Web Services and Diagnosis (1)

- **Web Service:**
 - web-based application that provides a service to a user
 - the user can be a human, a client application, or another Web Service
 - complex WSs provide a service by integrating and composing the activities of other (basic) WSs
 - Some examples:
 - plane ticket reservation → online travel planner
 - computer monitor seller → computer configurator
 - Web Services also used to model internal business processes of a company
Web Services and Diagnosis (2)

- We do **not** want to do debugging.
- **Runtime tracking** of an error source
 - failures mostly due to mishandled exceptions, lack of robustness, unpredicted behavior of one of the involved entities
 - quality of service failures (not tackled in this work)
- Final goal: **recovery**
 - find a way to provide the service in spite of the error
 - try to keep as low as possible the overhead for the user
- Current practice:
 - direct symptom handling (only for some error types)
 - no attempt at identifying causes
 - mostly: “unable to provide service, try again”

What do we diagnose?

- We diagnose a conversation.
 - A complex service results from the interaction between multiple basic service \(\rightarrow\) conversation
 - A conversation is a set of partially ordered activities carried out by different (basic) services.
 - internal activities
 - communications between services
- Component-oriented qualitative models:
 - component \(\leftrightarrow\) activity
 - system structure \(\leftrightarrow\) data i/o between activities
 - fault \(\leftrightarrow\) activity error
Motivating example: online book sales
Model-Based Diagnosis of WSs

- **Model** of an activity expresses:
 - how errors on input data affect the correctness of output data (ok mode)
 - how an error in activity execution can affect the correctness of output data (abnormal mode)
- pure deviation models:
 - a variable for each i/o data piece with domain \{ok, ab\}

- **Observations**:
 - alarms raised by a service
 - diagnosers receive and log messages between services
 - the model maps alarms and checks on logged messages to hypotheses on data correctness

A complete static model does not exist
A complete static model does not exist

1. private models
2. runtime composition

Decentralized Diagnosis
Decentralized Diagnosis

Web Service sends messages to local diagnoser

Decentralized Diagnosis

Local Diagnoser
local model + alarms + checkpoints

Web Service sends messages to local diagnoser
Decentralized Diagnosis

Global Diagnoser
no initial info

Local Diagnoser
local model + alarms + checkpoints

Web Service
sends messages to
local diagnoser

Our Approach

• **Consistency-based diagnosis** (with fault modes).

 • We do provide:
 • a **specification** of local diagnoser operations
 • a **formal characterization** of local diagnoser operations
 • an **algorithm** for the Global Diagnoser
 • starts with no information on local services
 • the algorithm only assumes that local diagnosers meet the specifications of their operations
 • the algorithm **merges** information from local diagnosers and **decides** which local diagnosers to contact.

 • We do not provide:
 • **algorithms** for local diagnosers.
Starting Diagnosis Upon Alarms

Something’s wrong corresponding local diagnoser reacts to a fault message.

Initial info:
- local **observations** (alarms + checkpoints) **OBS**

Compute:
- a set of **candidate diagnoses** → hypotheses of misbehaviour that explain **OBS**
 - **internal misbehaviour**: errors occurred inside the WS
 - **external misbehaviour**: errors in inputs received from other WSs (**blame on other services**)
- **consequences** of each hypothesis on service outputs
 - can be used to validate/discard a candidate diagnosis
Local Candidate Diagnosis

A local candidate diagnosis contains three elements:

- hypotheses on local behaviour
- blames on other (input) services
- consequences of hypotheses on other (output) services

The Role of the Global Diagnoser

COLLECT
local candidate diagnoses
The Role of the Global Diagnoser

QUESTION
ask for blame
explanation

VALIDATE
ask for consequence
validation
Local Diagnosers - Explanation

- Local diagnoser receives **blames**
- It produces local candidate diagnoses that explain observations **AND** blames.
 - additional hypotheses of internal misbehaviour
 - additional blames
 - additional consequences
- New local candidate diagnoses:
 - merged with the ones that originated the blame **by the global diagnoser**
- If no explanation:
 - the candidate diagnosis that originated the blame is **rejected by the global diagnoser**

Local Diagnosers - Validation

- Local diagnoser receives **consequences**
- It verifies through local observations whether the predicted consequences hold.
- Produces:
 - additional consequences on other services
- If initial consequences **hold**:
 - the global diagnoser **adds new consequences** to the local candidate diagnosis that originated them.
- If initial consequences **do not hold**:
 - the candidate diagnosis that originated them blame is **rejected by the global diagnoser**.
Characterization of Local Diagnosers (I)

- Candidate diagnoses are represented by **partial assignments** to model variables
 - assignment of *ok* or *ab* value to variables representing internal activities
 - assignment of *ok* or *ab* value to model variables
- For both **explanation/validation**:
 - local diagnosers receive the parts of the assignments that concerns them
 - work by **extending** partial assignments
- Both can be characterized in the same way
 - **EXTEND** operation **explains** and **validates** at the same time.

The EXTEND operation (I)

Def. An assignment α is **admissible** in a model M_i if
i. α is **consistent** with M_i
ii. the **restriction** of $M_i \cup \alpha$ to variable **not assigned** in α is **equivalent** to the restriction of M_i alone to the same variables.
The EXTEND operation (I)

Def. An assignment α is **admissible** in a model M_i if

i. α is **consistent** with M_i

ii. the restriction of $M_i \cup \alpha$ to variable **not assigned** in α is **equivalent** to the restriction of M_i alone to the same variables.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y_1</th>
<th>y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ok</td>
<td>ok</td>
<td>ok</td>
<td>ok</td>
</tr>
<tr>
<td>ok</td>
<td>ab</td>
<td>ok,ab</td>
<td>ok,ab</td>
</tr>
<tr>
<td>ab</td>
<td>ok,ab</td>
<td>ok,ab</td>
<td>ok,ab</td>
</tr>
</tbody>
</table>

The EXTEND operation (I)

Def. An assignment α is **admissible** in a model M_i if

i. α is **consistent** with M_i

ii. the restriction of $M_i \cup \alpha$ to variable **not assigned** in α is **equivalent** to the restriction of M_i alone to the same variables.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y_1</th>
<th>y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ok</td>
<td>ok</td>
<td>ok</td>
<td>ok</td>
</tr>
<tr>
<td>ok</td>
<td>ab</td>
<td>ok,ab</td>
<td>ok,ab</td>
</tr>
<tr>
<td>ab</td>
<td>ok,ab</td>
<td>ok,ab</td>
<td>ok,ab</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y_1</th>
<th>y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1</td>
<td>*</td>
<td>*</td>
<td>ab</td>
</tr>
<tr>
<td>α_2</td>
<td>ok</td>
<td>*</td>
<td>ab</td>
</tr>
<tr>
<td>α_3</td>
<td>ab</td>
<td>*</td>
<td>ab</td>
</tr>
</tbody>
</table>
The EXTEND operation (I)

Def. An assignment \(\alpha \) is admissible in a model \(M_i \) if

i. \(\alpha \) is consistent with \(M_i \)

ii. the restriction of \(M_i \cup \alpha \) to variable not assigned in \(\alpha \) is equivalent to the restriction of \(M_i \) alone to the same variables.

\[
\begin{array}{c|c|c|c|c}
 a & x & y1 & y2 \\
 \hline
 & ok & ok & ok & ok \\
 ok & ab & ok,ab & ok,ab & \\
 ab & ok,ab & ok,ab & ok,ab & \\
\end{array}
\]

\(M_i \)

\[
\begin{array}{c|c|c|c|c}
 a & x & y1 & y2 \\
 \hline
 \alpha_1 & & * & * & ab \\
 \alpha_2 & ok & ok & * & ab \\
 \alpha_3 & ab & * & * & ab \\
\end{array}
\]
The EXTEND operation (I)

Def. An assignment α is **admissible** in a model M_i if

i. α is **consistent** with M_i

ii. the **restriction** of $M_i \cup \alpha$ to variable **not assigned** in α is **equivalent** to the restriction of M_i alone to the same variables.

<table>
<thead>
<tr>
<th>a</th>
<th>x</th>
<th>y1</th>
<th>y2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ok</td>
<td>ok</td>
<td>ok</td>
<td>ok</td>
</tr>
<tr>
<td>ok</td>
<td>ab</td>
<td>ok,ab</td>
<td>ok,ab</td>
</tr>
<tr>
<td>ab</td>
<td>ok,ab</td>
<td>ok,ab</td>
<td>ok,ab</td>
</tr>
</tbody>
</table>

- M_i

The EXTEND operation (II)

Def. Given an assignment α and observations ω, **EXTEND** computes **all minimal admissible extensions** of $\alpha \cup \omega$
The EXTEND operation (II)

Def. Given an assignment \(\alpha \) and observations \(\omega \), \textit{EXTEND} computes all minimal admissible extensions of \(\alpha \cup \omega \).

\[
\begin{array}{c|c|c|c}
\text{x} & \text{y1} & \text{y2} \\
\hline
\text{ok} & \text{ok} & \text{ok} \\
\text{ok} & \text{ab} & \text{ok},\text{ab} \\
\text{ab} & \text{ok},\text{ab} & \text{ok},\text{ab} \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{a} & \text{x} & \text{y1} & \text{y2} \\
\hline
\text{ok} & \text{ok} & \text{ok} & \text{ok} \\
\text{ok} & \text{ab} & \text{ok},\text{ab} & \text{ok},\text{ab} \\
\text{ab} & \text{ok},\text{ab} & \text{ok},\text{ab} & \text{ok},\text{ab} \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{a} & \text{x} & \text{y1} & \text{y2} \\
\hline
\text{ab} & \text{ok},\text{ab} & \text{ok},\text{ab} & \text{ok},\text{ab} \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{a} & \text{x} & \text{y1} & \text{y2} \\
\hline
\text{ab} & \text{ok} & \text{ok},\text{ab} & \text{ok},\text{ab} \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{a} & \text{x} & \text{y1} & \text{y2} \\
\hline
\text{ab} & \text{ok} & \text{ok},\text{ab} & \text{ok},\text{ab} \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{a} & \text{x} & \text{y1} & \text{y2} \\
\hline
\text{ab} & \text{ok} & \text{ok},\text{ab} & \text{ok},\text{ab} \\
\end{array}
\]
The EXTEND operation (II)

Def. Given an assignment α and observations ω, EXTEND computes all minimal admissible extensions of $\alpha \cup \omega$

<table>
<thead>
<tr>
<th>Variable</th>
<th>x</th>
<th>y_1</th>
<th>y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>ok</td>
<td>ok</td>
<td>ok</td>
</tr>
<tr>
<td>α</td>
<td>ab</td>
<td>ok,ab</td>
<td>ok,ab</td>
</tr>
<tr>
<td>ω</td>
<td>ab</td>
<td>ok,ab</td>
<td>ok,ab</td>
</tr>
</tbody>
</table>

$\mathbf{M_i}$

<table>
<thead>
<tr>
<th>Variable</th>
<th>x</th>
<th>y_1</th>
<th>y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>$*$</td>
<td>$*$</td>
<td>ab</td>
</tr>
</tbody>
</table>

Extensions

The Global Diagnoser

- **EXTEND** defined as set of minimal admissible extensions:
 - allows to avoid unnecessary invocations
 - $*$ represents variables unworthy of further investigations
- The **global diagnoser**:
 - repeatedly invokes EXTEND on local diagnosers
 - A local diagnoser is invoked if:
 - another diagnoser assigned an ab value to one of its outputs (blame to explain)
 - another diagnoser assigned an ok or ab value to one of its inputs (consequence to validate)
 - until there is nothing to explain/validate
 - EXTEND may produce new blames and consequences, but may also reject an assignment
- for a final assignment α:
 - diagnosis $D(\alpha) = \{ a \mid a \text{ is an activity and } \alpha(a) = \text{ab} \}$
Conclusions and Future Work

• **Advantages** of the approach:
 • reduction of communication overhead
 • decentralized VS purely distributed
 • does not explore the whole model if not necessary
 • possible to apply it also to other types of systems
 • as long as models are pure deviation models
 • abstract models of correctness propagation
 • could be at least partially derived automatically (to investigate)

• **Future** work:
 • exploit coordination mechanisms and coordination info
 • local diagnosers only characterized
 • propose efficient algorithms for local diagnosers