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1 Introduction

Several explanation and interpretation tasks, such andsig plan
recognition and image interpretation, can be formalizeabakictive
reasoning. A number of approaches, including recent onef,[ad-
dress the problem based on a task-independent represantéta
domain which includes an ontology or taxonomy of hypotheses

In this paper we adopt a similar representation, but we aést d

with abduction as an iterative process where, like in mdadealed
diagnosis, further observations are proposed to discateiamong
candidate explanations; in addition, we take into accoastscof ob-
servations and actions. In fact, discrimination also imeslrefining
hypotheses, but this is performed down to an appropriatd Velich

depends on the cost of actions (e.g. repair actions or thetafbe

taken based on the results of abduction, and on the cost tifcamid

observations, which should be balanced with the benefitsrins of
more suitable actions, of better discrimination.

The presence of a domain representation with abstractiassh
significant impact on this trade-off. In general, a betteseasment
of the situation at hand, based on additional observatieasls to a
more focused action. However, the cost of observing the sidmae
nomenon at different levels of abstraction may vary sigaiftty; in
fact, it could involve more or less costly medical or teclahtests, or
computationally complex image processing, possibly wittiigonal
costs due to the delay before taking an action.

Moreover, the knowledge base could have been designeddndep

dently of the explanation/action task (e.g. diagnosis apeir), and
could therefore include a detailed description of the domvehich
is not necessary for the task; more generally, the conveeief a
detailed discrimination may depend on the specific caserat.ha
By explicitly considering abstractions in the iterativedabtion
process, we can often reduce the observation costs significget
maintaining the ability to exploit detailed observatiomsl &nowl-

edge when convenient (similar advantages have been shoimn in (O into one of its childrers,

ductive classification with abstractions, e.g. [6]).

In the following, we first describe the knowledge we expect to—= {C,

be available. We then describe a basic iterative abductiop &nd,
finally, we concentrate on the criterion for selecting thetrstep
in the loop: either performing a next observation at somelle¥
detail, or stopping because the estimated most convenenteis
performing the action(s) associated with the current Hypses.

2 Domain Representation

The basic elements of the domain model are a set of abducibl

(atomic assumptionst = {44, ..., A,} and a set of manifesta-
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tionsM = {M,, ..., My, }. Each abducibled; is associated with
an IS-A hierarchy\(A;) containing abstract values df; as well as
their refinements at multiple levels; similarly, each masiétion}/;

is associated with an IS-A hierarchy(1/;). We assume that the di-
rect refinements,, .. ., v, Of a valueV in a hierarchy (eitheA (A;)

or A(M;)) are mutually exclusive, and at most one of the leaf val-
ues in a hierarchy is true in each situation, i.e. we allow asthone
instance for each abducible and observation; moreoveedoh leaf
valuev of an abducible an a-priori probabilipy(v) is given.

The hypotheses spa&¥.4) for the abduction task is the set of all
of the combinations of values drawn from one or more distinct hi-
erarchies\(A;), while the manifestations spacd.M) is the set of
all of the combinationsv of values drawn from distinct hierarchies
A(M;). The relationships between the abducibles and the manifes-
tations are defined by the domain knowledge& S(A) x S(M).

Given an instance of manifestationse S(M) and an instance
of abduciblesy € S(A), (y,w) € K means thatv is a possible
observation set corresponding to the hypothesis set

We associate costs with values of both abducibles and nsaife
tions. LetC' € A(A;) be a value belonging to the IS-A hierarchy of
Ajy; its costac(C) is the cost of the action to be taken whéntakes
valueC' (e.g. a repair action ifl; represents a component afice-
notes one of its fault modes). Let, . . ., ¢, be the children of” in
A(A;), i.e. the possible refinements of valGe We assume that:

maz({ac(c1),...,ac(cq)}) < ac(C) < Z ac(cr)
k=1

i.e. the action that we take for a valaéof A; costs no less than the
most expensive action for its refinements and no more thangak
the actions for all of such refinements. As for the maniféstat let

O € A(M;) be a value belonging to the IS-A hierarchy &f;; its
costoc(O) is the cost of making the observation which refines value
..., 0q in A(O])

We can associate an action cost also with any instapce
...,C.} € S(A) of abducibles simply asic(y) =

> ._, ac(C), i.e. we assume that independent actions are taken for
each of the abducibles values that appeay.ikVith a slightly more
complex computation we can also associate an action cdstvget

of instanced” = {1,...,7s} representing the cumulative action
cost if I is the final set of explanations. For each abducitles.t.

(a value of)A; appears at least in ong € I', we compute a new
hierarchyA(A;,T") by considering the portion af(A;) up to the
least upper bound. UB(A;,T") that covers all of the values of;

&hat appear in" and by further removing from such a sub-tree all of

the values that do not appearlin
In this way, it may happen that the cast(C) of a valueC' ¢
A(A;,T) is larger than the sum of the costs(cy) of its children,



since not all of the children of' defined inA(A;) need to appear

If ac(T") is the minimum among the costs, we stop; otherwise we

in A(A;,T"). We therefore update (with a bottom-up computation) observe th& with the smallest(O).

theac costs inA(A;, I') to new costsic™ in order to reestablish this
property. The action cost df is then computed just as:

Z ac*(LUB(A;,T))

A;el

ac(T)

3 Iterative Abduction

We rely on the following generic loop for iterative explaioat

Input is a set of values; = {O1,...,O;} representing the ini-
tial observations, i.e. the values of a set of manifestat{dn’*, . . .,
M'} C M.

Generate a sdt of candidates (i.e. explanationsof).
loop
O := NextStepl);
if O = STOPthen exit
else
perform observation to refin@ into one of its childrery;
T' := Updatel’, ox)
end

That is, we assume that one or more initial observations iasng
that there is a way to generate candidate explanations bastém
(see below), and to update candidates based on additiosahat
tions; and we proceed with selecting and performing onerghtien
at a time, which, of course, is in general suboptimal, as j2]3

LetI'y = {m,...,7s} be one of the candidate sets involved in
the above formula (note that each candidatenay contain ground
as well as abstract causes) angl';) be its action cost, i.e. the cost
of stopping afi"x, which must be compared with the estimated cost
of acting after a further discrimination and refinement.

In principle, this estimation step would require to simelatl the
possible observation sequences and outcomes and, for £t
to assess the point where it is convenient, on average, poastd
perform the actions; in order to avoid such an intractabdecie we
assume that the abductive process will continue as foll6ives; one
of thev; € T, will be isolated; thensy; is refined level by level, up
to a point where performing an action is estimated to be auewme.
Therefore the estimated costlof is:

c(T'x) = min(ac(Ty),ic(Tx) + rac(Tx))

whereic(T'y) is the estimated cost of isolating a singlec I';, and
rac(I'y) is the estimated additional refinement and action cost once
somey; has been isolated.
In this proposal, we estimate the costI';) as follows:
ie(Tx) = > —p(v) - log(p(7:)) - e(:)
i=1
where—log(p(+:)) is the estimated number of observations needed
for isolating; [3] and o¢(v;) is an estimate of the cost of a sin-
gle observatioh The costrac(I'y) of refining its membersy; =

In this paper we aim at providing a general approach to the se{Ci.1,- - -, Ci.r; } until an action is taken is estimated by:

lection of the next step; we do not provide a general apprdach
candidate generation and update which could involve a miabef
duction and consistency reasoning; its formulation wodehd on

the wayK is represented. With hierarchies of abducibles, moreover

abstract as well as detailed assumptions may take part larep
tions; a general criterion which is suitable in this settimghe pref-
erence foteast presumptivexplanations [5], which generalize min-
imal (wrt set inclusion) explanations: an explanation {atégo based
on the IS-A hierarchy) implies another explanation is nastepre-
sumptive. In the following we assume that the candidatespcioad
at each iteration represent the least presumptive exjdeasadf the
observations collected so far.

4 Choosing the Next Step

LetT" be the current candidate set andd&BS be the set of possi-
ble observations (including refinements of previous olet@ms). In
order to decide whether to stop or to proceed with a new obterv
O € OBS, we select the minimum among:

e the action costic(I") associated with

e for eachO € OBS, the estimated costO), which is the sum
of the costoc(O) of observingO and the expected cost of the
candidate set after observigy i.e.:

¢(0) = 0c(0) + Y _ plox) - e(I's)

wherel'y, ..
by observingO and getting values, . . ., o, respectivelyp(ox)

is the probability of getting value, (computed based on current
candidates” as in [3, 2]) anc:(T';) is the estimated cost &f;, as
detailed in the following.

., I'q are the possible candidate sets that would result

rac('y) = Z <p(’7i) : EC(CLJ)>

i=1 j=1

wherec(C5, ;) is the estimated cost associated with; .

In case action costs do not depend on the current context, eac
costc(C,;) can be pre-computed offline with a bottom-up visit of
the taxonomies of the causes. In this proposal we have atl@gpte
formula similar to the one fa#(T'x), i.e.:

c(Ci,5) = min(ac(C;,j),ic(Ci,5) + rac(Ci,j))

whereic(C;,;) is the estimated cost of isolating a single child&f;
in the hierarchy andac(C; ;) is the estimated additional refinement
and action cost once some child@f ; has been isolatéd
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