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Estimation Based on Statistical Indices

given
a parametrisable stochastic model (a distribution or a
stochastic process) and
a set of observations, O, where O can be samples of a
distribution or trajectories of a stochastic process

find such set of parameters that given statistical indices of
the observations are identical (or similar) to those of the
model
possible indices are

moments
tail decay
correlation

Exponential Distribution

exponential distribution has a single parameter, λ
given a set of samples from an exponential distribution,
O = {x1, . . . , xn}
to catch the mean set λ according to

1
λ

=
1
n

n∑
i=1

xi

to catch the probability that a sample is greater than x set
λ according to

exp(−xλ) =
number of samples larger than x

n

Erlang distributions

Erlang distribution is the convolution of k exponential
distributions with parameter λ
i.e., it has two parameters
the mean and the variance are according to

E [X ] =
k
λ

E [(X − E [X ])2] =
k
λ2

two equations with two unknowns determine the two
parameters

A Simple Counting Process

a two state continuous time Markov chain with infinitesimal
generator

Q =

∣∣∣∣ −λ1 λ1
λ2 −λ2

∣∣∣∣
state 1 generates events according to a Poisson process
with intensity γ

A Simple Counting Process

some statistical properties:
moments of inter-event times:

E [X ] =
λ1 + λ2

γλ2

E [X 2] =
2(γλ1 + (λ1 + λ2)

2)

γ2λ2
2

joint moment of two consecutive inter-event times:

E [X1X2] =
(λ1 + λ2)

2

γ2λ2
2

three equations with three unknowns determine the three
parameters

Estimation Based on Statistical Indices

choice of the applied indices is crucial
relation of the parameters of the model and the statistical
indices are usually not simple
realizable region of statistical indices depend on the model
and might be unknown



Maximum Likelihood Estimation

given
a parametrisable stochastic model (a distribution or a
stochastic process) and
a set of observations, O, where O can be samples of a
distribution or trajectories of a stochastic process

find such set of parameters, λ, that the likelihood that
model produces O is maximal
the likelihood can be

the joint density of the observations
the probability of the observations, i.e., P(O|λ)
mixture of density and probability

A Simple Example: ML for Exponential Distribution

situation 1: we are given a set of samples from an
exponential distribution, O = {x1, . . . , xn}
the likelihood of O is the joint density of n samples at
x1, . . . , xn

assuming that the parameter of the exponential distribution
is λ, the likelihood is

L(λ) =
n∏

i=1

λexp(−λxi) = λn
n∏

i=1

exp(−λxi)

our aim is to find such λ that L(λ) is maximal

A Simple Example: ML for Exponential Distribution

taking the logarithm of L(λ) we have

ln(L(λ)) = n ln(λ)− λ
n∑

i=1

xi

for the derivative of the logarithm we have

d ln(L(λ))

dλ
=

n
λ
−

n∑
i=1

xi


> 0 if λ < n/

∑n
i=1 xi

= 0 if λ = n/
∑n

i=1 xi
< 0 if λ > n/

∑n
i=1 xi

consequently, L(λ) is maximal if

λ =
n∑n

i=1 xi

A Simple Example: ML for Exponential Distribution

situation 2: instead of having n samples themselves, we
know only how many of them are smaller than a given limit,
T
let r denote the number of observations that are smaller
than T
the likelihood is the probability of the event that out of n
samples r are smaller then T

L(λ) =

(
n
r

)
(1− exp(−λT ))r (exp(−λT ))n−r

it is easy to verify that a quantity like (1− x)r xn−r with
0 ≤ x ≤ 1 is maximal with x = (n − r)/n
hence we must have exp(−λT ) = (n − r)/n, from which
λ = − ln((n − r)/n)/T

A Simple Example: ML for Exponential Distribution

situation 3 (censored samples): we know the value of
those samples that are smaller than T , for those samples
that are larger we know only that they are larger
the total number of samples is n
r denotes the number of samples that are smaller than T
and we organise the samples such that
x1 ≤ x2 ≤ · · · ≤ xr < T
n − r samples are larger than T but their values are
unknown
the likelihood is the joint density of the r known values joint
with the probability that n − r values are larger than T , i.e.,

L(λ) =

(
r∏

i=1

λexp(−λxi)

)
(exp(−λT ))n−r

A Simple Example: ML for Exponential Distribution

by considering the derivative of the logarithm of L(λ), it can
be verified that L(λ) is maximal at

λ =
r∑r

i=1 xi + (n − r)T

A Simple Example: ML for Exponential Distribution

for situation 1 and 2 the resulting ML estimate has a simple
probabilistic interpretation:

situation 1: the parameter of the exponential distribution is
one divided by the mean
situation 2: the parameter is such that the probability of
having a value larger than T is (n − r)/n

the result in situation 3 does not seem to have such simple
interpretation
for more complex models with many parameters to find,
the ML estimate can rarely be written as simple closed
form expressions
when a closed form solution is not available, numerical
techniques can be applied to maximise the likelihood or the
log-likelihood function

Expectation Maximisation Method

the EM method is a technique to obtain the ML estimate in
case of incomplete data problems
it starts from an initial guess and follows and iterative
scheme to improve the parameters step by step
notation:

X is the random variable (rv) describing the complete data
Y is the rv describing the known data
Z is the rv describing the missing data (i.e., Y and Z
together form X )

the initial set of parameters are denoted by λ0

λi+1 is obtained from λi by applying the Expectation (E)
step and the Maximisation (M) step



Expectation Maximisation Method

the E step reconstructs the missing data in expectation
applying the actual set of parameters λi

formally, denoting the known data by y , the E step
computes the missing data, z, according to the conditional
expectation

zi = E [Z |Y = y , λi ]

the M step reestimates the parameters by maximising the
likelihood function, L(λ), using the complete data formed
by y and z, i.e.,

λi+1 = argmaxλL(λ, y , zi)

convergence toward (a possibly local) maximum of the
likelihood function is guaranteed for a wide range of
situations

A Simple Example: EM for Exponential Distribution

we apply the EM method to have an ML estimate for
situation 3 seen before
the known data, y , consists in xj ,1 ≤ j ≤ r
we know that xj > T for j > r
E-step: based on the memoryless property of the
exponential distribution, we reconstruct xj , j > r as
xj = T + 1/λi

M-step: λi+1 = n/
∑n

j=1 xj

A Variant: the Monte Carlo EM Method

if the computation of the E step is difficult, the missing data
can be generated by simulation
convergence is slower and/or not guaranteed in this case
for the last example the E step becomes: we reconstruct
xi , i > r as xi = T + R(λi) where R(λ) denotes a random
number generated according to an exponential distribution
with parameter λ

Numerical Examples

estimation of parameter of exponential samples
λ = 1, x-axis: number of samples used, y-axis: estimate
black line: closed form ML estimate for situation 1,
gray line: closed form ML estimate for situation 3 censored
at T = 1.5 (about 22% of the samples are not known)
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Numerical Examples

black line: ML estimate by the EM method for situation 3
(identical to the gray line of the previous figure)
gray line: ML estimate by the Monte Carlo EM method for
situation 3 which oscillates because of the random
reconstruction of the missing data
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