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Abstract. We introduce a deep inference logical system SBVr which extends
SBV [6] with Rename, a self-dual atom-renaming operator. We prove that the cut
free subsystem BVr of SBVr exists. We embed the terms of linear A-calculus
with explicit substitutions into formulas of SBVr. Our embedding recalls the
one of full A-calculus into -calculus. The proof-search inside SBVr and BVr is
complete with respect to the evaluation of linear A-calculus with explicit substitu-
tions. Instead, only soundness of proof-search in SBVr holds. Rename is crucial
to let proof-search simulate the substitution of a linear A-term for a variable in
the course of linear S-reduction. Despite SBVr is a minimal extension of SBV
its proof-search can compute all boolean functions, exactly like linear A-calculus
with explicit substitutions can do.

To Umberto Spina 1924 — 2000.

1 Introduction

We formalize unknown relations between basic functional computation and Deep in-
ference (DI). We show that the computations of linear A-calculus with explicit substi-
tutions, at the core of functional programming, live as proof-search inside the logical
system SBVr that we introduce, and which extends SBV, system at the core of DI [15].

Our motivation is to search how structural proof theory, based on DI methodology,
can contribute to paradigmatic programming language design. We recall that logical
systems designed under the prescriptions of DI allow inference rules to apply anywhere
in a formula in the course of a derivation. This is in contrast to “shallow inference”
of traditional structural proof theoretic formalisms, like natural deduction and sequent
calculus, whose inference rules apply at the root of formulas and sequents only. Apply-
ing rules in depth implies that structural proof theory of a quite vast range of logics,
i.e. classical, intuitionistic, linear and modal, has become very regular and modular. We
expect that much regularity and modularity can highlight useful intrinsic properties and
new primitives, or evaluation strategies, at the level of programs. The point is to look
for the computational interpretation of derivations in DI style in the same vein as the
one we are used to with shallow inference. We think that source of new programming
primitives, or evaluation strategies, can be DI deductive systems whose inference rules
only manipulate atoms of formulas, and for which new notions of proof normalization
exist, in addition to cut elimination.

So far, [3] is the only work which focuses on the proposal of a Curry-Howard anal-
ogy for a DI system, and which we are aware of. It applies DI methodology to the



natural deduction of the negative fragment of intuitionistic logic, and extracts an alge-
bra of combinators from it where interpreting A-terms.

Rather than intuitionistic logic, as in [3], we focus on SBV and its cut free subsystem
BV. The point about BV is that, thanks to its “deepness”, it naturally extends multiplica-
tive linear logic (MLL) [5] with the non commutative binary operator Seq, denoted “<”.
Second, from [4] we recall that Seq soundly and completely models the sequential com-
munication of CCS concurrent and communicating systems [11], while Par (*®) models
parallel composition. Third, we recall that A-calculus S-reduction incorporates a se-
quential behavior. We mean that the overall computation the redex (1x.M) N embodies
can complete only after executing the S-reduction (Ax.M) N —g M {V/.} that substitutes
N for every occurrence of x in M, if any. The sequential behavior of S-reduction closely
recalls the one in CCS. The difference is that, after consuming a prefix that takes the
form of a A-abstraction, S-reduction also requires to perform a substitution. So, if we
map a A-variable x into a BV formula, by a map (- )., as follows:

(x)o = (x<0) (1)

we can start modeling the consumption of the A-abstraction that takes place in the course
of a B-reduction. Intuitively, x in (1) is the name of an input channel, to the left of Seq,
eventually forwarded to the output channel o, associated to x by Seq. Definition (1)
comes from the following embedding of sequents of intuitionistic multiplicative linear

logic (IMLL) into SBV formulas:

@1y b B)° = (@] ® - @ af) <) 2)

where Seq internalizes the meta-notation kg . We remark that (1) recalls:
[x], = X0 .00 €)]

the base clause of the, so called, output-based embedding of the standard A-calculus
with explicit substitutions into m-calculus [17]. In (3), “.” is the sequential composition
of the n-calculus, and o a place-holder constant. In [8], (3) is called forwarder. So,
SBV formulas contain the forwarder, the basic input/output communication flow that
A-variables realize, if we look at (1) as a process. However, we could not see how to
obtain any on-the-fly renaming of channels able to model the substitution of a term for

a bound variable, namely, S-reduction. So, we extended SBV to SBVr.
Contributions and paper organization.

System SBVr. The system SBVr (Section 2) extends SBV by adding Rename, a binary
renaming operator [-].. Rename is self-dual, it binds atoms, and it is the inverse of a-
rule. The prominent defining axiom of Rename is R ~ [R{%/}], (Figure 3) where R is
a formula of SBVr. The meta-notation R{/,} denotes the capture-free substitution of a
for b, and of a for b in R. Roughly, we can think of [R{%}}], as Va.R{%/,}. The idea is
that we shall exploit Rename for renaming atoms of formulas which represent linear A-
terms with explicit substitutions. Like a universal quantifier, Rename sets the boundary
where the name change can take place without altering the set of free names of SBVr
of a formula.



Completeness of SBVr and BVr. First we recall that linear A-calculus embodies the
core of functional programming. The functions it represents use their arguments ex-
actly once in the course of the evaluation. The set of functions we can express in it are
quite limited, but “large” enough to let the decision about which is the normal form of
its A-terms a polynomial time complete problem [10], if we take the polynomial time
Turing machines as computational model of reference. We shall focus on A-calculus
with explicit substitutions [1]. “Explicit” means that the operation that substitutes a A-
term for a A-variable, in the course of a S-reduction, is not meta, but a term constructor.

Concerning the completeness of SBVr, we start defining an embedding (-|). from
A-terms with explicit substitutions to formulas of SBVr (Figure 8, Section 5.) Then,
we prove that, for every linear A-term with explicit substitutions M, and every atom o,
which plays the role of an output-channel, if M reduces to N, then there is a deriva-
tion of SBVr, with (M), as conclusion, and (N ), as premise (Theorem 5.6.) Namely,
completeness says that the evaluation of a linear A-term with explicit substitutions M,
viewed as a formula, is proof-search in SBVr. As a corollary, we show that BVr, the
cut free subsystem of SBVr, is complete with respect to linear A-calculus with explicit
substitutions as well. We mean that a computation from M to N in BVr becomes a pro-
cess of annihilation between the formula (M ), that represents M, and the negation of
(N),, representing N (Corollary 5.7.)

It is worth remarking that the above embedding (- ). strongly recalls output-based
embedding of standard A-calculus into m-calculus [17]. The reason why we think this
is relevant is simple. We recall that the traditional embeddings of standard A-calculus
into mr-calculus follow, instead, the input-based pattern of [12]. Input-based embeddings
are quite restrictive. The only S-reduction strategy they allow to simulate by n-calculus
processes is the lazy one. Instead, output-based embedding extends the simulation to
spine evaluation strategy, which strictly includes the lazy one. So, extending SBVr with
logical operators that model replication of A-terms will possibly extend completeness
we now have for SBVr, relatively to linear A-calculus with explicit substitutions, to
wider subsets of full A-calculus.

Cut elimination for SBVr. The above mentioned completeness of BVr follows from
proving that the cut elimination holds inside SBVr (Theorem 3.6.) The main steps to
prove cut elimination are shallow splitting, context reduction, splitting, and admissi-
bility of the up fragment, following [6]. The cut elimination for SBVr says that its
theorems can be proved by means of the rules of its subsystem BVr free of cut rule.

Soundness of SBVr. It says that proof-search inside SBVr is an interpreter of linear
A-terms with explicit substitutions. We show that, if a derivation of SBVr proves that
(M), derives from (N, in SBVr, then M reduces N (Theorem 5.6.) However, the
derivation of (M), from (N], must be under a specific proof-search strategy. This,
might limit efficiency. We mean that all the freedom we might gain thanks to the deep
application of the logical rules, in the course of a proof-search, can be lost by sticking
to the specific strategy we are referring to and that we shall see.

Expressiveness of SBVr and BVr. Linear A-calculus can compute all boolean func-
tions [10]. Proof-search of SBVr, and BVr can do the same thanks to the above com-



pleteness. So, the extension of SBV to SBVr is not trivial. Moreover, since BV is
NPtime-complete [9], so is BVr.

Extended version. This work is an extended abstract and contains a single full detailed
proof. The technical report [13] contains all proofs of the coming statements, and a
richer bibliography.

Ru=alalo|[R®R]|(ReR)|(R<R)|[R],

Fig. 1. Structures

2 Systems SBVr and BVr

Structures. Let a,b,c,... denote the elements of a countable set of positive proposi-
tional variables. Instead, a, E, ¢, ... denote the elements of a countable set of negative
propositional variables. The set of atoms contains both positive and negative propo-
sitional variables, and nothing else. Let o be a constant different from any atom. The
grammar in Figure 1 gives the set of structures, the standard name for formulas in SBV.
We shall range over structures with R, P, T, U, and V. Par [R ® R], CoPar (R ® R), and
Seq (R <R) come from SBV. Rename [R], is new and comes with the proviso that a
must be a positive atom. Namely, [R ]z is not in the syntax. Rename implies the defini-

{a} = FN(a) U FN(@)

a € EN((R <T)) if a € FN(R) U FN(T)
a € EN((R ® T)) if a € FN(R) U EN(T)
a € EN([R s T]) if a € FN(R) U EN(T)
a € FN([R],) if a # b and a € FN(R)

Fig. 2. Free names of structures.

tion of the free names FN(R) of R as in Figure 2.

Size of the structures. The size |R| of R sums the number of occurrences of atoms in
R and the number of occurrences of renaming operators [T], inside R whose bound
variable a belongs to FN(T'). For example, |[[b %= b]],| = 2, while |[[a = a]].| = 3.



Negation
[ReT]~@ReT)
(ReT)~[R=T]

(R<T)~ (R-T)
Rl. ~ [Rl,

Renaming

R ~ [R{/y}]a if a ¢ FN(R)

o{fp} = o
b{h} = a
VAR
A% = c
=
(R TI} = [R(p} 2 T{}]
R T} = Ry T
(RTY %) = RUN} T
[RIp{Ss} = R
[RIA} = TR{p}c

Contextual Closure
SRy ~ ST} if R ~ T
Unit

R=~[o®R] ~ (0c®R)
R~ (0<R) ~ (R<o0)

Associativity

[([R®T]%V]~[R=[T= V]
(ReT)s V)~ (R (T e V)
(R<T)< V)~ (R<(T V)

Symmetry

[R%T] ~ [T % R)]
(ReT)~ (T®R)

Distributivity
[(R<U)la = ([R]a<TU L)
Exchange
[MTR1p)a = [TR]als

Fig. 3. Equivalence ~ on structures.




Equivalence on structures. Structures are equivalent up to the smallest congruence de-
fined by the set of axioms in Figure 3 where Rename is a self-dual operator. By R{%/,} we
denote the capture-free substitution of a for b, and of a for b in R. The intuitive reason
why Rename is self-dual follows. Since R{%}} denotes R where every free occurrence
of the atom a, and its dual @, replaces b, and b, respectively, nothing changes when op-
erating on R in place of R. Every occurrence of a in R corresponds to one of @ of R, and
vice-versa. We observe that o ~ [o], is as particular case of R ~ [R{%/,}|. = [R],, which
holds whenever a ¢ FN(R). Finally, Distributivity in Figure 3 must be understood in
relation to the deductive rules of SBVr, so we postpone the discussion.

(Structure) Contexts. They are S{ }, i.e. a structure with a single hole { } in it. If S{R},
then R is a substructure of S. For example, we shall tend to shorten S{[R = U]} as
S[R 7= U] when [R» U] fills the hole { } of S{ } exactly.

o (a®a)
ail — ait
[a s a] °
(R=U-[T=V])  (R=»TleU) (R-T) e (U+VY)
“MR-Ty= UV [Rel) =Tl " (Rel)-TeV)
| TIRs ULL (Rl ©TUL)
(TRL % [UL] [(Re U)),

Fig. 4. System SBVr.

The system SBVr. It contains the set of inference rules in Figure 4 with form p E

name p, premise T, and conclusion R. The typical use of an inference rules is p % It
specifies that if a structure U matches R in a context S{ }, it can be rewritten to S{T'}.
Since rules apply in any context, and we use them as rewriting rules, R is the redex of
p, and T its reduct.

BVr is the down fragment {ail,s,ql,rl} of SBVr. The up fragment of SBVr is
{aif,s,qT,rT}. So s belongs to both. The rules that formalize Rename are r}, and r1.
The former can be viewed as the restriction to a self-dual quantifier of the rule u | which,
in [14], formalizes the standard universal quantifier.

Derivation and proof. A derivation in SBVTr is either a structure or an instance of the
above rules or a sequence of two derivations. The topmost structure in a derivation is
its premise. The bottommost is its conclusion. The length | 2| of a derivation Z is the
number of rule instances in Z. A derivation & of a structure R in SBVr from a structure



T
T in SBVr, only using a subset B € SBVr is 2|B. The equivalent space-saving form
R
T

we shall tend to use is 2 : T +g R. The derivation 2|8 is a proof whenever T ~ o. We
R

;!

o
R Or 2|8, or & : +g R. In general, we shall drop B when clear from the

R

denote it as

T
context. We shall write =tomean R ~ T.

We are in the position to give an account of Distributivity in Figure 3. It morally
embodies two rules, one flipping the other:

[(R<U)la (TRla <TUla)
(R)a<[Ula) KR<U)la

Replacing these two rules by a single equivalence axiom is coherent to the intuitive
interpretation of every Seq structure (R < U) in [6]. Whatever the derivation & that con-
tains (R <« U) is, neither going upward in &, nor moving downward in it, any atom of R
will ever interact with any atom of U. So, Rename can indifferently operate locally to
R, and U or globally on (R < U).

The following proposition shows when two structures R, T can be “moved” inside
a context so that they are one aside the other and may eventually communicate going
upward in a derivation.

Proposition 2.1 (Context extrusion.) S[R = T] F | [S{R} » T, for every S,R,T.

ql.s.rl

Equivalence of systems. A subset B C SBVr proves R if & : kg R, for some proof &.
Two subsets B and B’ of SBVr are strongly equivalent if, for every derivation 7 : T +g
R, there exists a derivation &2’ : T kg R, and vice versa. Two systems are equivalent if
they prove the same structures.

Derivable rules. A rule p is derivable in B C SBVr if p ¢ B and, for every instance

T
» —, there exists a derivation & in B such that & : T +g R. Figure 5 recalls a core set

L° (ReR) (ReT)
(R % R SR ™ R-T)
(R<T) (R<ay®lawT]) (R=<T)
def] —mm8¥ deff —mmM8@ pmix
(R<a)y® (a®T)] (R<T) R T]

Fig. 5. A core-set of rules derivable in SBVr.



of rules derivable in SBV, hence in SBVr. General interaction down and up rules are
i |, and iT, respectively. The rule def| uses a as a place-holder, and a as name for 7.
Building the derivation upward, we literally replace T for a. Symmetrically for def.
The rules mixp, and pmix show a hierarchy between the connectives, where % is the
lowermost, < lies in the middle, and ® on top. General interaction up is derivable in
{ai,s,qT,rT}, while def | is derivable in {ail, s, q |}, and mixp is derivable in {qT}:

R, ® TR, _(R-T)
(EL 912 (R-(c®T)) RoT)
(l-RJa ® rRJa) ail D —— _—
"Re B Relamdlo D) g (ReYe 0T
it =% ind. hypothesis LRzl las@a T (R®o)«(0®T))
- (R<a)® (o«@®T))] (R-T)

’ (R<a)s @o )]
The leftmost derivation sketches how to derive general interaction up in the case new
to SBVr, as compared to SBV. Symmetrically, general interaction down is derivable in
{ail,s,ql,rl}, while def 7 in {aif, s,q T}, and pmix in {q|}.

3 Cut elimination of SBVr

The goal is to prove that SBVr, and BVr are equivalent. Proving the equivalence,
amounts to proving that every up rule is admissible in BVr or, equivalently, that we
can eliminate them from any derivation of SBVr. Splitting theorem for BVr, which
extends the namesake theorem for BV [6], is the effective tool we prove to exist for
showing that the up fragment of SBVr is admissible for BVr.

Proposition 3.1 (BVr is affine.) Inevery 2 : T + R, we have |R| > |T)|.

Proposition 3.2 here below says that the components of Seq, and CoPar can be proved
independently, and that Rename is a universal quantifier on atoms.

Proposition 3.2 (Derivability of structures in BVr.) For all R,T, and a:

1. P+ R<TYiff P :+rRand P> :+ T.
2. Z:+r(ReDiff & :+Rand P, :+ T.
3. P r[Rl,iff P+ R{%,), for every atom b.

Proposition 3.3 here below says that part of the structure in the conclusion of every proof
of BVr, which in the proposition will be P, is the context that, suitably decomposed,
allows to annihilate each component of the remaining part of the conclusion.

Proposition 3.3 (Shallow Splitting in BVr.) Forall R, T, P, and a:

1. IfZP :+ [(R<T)® P), then (P1<P) + P, and + [R® P1], and + [T ® P;], for
some Py, P».

2. If 7 :+ [(R®T)®% P], then [P1® P;] + P, and + [R® P1], and + [T » P,], for
some Py, P».

3.IfZ .+ [aw P), then & :a+ P.



4. If & .+ [[Rly® P, then[P'|, + P, and v [R ® P’], for some P’.

Proposition 3.4 here below says that in the conclusion of every proof of BVr we can
always focus on a specific structure R so that, upward in the proof, a suitable structure
U allows to annihilate R. If some Rename gets in the way in between R, and U, we can
always move it outward so that it does not interfere.

Proposition 3.4 (Context Reduction in BVr.) For all R and contexts S{ } such that
P .+ S{R}, there are U,a such that 9 : [[{ } 2 Ull,+ S{ }, and+ [R» U].

Namely, here above, S{ } supplies the “context” U, required for annihilating R, no
matter which structure fills the hole of S{ }, and no matter the existence of Rename
enclosing R and U.

Theorem 3.5 here below results from composing Context Reduction (Proposition 3.4),
and Shallow Splitting (Proposition 3.3) in this order. It says that in every proof of BVr
we can always focus on any structure inside the conclusion and, moving upward in the
proof, we can annihilate it, the final goal being obtaining only o as premise of the whole
proof.

Theorem 3.5 (Splitting in BVr.) For all R, T, and contexts S{ }:

1L IfP :+ SR<T), then[[{ } (K1 <Kx)]la+ S{ }, and+ [R% K], and + [T » K],
for some K, K>, a.

2. IfZ :r S(RoT), then[[{ } »[Ki® Kx]lla+ S{ }, and+ [R® K], and+ [T » K3),
for some K, K>, a.

3 If P+ S[R],, then[[{ }® K]],+ S{ }, and + [R = K], for some K, a.

Theorem 3.6 here below results from composing Splitting (Theorem 3.5), and Shallow
Splitting (Proposition 3.3). Just to give an informal idea about its meaning, in its proof
we can show that every derivation of SBVr that contains an instance of r T can be
rewritten as a derivation with the same conclusion, without the above occurrence of r T,
but with a couple of new instances of both r|, and s.

Theorem 3.6 (Admissibility of the up fragment for BVr.) The set of rules {aif,qT,rT}
of SBVr is admissible for BVr.

Theorem 3.6 here above directly implies:
Corollary 3.7 The cut elimination holds for SBVr.

4 Linear A-calculus with explicit substitutions

Linear A-calculus with explicit substitutions is a pair with a set of linear A-terms, and
an operational semantics on them. The operational semantics looks at substitution as
explicit syntactic component and not as meta-operation.

The linear A-terms. Let 7 be a countable set of variable names we range over by
x,y,w,z. We call ¥ the set of A-variables. The set of linear A-terms with explicit sub-
stitutions is A = |Jyxcy Ax we range over by M, N, P, Q. For every X C ¥, the set
Ax contains the linear A-terms with explicit substitutions whose free variables are in
X, and which we define as follows: (i) x € Ayy; (1) Ax.M € Ax if M € Axyyy; (iii)
(M)N € Axuy f M € Ax, N € Ay,and X NY = 0; (iv) (M) {x = P} € Axyy if
M e AXU{x}a PeAy,andXNY =0.



(Ax.M)N = (M) {x = N}

x){x=P} > P
Ay.M){x =P} - ly.(M){x= P}
(M)N){x = P} - (M) (N){x = P} if x € fv(N)
(M)N){x =P} - (M){x=P)N if x € fv(M)

Fig. 6. S-reduction -C A X A with explicit substitution.

B-reduction on linear A-terms with explicit substitutions. It is the relation — in Figure 6.
It is the core of the very simple, indeed, computations the syntax of the terms in A allow
to develop. The point, however, is that the core computational mechanism that replaces
a term for a variable is there, and we aim at modeling it inside SBVr. Moreover, despite
A is so simple, it can model all the boolean functions [10].

M—=N M=P P=N
fl Ift tra —————e———
"MoM M=N Mo N
M=N M= N M= N
f —— @ —m @ ——mM8M8M88 ™M
Ax.M = Ax.N (MyP= (N)P (PYM = (P)N
M=N M=N
(T' or
(M){x=P}= (N){x=P} (P){x=M}= (P){x=N}

Fig. 7. Rewriting relation =C A X A.

Operational semantics on linear A-terms with explicit substitutions. It is the relation=
in Figure 7, i.e. the reflexive, contextual, and transitive closure of the above S-reduction
with explicit substitution. The number of instances of rules in Figure 7 that yield M =
Nis|M = N|.

5 Completeness and Soundness of SBVr and BVr

We relate functional and proof-theoretic worlds. First we map terms of A into structures
of SBVr. Then, we show the completeness of SBVr and BVr, i.e. that the computations
of A correspond to proof-search inside the two systems. Finally, we prove soundness of
SBVr with respect to the computations of A-calculus with explicit substitutions under a
specific proof-search strategy. This means that we can use SBVr to compute any term
which any given M reduces to.



The map (-).. We start with the following “fake” map from A to SBVr:

(x)o = (x<0) )
(Ax.M), = Vx3p.[(M), % (p© 0)] &)
((M)N ), =3p.[(M),®3q.(N )4 % (p 2 0)] (6)

(M) {x=P}), =Yx[(M), % (P).] @

We use it only to intuitively illustrate how we shall effectively represent terms of A as
structures of SBVr. The map here above translates M into (M |, where o is a unique
output channel, while the whole expression depends on a set of free input channels,
each for every free variable of M. Clause (4) associates the input channel x to the fresh
output channel o, under the intuition that x is forwarded to o, using the terminology of
[8]. Clause (5) assumes (M) p has p as output and (at least) x as input. It renames p,
hidden by 3, as o thanks to (p ® 0). This must work for every input x. For this reason
we hide x by means of V. Clause (6) makes the output channels of both (M ), and (N )),
local, while renaming p to o thanks to (p ® 0). If (M), will result in the translation
of a A-abstraction Az.P, then the existential quantifier immediately preceding (N ), will
interact with the universal quantifier in front of (M ),. The result will be an on-the-fly
channel name renaming. Clause (7) identifies the output of (P ), with one of the existing
free names of (M ),. The identification becomes local thanks to the universal quantifier.

(x)o = (x<0)
q MDO - |— qMD]J ® (P ® 0)”pr
N)
)

((MN)o =TUM, 7w T(NDgly 2 (p o0,
(D) {x = P, = TI(M), 5 (P):]]:

Fig.8. Map (- ) from A to structures

In a setting where the second order quantifiers V, and 3 only operate on atoms,
distinguishing between the two is meaningless. So, the renaming can be self-dual and
the true map (- ). which adheres to the above intuition is in Figure 8.

Remark 5.1 We keep stressing that (- ). strongly recalls output-based embedding of
standard A-calculus with explicit substitutions into m-calculus [17]. In principle, this
means that extending SBVr with the right logical operators able to duplicate atoms,
and consequently upgrading (- ])., we could model full 8-reduction as proof-search.

Lemma 5.2 (Output names are linear.) Every output name of (M), occurs once in it.

Lemma 5.3 (OQutput renaming.) For every M, o, and p we can derive o—ren in BVr.



M), (P),

o-ren ——mm M MM s—var

(M), = (p®0)] ((x) {x = P}),
L (unix=N), _ yonix= ),
((Ax.M)N), ((y.M) {x = P},
el (]((M) {x= P})NDU x € fv(M) o (](M) (N){x =P} [)0 x € fv(N)
((M)N){x = P}), ((M)N) {x = P}),

Fig. 9. Derivable rules that simulate S-reduction with explicit substitutions

Lemma 5.4 (Simulating —.) For every M, N, P, o, p, and g, we can derive:

1. s—intro, s, s—@|, and s— @r in BVr, and
2. s—varin BVru{qt}.

Appendix A shows how proving Lemma 5.4 here above, by detailing out the derivations
of SBVTr that derive the rules in Figure 9.

Remark 5.5 Were the clause “(y) {x = P} — y” in the definition of — we could not
prove Lemma 5.4 because (P), + ((¥) {x = P}), would not exist in SBVr. The reason
is that, given ((y) {x = P}),., it is not evident which logical tool can erase any translation
of P as directly as happens in (y) {x = P} — y. The only erasure mechanism existing in
BVr is atom annihilation through the rules ail, and aif, indeed.

Theorem 5.6 here below says that to every S-reduction sequence from M to N in linear
A-calculus with explicit substitutions corresponds at least a proof-search process inside
SBVTr that builds a derivation with (N, as premise and (M ), as conclusion.

Theorem 5.6 (Completeness of SBVr.) For every M, and o, if M = N, then there is
2 :(N)o+ (M), in SBVr, where q 1 is the only rule of the up-fragment in SBVr that
can occur in 9.

We remark that the strategy to derive (M ), from (N ), in SBVr has no connection to
the one we might use for rewriting M to N. Corollary 5.7 here below follows from
Theorem 5.6 and cut elimination of SBVr (Corollary 3.7). It reinterprets logically the
meaning of rewriting M to N. It says that M transforms to N if (N ), logically annihilate
the components of (M ),.

Corollary 5.7 (Completeness of BV'r.) For every M,N, and o, if M = N, then, in
BVr, we have + [(M), ® (N),] .

Theorem 5.8 here below says that proof-search inside SBVr can be used as an
interpreter of linear A-calculus with explicit substitutions. We say it is Weak Soundness
because the interpreter follows a specific strategy of proof-search. The strategy is made
of somewhat rigid steps represented by the rules in Figure 9 that simulate S-reduction.



Theorem 5.8 (Weak Soundness of SBVr.) For every M,N, and o, let 2 : (N), +
(M), in SBVr be derived by composing a, possibly empty, sequence of rules in Fig-
ure 9. Then M = N.

Conjecture 5.9 (Soundness of SBVr and BVr.) As a referee suggested, Theorem 5.8
above should hold by dropping the requirement that, for building 2 in SBVr, we force-
fully have to compose rules in Figure 9. The proof of this conjecture could take advan-
tage of the method that works for proving that BV, extended with exponentials of linear
logic, is undecidable [16].

A corollary of the conjecture would say that, for every M,N, and o, if & : +
[(M),® (N),] in BVr, then M = N. Namely, we could use the process that searches
the shortest cut free proof of [(M), s (N),] in BVr as an interpreter of linear A-
calculus with explicit substitutions. Of course, the possible relevance of this would be
evident in a further extension of BVr where full B-reduction could be simulated as
proof-search of cut free proofs.

6 Conclusions and future work

We define an extension SBVr of SBV by introducing an atom renaming operator Re-
name which is a self-dual limited version of universal and existential quantifiers. Re-
name and Seq model the evaluation of linear A-terms with explicit substitutions as
proof-search in SBVr. So, we do not apply DI methodology to reformulate an exist-
ing logical system we already know to enjoy Curry-Howard correspondence with A-
calculus. Instead, we use logical operators at the core of DI, slightly extended, to get a
computational behavior we could not obtain otherwise.

We conclude with a possible list of natural developments.

Of course proving Conjecture 5.9 is one of the obvious goals. Proving it would
justify the relevance of looking for further extensions of SBVr whose unconstrained
proof-search strategies could supply sound interpreters of full A-calculus (with explicit
substitutions). Starting points could be [16, 7, 15].

Also, we can think of extending SBVr by an operator that models non-deterministic
choice. One reason would be proving the following statement. Let us assume we know
that a A-term M can only reduce to one of the normal forms Ny, ..., N,. Let us assume
the following statement can hold in the hypothetical extension of SBVr:

If[(]Pl D()@"'@qpifl[)o@(]Pi+an®"'®(]Pnan] [ [(]MDO?[QNIDO@"'GB(]]vml)n]]»
then M reduces to N;, for some Py, ..., P,,.

This way we would represent the evaluation space of any linear A-term with explicit
substitutions as a non-deterministic process searching for normal forms. Candidate rules
for non-deterministic choice to extend SBVr could be!:
[[ReT]le[U»T]l ([ReU]eT)
S S—— T S S——
[[Re U]lsT] [ReT)e (UeT)]

! The conjecture about the existence of the two rules p |, and p T, that model non-deterministic
choice, results from discussions with Alessio Guglielmi.



A further reason to extend SBVr with non-deterministic choice is to keep developing
the programme started in [4], aiming at a purely logical characterization of full CCS.

Finally, we could explore if any relation between linear A-calculus with explicit

substitutions, as we embed it in SBVr using a calculus-of-process style, and the evo-
lution of quantum systems as proofs of BV [2], exists. Exploration makes sense if we
observe that modeling a A-variable x as a forwarder (x <o) is, essentially, looking at x
as a sub-case of ((x; ® --- ® x;) <[0] ® - - - ® 0;]), the representation of edges in DAGs
that model quantum systems evolution in [2].
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A Proof of Lemma 5.4

We simulate s—var with the following derivation:

(PDo

o
. (P » (x®0)llx

. r[(]P [)x i <x"5>]_]x
() {x =P}, = [1(x)o® (Pl =[x <0) ® (P).])e
where Lemma 5.3 implies the existence of 2. The here above derivation requires q T
because mixp is derivable in {qT}.
We simulate s—intro with the following derivation:
(M) {x = N}),

(M) {x = N}, 1,

7|
. MreM), = (Nl e (p @ o)ll, = [[((M) {x = N} ), 2 (p @ 0)1],

[[[[[-(]MDpJp’ ® (]NDX]JX ® (P ® B)]Jp

7|
| (M), = (0" @ pllly # (Nl (p @ 0)1l,
|—[”-[(]M [)p’ ® (P/ ® ﬁ)”p’]x 5 r(]NDxJ,\ 5 (P ® 5)”[1
" ((Ax.M)N), = MM ) 2 (p" @ P)y 1 ® T(N Do dg % (p @ 01,

e

where:

— Lemma 5.3 implies the existence of both &, 2’

- [(N)4ls in the conclusion of ey becomes [(N ) {*/,}]x = [(N ). in its premise
because g only occurs as output channel name in a pair (p” ® g), for some p”, and
nowherelse;

— in the conclusion of e;, the channel p’ has disappeared from (M) P

— in the conclusion of e,, the channel p has disappeared from ((M) {x = N}),.

We simulate s—A1 with the following derivation:

[TIM), 2 (P).)e 2 (p @ D)yl = [T (x = P, % (p @ )11, )y = (A.(M) bx = P},
i it MM, 2 (p®0) e (P11l
MM ), = (p @ 01yl 2 TP Dadply 1l
(.M (x = P}), = [ITL(M), = (0 ® ),y ® (P )]s

where e applies three of the axioms in Figure 3.
We simulate s — @[ with the following derivation:

(M) {x=PHN),
=M {x=P}), = [(N),], ® (pe0)l,
=TIIM ), ® (P)1lc (N )ylg ® (p® 0],

MM, 2 TN Dglg  (p®0) % (P)]ilp
N MM ), 2 T(N Dglg® (p@0)® (P)llyl:
M), » TN Dgly 2 (p @ 0)1), 9 T(P)),p1ls
(((M)N){x = P}), = TI{M)N o ® (P11 = TITIAM D, 2 TN Dgly ® (p @ 0)11, 7% (P)i]):
The simulation of s — @r works like the one of s — @I.




