual is instance of. Moreover,
some important inferences concern the part-of
relationships between elements. For example, from
the characterization of the concepts and relationships
concerning the glossary (see Section 2) and from the
specific features of the has_part relation itself (in
particular, the fact that it is reflexive and transitive)
the reasoner can infer that a Glossary Entry (a direct
part of a Glossary Technical Sheet, which is a direct
part of a Glossary in its turn), a Glossary Entry
Name, and a Glossary Entry Definition (both direct
parts of the considered Glossary Entry) are also parts
of the mentioned Glossary.

Another example of useful inference supported
by the semantic model presented is the one enabling
us to answer competency questions like the
following (see Figure 6):

(a) “Which are the functionalities implemented
by the module ma_cost_mod?”. Given the
characterization of the implements_functionality
relation, if a module implements a functionality f,
then it implements also all f sub-parts. Thus, from
the presented representation, a reasoner can infer the
answer: all those directly linked to the mentioned
module by the implements_functionality relation,
together with all the sub-parts of it, including, for
instance, the upload function.

(b) “In which software modules is implemented
the upload functionality?”. Again, from the ontology
and the characterization of the items in terms of the
ontology, a reasoner can infer the answer, which will
include the module ma_cost_mod.

Inferences like these are very important. For
instance, if I am writing an update note concerning a
given functionality, I need to know in which
modules it is implemented, in order to update all the
corresponding manual parts. Analogously, if
developers modify a given file, I need to know
which functionalities are potentially involved, in
order to properly document the changes.

4 RELATED WORK

The idea of using semantic technologies to support
software documentation processes has been
investigated by focusing on different aspects of the
problem. For instance, Kleiber, Sabol, Kern, Muhr
and Granitzer (2009) face the problem of keeping
the software documentation up to date, given the
reduced time-to-market development cycles, and
propose a support to the software documentation
process based on an underlying ontology modeling
software documentation activities and the structure
of the software itself. Hepp and Wechselberger
(2008) exploit ontologies modeling SAP-related
business and technical concepts in order to improve
the accessibility of ERP documentation search
systems.

There is some work on (semi)automatically
deriving ontologies from software documentation;
see (Sabou, 2004). Moreover, some approaches aim
at supporting software maintenance by exploiting
semantic technologies. For instance, Witte, Zhang
and Rilling (2007) propose to use ontologies in order
to connect and integrate knowledge about source
code and software documentation; the resulting
knowledge can be exploited to support software
maintenance. Similarly, Ambrósio, Santos, Lucena
and Silva (2004) present a tool that exploits
ontologies to integrate domain and software
engineering knowledge in order to help keeping
software documentation, up to date.

5 CONCLUSIONS

In this paper we presented an ontological analysis
aimed at developing a semantic model useful to
support the generation and maintenance of software

documentation. In particular, by describing
examples from a concrete use case, the paper shows
that providing a company documentation system
with an explicit semantic model of the concepts and
relationships involved in documentation generation
and maintenance processes means increasing the
system “competence” about those processes; this
competence, in turn, enables the system to satisfy
the information needs of the documentation writers.
Such needs can be represented by the competency
questions in Appendix.

ACKNOWLEDGEMENTS

This work has been partially funded by CELI s.r.l.
(www.celi.it).

REFERENCES

Ambrósio, A.P., Santos, D.C.d., Lucena, F.N.d., Silva,
J.C.d. (2004). Software Engineering Documentation:
an Ontology-based Approach. WebMedia & LAWeb
Joint Conference. Washington: IEEE Press, 38-40.

Gangemi, A., Borgo, S., Catenacci, C., Lehmann, J.
(2005). Task Taxonomies for Knowledge Content.
Metokis, Deliverable D07.

Hepp, M. and Wechselberger, A. (2008). OntoNaviERP:
Ontology-Supported Navigation in ERP Software
Documentation. International Semantic Web
Conference - ISWC2008, LNCS 5318. Heidelberg:
Springer, 764-776.

Kleiber, W., Sabol, V., Kern, R., Muhr, M., Granitzer, M.
(2009). Using Ontologies For Software
Documentation. Malaysian Joint Conference on
Artificial Intelligence - MJCAI2009. Kuala Lumpur,
Malaysia.

Magro, D., Goy A. (2012). A core reference ontology for
the customer relationship domain. Applied Ontology,
7(1), 1-48.

Oberle, D. (2006). Semantic Management of Middleware.
Heidelberg: Springer.

Oberle, D., Lamparter, S., Grimm, S., Vrandečić, D.,
Staab, S., Gangemi, A. (2006). Towards Ontologies
for Formalizing Modularization and Communication
in Large Software Systems. Applied Ontology, 1(2),
163-202.

Sabou, M. (2004). Extracting Ontologies from Software
Documentation: a Semi-Automatic Method and its
Evaluation. In Workshop on Ontology Learning and
Population at ECAI 2004, Valencia, Spain.

Studer, R., Benjamins, V. R., Fensel D. (1998).
Knowledge Engineering: Principles and Methods.
Data and Knowledge Engineering, 25(1-2), 161-197 .

Witte, R., Zhang, Y., Rilling, J. (2007). Empowering
Software Maintainers with Semantic Web

Technologies. European Semantic Web Conference -
ESWC2007, LNCS 4519. Heidelberg. Springer, 37-52.

APPENDIX

A system based on a knowledge base as the one
described in this paper can support the processes
devoted to the production and maintenance of the
company product documentation, by answering the
following competency questions:

 Which are the glossary elements?
 Which are the concepts defined within the

glossary?
 Which are the concepts used within glossary

definitions?
 Among the concepts used in glossary

definitions, which of them are (not) defined in
the glossary?

 Which are the glossary entries which refer to
other glossary entries?

 Which are the synonyms in the glossary?
 In which technical sheets (application

manuals/operating manuals) is used a given
concept?

 Which are the concepts a given technical sheet
(manual) is about?

 Which are the concepts (not) defined in the
glossary and used within a given technical
sheet (application/operating) manual?

 Which are the documentation resources
(partially/completely) represented in Italian
(English/…)?

 Which technical sheets do mention a given
functionality?

 Which are the functionalities never mentioned
in any manual?

 Which technical sheets belonging to a given
operating manual do mention a given
screenful (form field)?

 Which are the screenfuls of a given software
module that are never mentioned in any
operating manual?

 Which are the functionalities
(screenfuls/technical sheets) potentially
impacted by the change of a given software
module (file)?

 Which are the software modules which could
be involved in the change of a given technical
sheet?

