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Estimation Based on Statistical Indices Exponential Distribution

m given m exponential distribution has a single parameter, A
m a parametrisable stochastic model (a distribution or a m given a set of samples from an exponential distribution,
stochastic process) and 0= {x X}
B a set of observations, O, where O can be samples of a T dn )
distribution or trajectories of a stochastic process m to catch the mean set A according to
m find such set of parameters that given statistical indices of ;o1
the observations are identical (or similar) to those of the —=— Z X;
A n
model i=1
m possible indices are . .
P m to catch the probability that a sample is greater than x set
H moments

m tail decay A according to

m correlation number of samples larger than x
exp(—x\) =

n

Erlang distributions A Simple Counting Process
m Erlang distribution is the convolution of k exponential m a two state continuous time Markov chain with infinitesimal
distributions with parameter A generator
m i.e., it has two parameters Q= *)\/\1 >‘)1\
m the mean and the variance are according to 2 e
m state 1 generates events according to a Poisson process
E[X] = k with intensity v
A
k
E[(X - E[X])?] = 2

m two equations with two unknowns determine the two
parameters

A Simple Counting Process Estimation Based on Statistical Indices

B some statistical properties: m choice of the applied indices is crucial
®m moments of inter-event times: m relation of the parameters of the model and the statistical
E[X] = A+ A2 indices are usually not simple
A2 m realizable region of statistical indices depend on the model
21 200M1 + (M +22)?) and might be unknown
E[X?] = N2
2

m joint moment of two consecutive inter-event times:

()\1 + )\2)2

EDaXe] =5
2

m three equations with three unknowns determine the three
parameters



Maximum Likelihood Estimation

m given
m a parametrisable stochastic model (a distribution or a
stochastic process) and

B a set of observations, O, where O can be samples of a

distribution or trajectories of a stochastic process
m find such set of parameters, A, that the likelihood that
model produces O is maximal
m the likelihood can be

m the joint density of the observations
m the probability of the observations, i.e., P(O|\)
m mixture of density and probability

A Simple Example: ML for Exponential Distribution

A Simple Example: ML for Exponential Distribution

m situation 1: we are given a set of samples from an
exponential distribution, O = {x1, ..., Xn}

m the likelihood of O is the joint density of n samples at
X1,...,Xn

m assuming that the parameter of the exponential distribution
is A, the likelihood is

L(N) = ﬁAexp(—/\x,-) = A”ﬁexp(_)\x,-)
=1 i=1

m our aim is to find such A that L(\) is maximal

A Simple Example: ML for Exponential Distribution

m taking the logarithm of L(\) we have
n
IN(L(A)) = nin(A) =AD" x;
i=1

m for the derivative of the logarithm we have

n >0 ifa<n/Y0, x
wzg—z&- =0 ifA=n/S0, X
' <0 ifaA>n/>0 X

m consequently, L(\) is maximal if

n

A= e
g Xi

m situation 2: instead of having n samples themselves, we
know only how many of them are smaller than a given limit,
T

m let r denote the number of observations that are smaller
than T

m the likelihood is the probability of the event that out of n
samples r are smaller then T

L = (7)1 = exp(-AT) (expl-AT)"
m it is easy to verify that a quantity like (1 — x)"x"~" with

0 < x < 1is maximal with x = (n—r)/n
m hence we must have exp(—AT) = (n — r)/n, from which

A=—In((n—=r)/n)/T

A Simple Example: ML for Exponential Distribution

A Simple Example: ML for Exponential Distribution

m situation 3 (censored samples): we know the value of
those samples that are smaller than T, for those samples
that are larger we know only that they are larger

m the total number of samples is n A

m r denotes the number of samples that are smaller than T
and we organise the samples such that
X1<x<---<x<T

m n— r samples are larger than T but their values are
unknown

m the likelihood is the joint density of the r known values joint
with the probability that n — r values are larger than T, i.e.,

m by considering the derivative of the logarithm of L()), it can
be verified that L(\) is maximal at

r
S XXt (n=nT

L(\) = (ﬁ Aexp(—Ax,-)) (exp(=AT))""

i=1

A Simple Example: ML for Exponential Distribution Expectation Maximisation Method

m for situation 1 and 2 the resulting ML estimate has a simple
probabilistic interpretation:
m situation 1: the parameter of the exponential distribution is
one divided by the mean
m situation 2: the parameter is such that the probability of

m the EM method is a technique to obtain the ML estimate in
case of incomplete data problems

m it starts from an initial guess and follows and iterative
scheme to improve the parameters step by step

having a value larger than T is (n—r)/n m notation:
m the result in situation 3 does not seem to have such simple m X'is the random variable (rv) describing the complete data
interpretation m Y is the rv describing the known data

) m Z is the rv describing the missing data (i.e., Y and Z
m for more complex models with many parameters to find, together form X)

the ML estimate can rarely be written as simple closed
form expressions
m when a closed form solution is not available, numerical

techniques can be applied to maximise the likelihood or the
log-likelihood function

m the initial set of parameters are denoted by X\
m )\, 1 is obtained from \; by applying the Expectation (E)
step and the Maximisation (M) step



Expectation Maximisation Method A Simple Example: EM for Exponential Distribution

m the E step reconstructs the missing data in expectation m we apply the EM method to have an ML estimate for
applying the actual set of parameters ); situation 3 seen before

m formally, denoting the known data by y, the E step m the known data, y, consists in x;,1 <j <r
computes the missing data, z, according to the conditional = we know that x; > T forj > r
expectation

m E-step: based on the memoryless property of the

zj=E[Z]Y =y, Al exponential distribution, we reconstruct x;,j > r as

m the M step reestimates the parameters by maximising the Xi=T+1/)\
likelihood function, L()), using the complete data formed m M-step: \i;y =n/ 2711 Xj
by y and z, i.e.,

Aip1 = argmax, L(\, y, z;)

m convergence toward (a possibly local) maximum of the
likelihood function is guaranteed for a wide range of
situations

A Variant: the Monte Carlo EM Method Numerical Examples
m if the computation of the E step is difficult, the missing data m estimation of parameter of exponential samples
can be generated by simulation m )\ = 1, x-axis: number of samples used, y-axis: estimate
m convergence is slower and/or not guaranteed in this case m black line: closed form ML estimate for situation 1,
m for the last example the E step becomes: we reconstruct m gray line: closed form ML estimate for situation 3 censored
Xj,I > ras x; =T + R()\;) where R()\) denotes a random at T = 1.5 (about 22% of the samples are not known)

number generated according to an exponential distribution

with parameter A 1.10f)

1.05+-
1.00+

095

Numerical Examples

m black line: ML estimate by the EM method for situation 3
(identical to the gray line of the previous figure)

m gray line: ML estimate by the Monte Carlo EM method for
situation 3 which oscillates because of the random
reconstruction of the missing data
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