An Architecture of a Normative System

Counts-as Conditionals, Obligations and Permissions

Guido Boella
Universita di Torino
Italy
guido@di.unito.it

ABSTRACT

Normative systems are traditionally described and analyzed
using deontic logic, describing the logical relations among
obligations and permissions. However, there is still a gap
between deontic logic and normative multi-agent systems
such as electronic institutions, which may be seen as an in-
stance of the gap between on the one hand logical agent
specification languages and on the other hand agent archi-
tectures and programming languages. To bridge the gap, in
this paper we propose an architecture containing separate
subsystems or components for counts-as conditionals, con-
ditional obligations and conditional permissions. We add a
norm database component in which the three kinds of rules
are stored, and we use a channel based coordination model
to describe the relations among the four normative compo-
nents.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence]: Multi-agent
systems

General Terms
MAS theory

Keywords

Normative systems, normative multi-agent systems

1. NORMATIVE ONTOLOGY

Searle [13, 14] distinguishes two types of norms: “Some
rules regulate antecedently existing forms of behavior. For
example, the rules of polite table behavior regulate eating,
but eating exists independently of these rules. Some rules,
on the other hand, do not merely regulate an antecedently
existing activity called playing chess; they, as it were, create
the possibility of or define that activity. The activity of play-
ing chess is constituted by action in accordance with these

Permission to make digital or hard copies of all or part of this work for

Leendert van der Torre

University of Luxembourg

Luxembourg

leendert@vandertorre.com

rules. Chess has no existence apart from these rules. The
institutions of marriage, money, and promising are like the
institutions of baseball and chess in that they are systems
of such constitutive rules or conventions” [13, p. 131].

Thus far the two kinds of norms have mainly been stud-
ied in isolation, which raises the question how regulative and
constitutive norms are related. In the deontic logic litera-
ture, the interaction among obligations and permissions has
been studied in some depth, see, e.g., [16, 7, 12]. In most for-
malizations, obligations, prohibitions and permissions have
a conditional nature. Their conditions could directly refer
to entities and facts of the commonsense world, but they
often refer to a legal and more abstract classification of the
world, making them more independent from the common-
sense view. E.g., they refer to money instead of paper sheets,
to properties instead of houses and fields. This more natural
and economical way to model the relation between common-
sense reality and legal reality uses constitutive norms, and
allows regulative norms to refer to the legal classification of
reality. In this way, it is not necessary that each regulative
norm refers to all the conditions involved in the classification
of paper as money or of houses and fields as properties. A
constitutive norm has been defined by Searle as “X counts
as Y in context C”, and has been formalized as a counts-as
conditional [10, 3, 9, 4].

Since all kinds of norms are represented by conditionals,
we can represent them as subsystems within the normative
system, or as input/output components in an architecture.
This raises the question what kind of input and output these
components have. According to Searle, institutional facts
like marriage, money and private property emerge from an
independent ontology of “brute” natural facts through con-
stitutive norms of the form “such and such an X counts as Y
in context C” where X is any object satisfying certain con-
ditions and Y is a label that qualifies X as being something
of an entirely new sort. Thus, the propositions describing
the world are distinguished in two categories. First, “brute
facts” are natural facts and events produced by actions of
agents. Second, “institutional facts” are a legal classifica-
tion of brute facts; they belong only to the beliefs of the
normative system and have no direct counterpart in the
world. Moreover, counts-as conditionals can be iterated,
in the sense that X counts-as Y and Y counts-as Z (to con-

personal or classroom use is granted without fee provided that copies arestruct the complexity of social reality), and therefore we also
not made or distributed for profit or commercial advantage and that copies g]low institutional literals in X. We call a set of brute literals

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
AAMAS’06May 8-12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/00055.00.

a brute description, a set of institutional literals an institu-
tional description, and a set of both brute and institutional
literals a mixed description.

conditional

facts

conditional

ohligations

institutional facts

obligations

.—C »

permissions

ELQ(permesIon®
———

Figure 1: The Architecture of the Normative System.

2. NORMATIVE COMPONENTS

We follow the definition of normative systems proposed
by Alchourrén and Bulygin [1], inspired by Tarski’s defin-
ition of deductive systems. They consider as input factual
descriptions and as output a classification of obligatory and
permitted situations. Permissions are not closed under log-
ical consequence, in the sense that a permission for p and a
permission for —p do not imply a permission for a contradic-
tion. For technical reasons, we describe the permissions by
sets of mixed descriptions. In our architecture, visualized in
Figure 1, the input of the normative system is a context, a
brute description, and the output is a set of obligations, a
mixed description, and a set of permissions, a set of mixed
descriptions.

There are four components in the architecture. Besides
the ones for counts-as conditionals (CA), obligations (O)
and permissions (P), there is a component that contains the
norms (NB). The counts-as component has a wrapper (IC)
to enable the connection with the other components. The
components are connected by channels. The data flowing
over the channels is not indexed by modal operators. So
if a proposition p is flowing over a permission channel it is
interpreted as a permission, usually represented in deontic
logic by P(p), and when it is flowing over an obligation
channel it is interpreted as an obligation, usually represented
by O(p).

The norm database does not have any input, we there-
fore assume that the norms of the normative system are
fixed. E.g., it can be extended with an input to update the
norm database. We also assume that there can be back-
ground knowledge in the form of institutional constraints.
The output contains sets of conditional obligations, condi-
tional permissions, counts-as conditionals, and institutional
constraints, four sets of pairs of mixed descriptions.

The counts-as component directly encodes Searle’s condi-
tional “X counts as Y in context C”. Examples of constitu-
tive norms are “X counts as a presiding official in a wedding
ceremony”’, “this bit of paper counts as a five euro bill” and
“this piece of land counts as somebody’s private property”.
The input contains counts-as conditionals, X, a brute de-

scription, and C, a mixed description. The output is Y, an
institutional literal.

The counts-as component is part of a component for insti-
tutional constraints, acting like a wrapper for the counts-as
conditionals. Its input are the brute facts, the counts-as
conditionals, and the institutional constraints. The output
are the brute and institutional facts, a mixed description.

The notorious contrary-to-duty paradoxes like Chisholm’s
and Forrester’s paradox have led to the use of constraints in
deontic logic [11]. The strategy is to adapt a technique that
is well known in the logic of belief change - cut back the set
of norms to just below the threshold of making the current
situation inconsistent. Therefore, the input of the obligation
component contains conditional obligations, a set of pairs
of mixed descriptions, a context, a mixed description, and
constraints, a set of mixed descriptions. The output contains
obligations, a mixed description.

The permission component is like an obligation compo-
nent without constraints, since the issue of contrary-to-duty
does not play a role for permissions. The input of the per-
mission component is a set of conditional permissions, and a
context of brute and institutional facts. As mentioned above
in the description of the whole normative system, another
distinction is that the output is a set of mixed descriptions.
The input contains conditional permissions, a set of pairs of
mixed descriptions, and a context, a mixed description. The
output contains permissions, a set of mixed descriptions.

Finally, consider again the whole architecture. When de-
signing a normative system, there is a tradeoff between oblig-
ations, permissions and counts-as conditionals, in the sense
that there are many norm bases which have the same global
output. For example, the same output can be obtained for
example using many counts-as conditionals, or no counts-
as conditionals at all. Likewise there is a tradeoff between
obligations and permissions. Consequently, there is a need
for a methodology to represent normative systems in our
architecture. It is relatively straightforward to represent a
piece of legal code in the architecture, as in legal code the
three kinds of norms are usually clearly distinguished, but
in general it is more problematic.

3. COORDINATION

A coordination model defines the interaction among com-
ponents. In software engineering coordination models and
languages based on tuplespaces are very popular, but such
a coordination model does not reflect the topology of the
architecture. Therefore, in this paper the coordination of
the normative components is based on a channel-based co-
ordination model. Our discussion is influenced by the co-
ordination language Reo [2], which has also been used to
coordinate agents and agent organizations [8].

Most of the channels are straightforward. The output
of the norm database is connected to the input of the three
other components. The output of the wrapper of the counts-
as component is the context of the obligation and permission
component, et cetera. All channels are synchronous, and we
assume that they are all synchronized. This can be made
explicit in the architecture. For example, in the Reo coordi-
nation language this can be achieved by connecting so-called
SyncDrain channels between all channels. However, we did
not represent this in the architecture to keep it as simple
as possible. This synchronicity may seem like an unrealis-
tic assumption, but it simply means that the calculation is
atomic. This is a common way to model coordination in
coordination languages. In actual implementations they do
not have to be synchronous, but there is a mechanism in the
coordination language to ensure the atomicity.

When there are multiple output channels on the same
port, then the output is replicated to all channels. For exam-
ple, the output of the wrapper of the counts-as component is
replicated to the obligation and permission component, and
the output of the permission component is replicated to the
output of the normative system as well as to an input of the
obligation component. When there are multiple input chan-
nels which are joined, then there are special merge nodes (a
simple kind of component). In Reo there is one predefined
merge as a non-deterministic choice among the inputs, if
inputs are available at the same time. In the normative sys-
tem architecture there are two mergers, represented by black
circles. One merges the output of the counts-as component
with the output of the permission component to result in
the constraints for the obligation component, and the other
merges the output of the obligation and permission compo-
nent such that obligations are permitted. They cannot be
modeled as a non-deterministic choice, but they are defined
by dx{di,...,dn} = {dUd1,...,dUd,}. Since there are no
cycles, it is straightforward to calculate the coordination.

The relation between the counts-as component and its
wrapper is as follows. When the counts-as component out-
puts at least Y for input X and C, then the wrapper also out-
puts Y (and possibly more) when the input contains both X
and C.

4. LOGICAL SPECIFICATIONS

The architecture is a bridge between logical specifications,
for example based on deontic logic, and normative multi-
agent systems. In a normative multi-agent system the com-
ponents can be implemented in a variety of ways. The ab-
stract behavior of the components and channels can be given
in terms of real-timed timed data streams [2], based on gen-
eral results in the Reo coordination language. The principles
of deontic logic can be interpreted as functionality descrip-
tions of the components [15, 6].

Though initially our motivation to develop the architec-
ture of the normative system was to build such computer
systems, we noticed that the architecture can be used too in
deontic logic research. In particular, it can be used as a log-
ical architecture to study interaction among logical systems
by varying the logics to describe the components. For ex-
ample, we can use either the logic for counts-as conditionals
of Jones and Sergot [10], Artosi et al. [3], Grossi et al. [9],
or our own proposal [4], and study its interaction with in-
put/output logic [11], or some other deontic logic. To do
so, we just have to find the flat conditional fragment of the
logics, and ignore the modal operator. This is subject of
further study [5].

5. REFERENCES

[1] C. Alchourrén and E. Bulygin. Normative systems.
Springer, 1971.

[2] F. Arbab. Reo: A channel-based coordination model
for component composition. Mathematical Structures
in Computer Science, 14(3):329-366, 2004.

[3] A. Artosi, A. Rotolo, and S. Vida. On the logical
nature of count-as conditionals. In Procs. of LEA 2004
Workshop, 2004.

[4] G. Boella and L. van der Torre. Regulative and
constitutive norms in normative multiagent systems.
In Procs. of KR’04, pages 255-265. AAAT Press, 2004.

[5] G. Boella and L. van der Torre. A logical architecture
of a normative system. In Procs. of AEON’06, LNAI
Springer, 2006.

[6] J. Broersen, M. Dastani, and L. van der Torre. Beliefs,
obligations, intension and desires as components in
agent architectures. International Journal of
Intelligent Systems, 20:9:893-919, 2005.

[7] E. Bulygin. Permissive norms and normative systems.
In A. Martino and F. S. Natali, editors, Automated
Analysis of Legal Texts, pages 211-218. Publishing
Company, Amsterdam, 1986.

[8] M. Dastani, F. Arbab, and F. de Boer. Coordination
and composition in multi-agent systems. In Procs. of
AAMASO5, pages 439-446. 2005.

[9] D. Grossi, F. Dignum, and J.-J. Meyer. Contextual
taxonomies. In Procs. of CLIMA-V, LNAI 3487, pages
33-51. Springer, 2005.

[10] A. Jones and M. Sergot. A formal characterisation of
institutionalised power. Journal of IGPL, 3:427-443,
1996.

[11] D. Makinson and L. van der Torre. Constraints for
input-output logics. Journal of Philosophical Logic,
30:155-185, 2001.

[12] D. Makinson and L. van der Torre. Permissions from
an input/output perspective. Journal of Philosophical
Logic, 32 (4):391-416, 2003.

[13] J. Searle. Speech acts: An essay in the philosophy of
language. Cambridge University, Cambridge, England,
1969.

[14] J. Searle. The Construction of Social Reality. The Free
Press, New York, 1995.

[15] J. Treur. Semantic formalisation of interactive
reasoning functionality. International Journal of
Intelligent Systems, 17:645-686, 2002.

[16] G. von Wright. Deontic logic. Mind, 60:1-15, 1951.

