
 1

Abstract

In this paper, we propose a framework for representing and reasoning about qualitative

and quantitative temporal constraints about periodic events. In particular our contribution

is two-folded: (i) we provide a formalism to deal with both qualitative and quantitative

“periodicity-dependent” constraints between repeated events, considering also user-

defined periodicities; (ii) we propose an intensional approach to temporal reasoning,

which is based on the operations of intersection and composition. Such a comprehensive

approach – to the best of our knowledge – represents an innovative contribution, which

integrates and extends results from both the Artificial Intelligence and the Temporal Da-

tabases literature.

1 Introduction

Temporal representation and temporal reasoning are fundamental issues within the Artificial In-

telligence (henceforth, AI) communities, since they play a central role in many “intelligent” ac-

tivities. Starting from the early 80’s, many Artificial Intelligence researchers took interest into

An intensional approach to

qualitative and quantitative periodicity-dependent temporal constraints

Luca Anselma°, Stefania Montani*, Paolo Terenziani*
°DI, Università di Torino, Corso Svizzera 185, Torino, Italy

anselma@di.unito.it

*DI, Univ. Piemonte Orientale “A. Avogadro”, Via Bellini 25/g, Alessandria, Italy

{stefania, terenz}@mfn.unipmn.it

Keywords: Temporal Reasoning. User-defined periodicities. Periodicity-dependent temporal constraints. Tempo-

ral constraint propagation.

 2

the development of specialised approaches to deal with different kinds of temporal constraints

[Vila, 94]. In particular, a relevant amount of work has been devoted to the treatment of (con-

straints between) periodic events (consider, e.g., [Ladkin, 86; Ligozat, 91; Morris et al., 96; An-

selma, 04]). Some of such approaches tackled the problem of dealing with “periodicity-based”

temporal constraints, in which constraints between periodic events depend on the specific perio-

dicity in which events occur. For instance, in [Loganantharaj & Giambrone, 95], the authors

dealt with "periodicity-dependent" durations (e.g., During the early morning (5am-7am), going

to work by car takes from 20 to 30 minutes; During morning rush hours (7am-9am), going to

work by car takes from 30 to 40 minutes), while in [Terenziani, 97] "periodicity-based" qualita-

tive (e.g., “before” [Allen, 83]) constraints were considered.

At the same time, mostly in the area of Temporal Databases, many authors have realized that,

since the use of a periodicity or calendar depends on the cultural, legal, and even business orien-

tation of the users (see e.g., [Soo & Snodgrass, 93]), dealing with user-defined periodicities is an

essential task. As a consequence, several approaches (consider, e.g., [Leban, 86; Niezette & Ste-

venne, 92; Bettini & De Sibi, 99; Ning et al., 02, Terenziani, 03] and the survey in [Tuzhilin &

Clifford, 95]) have been devised to model user-defined periodicities (and the related notions of

granularities and calendars).

 The goal of this paper is to propose an original and comprehensive framework dealing with

both quantitative and qualitative “periodicity-based” temporal constraints between periodic

events, taking also into account user-defined periodicities.

Once a set of temporal constraints has been defined, temporal reasoning is needed, in order to

support the intended semantics they represent. As a matter of fact, without temporal reasoning, a

user can represent any set of constraints - even an inconsistent one - with no reaction by the sys-

tem. Given a Knowledge Base (henceforth, KB) of periodicity-based temporal constraints, we

thus aim at providing a constraint-propagation-based form of temporal reasoning to amalgamate

them and to check their consistency. As most approaches in AI, our temporal reasoning approach

is based on the operations of intersection and composition. Unfortunately, usual approaches in

the literature (such as, e.g., Allen [Allen, 83] and Morris et al. [Morris et al., 96]), although syn-

thetically defined and semantically clear, do not apply to our case, since we have to manage two

 3

different components (periodicity and temporal constraint) and the interactions between them.

One possibility would be that of “exploding” each periodicity over a time span of interest (or, in

the most general case, on the “least common multiple” of the period of each periodicity in the

KB), explicitly generating all the repetitions (instances) of the events over such a time span, im-

posing all the input temporal constraints on the generated instances, and then using a “standard”

constraint-propagation technique to perform temporal reasoning on them. Such an extensional

approach may indeed work. However, it has two main drawbacks:

(i) in most cases, too many instances of events need to be taken into account (since, e.g., the

least common multiple of “week” and “month” is 28-year long);

(ii) in any case, the output of constraint propagation would not be user-friendly and perspicu-

ous (e.g., no train schedule lists explicitly the departure-arrival times of trains in all the days

of a year; see e.g. the discussion in [Terenziani, 03]).

Therefore, we have worked at the definition of an intensional calculus, which, although not

complete, performs part of the inferences providing a correct perspicuous (i.e., intensional) out-

put to users.

 The paper is organized as follows. In section 2 we formalize our representation language for

periodicity-based temporal constraints. In section 3, we describe the intensional calculus we have

defined for reasoning on them. Section 4 is devoted to comparisons and conclusions.

2 Representing periodicity-based constraints

As stated in the introduction, our formalism aims at representing (i) qualitative and (ii) quanti-

tative periodicity-based temporal constraints, considering also (iii) user-defined periodicities.

As a motivating example, consider the following real-world situation.

Example 1.

1. Every Monday, Sam takes 10 to 30 minutes to read his email; no later than 1 hour after

reading the email, he has a meeting, which lasts from 1 to 2 hours;

2. during the meeting, he makes a presentation;

3. every Monday afternoon, from 1 hour to 4 hours after the meeting, Sam reports the meet-

 4

ing results to his boss (and this activity takes from 1 hour to 1 hour and a half);

4. on working days, (and later than 30 minutes after having seen Sam, on Monday), Sam’s

boss meets the head of the department for 1-2 hours;

5. on working days (and later than 2 hours after the meeting, on Monday), Sam writes a report

about his work (this activity takes from 30 minutes to 1 hour);

6. on working days, no later than 2 hours after having written the report, Sam talks to the

head of the department for 1-2 hours;

7. on Friday and Saturday, no later than 1 hour after (possibly) having had a meeting (which

takes up to 1 hour), Mary writes a report about her work, and this activity requires from 30

minutes to 1 hour of time;

8. on working days, no later than 5 hours after having written the report, Mary talks to the

head of the department for 1-2 hours.

Since the main goal of our work is that of devising a comprehensive approach covering issues

(i)-(iii) above (and the interactions between them), in the current version we have chosen to rely

as much as possible on contributions described in literature, both as concern the formalism to

define periodicities and the formalism coping with temporal constraints. In both cases, we have

selected widely known and used AI approaches: the collection formalism [Leban et al., 86], re-

called in section 2.1, and STP (Simple Temporal Problem [Dechter et al., 91]), recalled in section

2.2.

2.1 The collection Formalism

The collection formalism allows one to represent user-defined periodicities in a symbolic,

user-friendly and incremental way. Leban et al. take calendars (e.g., seconds, hours, days, years)

as basic elements, and provide two classes of operators: dicing and slicing. The dicing operators

provide a means to further divide each interval in a periodicity according to another periodicity.

For example,

Days:during:Weeks

breaks up weeks into days. Slicing operators provide a way of selecting intervals from collec-

tions. For instance,

 5

Monday = [1] \ Days:during:Weeks

selects the first day in each week (e.g. Monday in the European calendar), while

Monday&Tuesday = [1,2] \ Days:during:Weeks

selects the pair of Mondays and Tuesdays and

WorkingDays = [1,2,3,4,5] \ Days:during:Weeks

selects all working days (see the periodicities in Example 1). Collection expressions can be ar-

bitrarily built by using a combination of these operators. For example

MondayAfternoon = [14,15,16,17] \ Hours:during:Monday

selects the afternoon hours of Monday.

The semantics of the expressions is informally represented in [Leban et al., 86] as nested sets

of convex time intervals. However, as in [Bettini & DeSibi, 99], we do not consider the possibil-

ity of nesting sets of intervals, in fact, we choose to rely on a simpler notion of temporal extent

of a periodicity.

Definition: Extension function. We define the extension (Ext) of a periodicity P the set of time

intervals which constitute the instances of P on the timeline, expressed using the basic granulari-

ties. The function Ext takes in input a periodicity (e.g., Monday) and gives in output a set of time

intervals (e.g., supposing that the basic granularity is days and that day 0 is a Monday,

Ext(Monday)={…[-7,-7],[0,0],[7,7], …}). �

2.2 STP

The STP framework, on the other hand, is based on the notion of bound on difference con-

straints. A bound on difference is a linear inequality of the form d1 ≤ X-Y ≤ d2 (also strict ine-

qualities are allowed). The variables in a bound on difference may correspond to time points (and

extremes of time intervals). Thus, a bound on difference d1 ≤ X-Y ≤ d2 has the following tempo-

ral interpretation: the temporal distance between the time points (endpoints of time intervals in

our case) X and Y is included into the admissibility range [d1, d2]. A temporal knowledge base

(KB) is a conjunction of bounds of differences constraints (called STP constraints in [Dechter et

al., 91] and henceforth). In [Meiri, 91; Brusoni et al., 97] it is shown how different types of quali-

 6

tative and quantitative temporal constraints can be easily mapped to STP constraints. In particu-

lar, all the qualitative constraints of the Continuous Interval Algebra (i.e., the subset of relations

of Allen's Algebra which can be mapped onto conjunctions of constraints between points, ex-

cluding inequality [Vila, 94]) can be mapped onto STP constraints, as well as precise and impre-

cise dates, durations and delays. Given an STP, the strictest admissibility range between each

pair of time points (i.e., the minimal network) can be obtained using a standard all-pairs shortest

paths algorithm such as, e.g., Floyd-Warshall’s one, which operates in a time cubic in the num-

ber of points, is correct and complete for STP constraints, and can be trivially adapted to check

consistency [Dechter et al., 91].

 For instance, the temporal constraint between the end of the email activity and the end of the

meeting Sam activity in constraint 1 of Example 1 would be represented as follows: 0 <

Start(meet_S)-End(email) < 1h.

2.3 Our representation formalism

In our approach, a (binary) periodicity-based constraint (PBC) is modelled by a triple <Ev, Per,

Con> where Ev denotes a pair of events, Per a user-defined periodicity, and Con the temporal

constraints1.

The (intuitive) semantics of periodicity-based constraints <<ev1,ev2>, P, C> in our approach is

the following.

ev1 and ev2 are two periodic events. For each occurrence (instance) pi of the periodicity P,

(i) there is exactly an instance e1i of ev1 taking place in pi and only in pi
2
;

(ii) there is exactly an instance e2i of ev2 taking place in pi and only in pi;

(iii) C (e1i, e2i) holds.

We allow users to associate names with expressions in Leban et al.’s formalism, and only user-

defined names can be used in the Per component of the constraints.

1 Durations are a degenerate case, in which the Ev component only consists of one event, and the Con component of the dis-

tance between its endpoints.
2 Note that we admit the existence of events of the same type in different periodicities (e.g. writing a report, see constraints 5

and 7 in Example 1); in this situation, we use indexes (S for Sam and M for Mary in the example) in order to distinguish between
them).

 7

In our approach, the Con component of each periodicity-based constraint can thus be ex-

pressed by a quadruple of admissibility ranges, representing the minimal and maximal distance

between the starting/ending points of ev1 and ev2, i.e. the distances between the points <Start(ev1)

and Start(ev2), Start(ev1) and End(ev2), End(ev1) and Start(ev2), End(ev1) and End(ev2)>.

Finally, the events (Ev component) can be simply specified using identifiers.

Note that we use explicit indexes (e.g., S for Sam and M for Mary in Example 1) to differenti-

ate between events of the same type, taking place at different times.

Considering the notation introduced above, the constraints in Example 1 can be expressed as

follows and graphically depicted in Figure 1:

Example 1’.

1. <<email, meet_S>, Monday, <(10m, 1h30m), (1h10m,3h30m), (0,1h), (1h,3h)>>;

2. <<presentation, meet_S>>, Monday, <(-inf, 0), (-inf,+inf), (-inf,+inf), (0,+inf)>>;

3. <<meet_S, boss>, MondayAfternoons, <(2h,6h), (3h,7h30m), (1h,4h), (2h,5h30m)>>;

4. <<boss, head>, WorkingDays, <(1h,2h), (2h,4h), (0,30m), (1h,2h30m)>>;

5. <<meet_S, rpt_S>, WorkingDays, <(1h,4h), (1h30m,5h), (0,2h), (30m,3h)>>;

6. <<rpt_S, head>, WorkingDays, <(30m,3h), (1h30m,5h), (0,2h), (1h,4h)>>;

7. <<meet_M,rpt_M>, Monday&Tuesday, <(0,2h), (30m,3h), (0,1h), (1h,2h)>>;

8. <<rpt_M, head>, WorkingDays, <(30m,6h), (1h30m,8h), (0,5h), (1h,7h)>>.

 8

Figure 1: the periodicity-based temporal constraints among the activities in Example 1. S and M stand for
Sam and Mary respectively, and are used as indexes to differentiate the same type of action, when it takes
place at different times.

3 Intensional calculus

Given the drawbacks of an extensional approach to temporal reasoning presented in the intro-

duction, we concentrated our efforts on the definition of an intensional calculus, able to perform

part of the inferences and to generate a correct perspicuous (i.e., intensional) output to users. The

details of our contribution and the related properties are illustrated in the following sections.

3.1 Intensional calculus: main issues

Our basic idea is that of defining a modular intensional calculus, in which intersection (∩) and

composition (@) are separately computed on the periodicities and on the constraints, i.e.,

<<ev1, ev2>, P1, C1> ∩ <<ev1, ev2>, P2, C2> = <<ev1, ev2>, P1 ∩P P2, C1 ∩C C2>

<<ev1, ev2>, P1, C1> @ <<ev2, ev3>, P2, C2> = <<ev1, ev3>, P1 @P P2, C1 @C C2>

The definition of the operators of intersection and composition between STP constraints (i.e., the

Con component of a periodicity-based constraint) are the standard ones in Floyd-Warshall’s al-

gorithm, i.e.,

 9

C1 ∩C C2 = C1 ∩ C2, where ∩ is the standard intersection between time intervals (admissibil-

ity ranges);

C1 @C C2 = K, where K = (a+c, b+d) for C1=(a,b) and C2=(c,d).

On the other hand, several problems have to be faced in order to provide an intensional definition

of intersection and composition between user-defined periodicities (i.e., the Per component of a

periodicity-based constraint). Specifically, operating at the intensional level means taking into

account only one “prototypical” repetition, i.e., the repetition in a “typical” common period (i.e.,

P1 ∩P P2 or P1 @P P2), represented in an intensional way. This means that:

(1) a one-to-one correspondence between the instances of P1 and P2 must be pointed out (see

comments below);

(2) the formalism for representing periodicities must be extended to be able to intensionally ex-

press the common period;

(3) an algorithm must be devised to compute the common period on the basis of two peri-

odicities P1 and P2. Notice that the computation must operate at the intensional level, and

provide an intensional output.

3.2 One-to-one correspondences between periodicities

Given the points (i) and (ii) in the definition of the semantics of our periodicity-based constraints

(PBC) (see section 2.3), two constraints <<ev1, ev2>, P1, C1> and <<ev1, ev2>, P2, C2> refer-

ring to the same repeated events ev1 and ev2 are consistent only in case the periodicities P1 and P2

are such that:

(1) there is a 1 to 1 correspondence between instances of P1 and instances of P2, and

(2) the corresponding instances intersect in time.

For instance, the periodicities Tuesday&Wednesday and Wednesday&Thursday (with the intui-

tive meaning) satisfy the above constraints (so that one can consistently assert that ev1 occurs

exactly once in each Tuesday&Wednesday and exactly once in each Wednesday&Thursday, im-

plying that ev1 occurs exactly once in the intersection). On the other hand, Tuesday&Wednesday

and Days do not satisfy constraint (1) (since Days are more “frequent” than Tues-

 10

day&Wednesday) and Tuesday&Wednesday and Thursday&Friday do not satisfy (2).

Unfortunately, since periodicities are intrinsically cyclic, more than one correspondence (spe-

cifically, two) satisfying the above constraints (1) and (2) may hold between pairs of peri-

odicities. For instance, the periodicities P1=Tuesday&Wednesday&Thursday&Friday and

P2=Friday&Saturday&Sunday&Monday&Tuesday “circularly” intersect twice so that two one-

to-one correspondences are possible (one pairing each instance of P1 with the instance of P2 start-

ing the preceding Friday, and one pairing it with the following instance).

To disambiguate, we first introduce the notion of Reference Time point (RT), as a point work-

ing as an absolute reference for all the periodicity-based constraints in a KB. Any disambiguat-

ing rule could work. In the following, we just propose one possibility, as a working example.

Anchoring Rule. Given two periodicities P1 and P2, take as the “anchoring pair” the pair con-

sisting of the first instance of P1 and P2 which start after RT; the following pairs of the corre-

spondence are obtained by pairing the second, third, etc. instances of P1 and P2 (and analo-

gously for the preceding pairs). �

 Thus, one-to-one correspondences between periodicities can be unambiguously defined as fol-

lows:

Definition: We call “anchoring relation” between two periodicities P1 and P2 (denoted by

ART(Ext(P1),Ext(P2))), the one-to-one correspondence (if any) obtained by pairing the intersect-

ing instances of P1 and P2, and applying the anchoring rule in case of ambiguity. We state that

there is a one-to-one correspondence CorART(P1,P2) if and only if there is an anchoring relation

ART between Ext(P1) and Ext(P2). �

Property 1. The relation ART is reflexive, symmetric and transitive. �

3.3 Extending the symbolic formalism for user-defined periodicities

In order to define an algebraic approach (i.e., an approach in which the results of intersection and

 11

composition are still constraints in our formalism), it is useful to further extend the formalism to

represent user-defined periodicities with two operators: pairwise intersection (∩P) and restricted

pairwise union (∪P) between periodicities. Since they are used to represent in an intensional way

“typical” common periods, the operators must take in input periodicities whose instances are in a

one-to-one correspondence, and operate on each pair.

Definition (pairwise intersection). Given two periodicities P1 and P2 such that CorART(P1,P2)

holds, the pairwise intersection between P1 and P2, i.e. P1 ∩P P2, is defined using the Ext function

as follows (where p1h∩p2k denotes standard intersection between two time intervals –conceived

as sets of time points):

Ext(P1 ∩P P2)={(p1h∩p2k) \ <p1h,p2k> ∈ ART(Ext(P1),Ext(P2))}. �

Property 2. If P=(P1 ∩P P2), then CorART(P,P1) and CorART(P,P2) hold. �

Definition (pairwise restricted union). Given two periodicities P1 and P2 such that Co-

rART(P1,P2) holds, and such that ∀<p1h,p2k> ∈ ART(Ext(P1),Ext(P2)) p1h and p2k intersect or

meet in time, then the pairwise restricted union between P1 and P2, i.e. P1 ∪P P2, is defined as

follows (where p1h∪p2k denotes standard union between two time intervals –conceived as sets of

time points):

Ext(P1 ∪P P2)={(p1h∪p2k) \ <p1h,p2k> ∈ ART(Ext(P1),Ext(P2))}. �

Notice that, given the second condition in the definition, ∪P only generates convex time inter-

vals and the restricted union of non-intersecting or non-meeting intervals is empty3.

Property 3. If P=(P1 ∪P P2), then CorART(P,P1) and CorART(P,P2) hold. �

In the following, we distinguish between base periodicities and composite periodicities. With

base periodicities we will intend Leban’s calendars and those periodicities obtained by the ap-

3 Notice also that we use union in order to intensionally define composition (see section 3.5), and composition gives an in-

consistency whenever the periodicities to be composed do not intersect in time.

 12

plication of Leban et al.’s language [Leban et al., 86] only. With the term composite periodicity

we intend periodicities defined using at least one of the operators (i.e., ∩P and ∪P). In the calcu-

lus we define hereafter, we work as much as possible with base periodicities, but there are cases

where the result of intersection or composition of base periodicities is a composite periodicity

(see section 3.4). In section 3.5 we provide rules for simplifying composite periodicities.

3.4 Relations between periodicities

In order to provide "perspicuous" results, the intensional operations of intersection and composi-

tion cannot just give in output a string concatenation of input periodicities and operators. At least

two types of simplifications can be (and need to be) performed:

(i) redundancy elimination; e.g., the output of the intersection of WorkingDays (i.e., days

from Monday to Friday) and Monday should be just Monday and not WorkingDays ∩P

Monday;

(ii) empty periodicity detection; for instance, the output of the intersection of Monday and

Wednesday should be empty and not Monday ∩P Wednesday.

In the next section we present an intensional definition that performs these simplifications. Since

periodicities are user defined, it is not possible to define a priori all the intersections and compo-

sitions between all pairs of periodicities. Therefore, we point out a set of five possible relations

between two user-defined periodicities which are exhaustive and mutually exclusive, and we de-

fine intersection and composition on these bases.

The relations are ⊆P, ⊃P, iP, niP, #P are defined as below (where p1h⊂p2k and p1h∩p2k respec-

tively denote standard inclusion and intersection between two time intervals):

(1) P1 ⊆P P2 ⇔ CorART(P1, P2) ∧ ∀<p1h,p2k> ∈ ART(Ext(P1),Ext(P2)) p1h⊆p2k

i.e. the inclusion relation between P1 and P2 holds if the one-to-one correspondence holds,

and for every corresponding pair of instances in the two periodicities, the first element is in-

cluded in the second one; as an example, Monday ⊆P WorkingDays, and Monday ⊆P Mon-

day;

 13

(2) P1 ⊃P P2 ⇔ NOT P1 ⊆P P2 ∧ CorART(P1, P2) ∧ ∀<p1h,p2k> ∈ ART(Ext(P1), Ext(P2))

p1h⊃p2

i.e. the strict inclusion relation between P2 and P1 holds if the previous relation does not hold

and the one-to-one correspondence holds, and for every corresponding pair of instances in

the two periodicities, the first element includes the second one; as an example, WorkingDays

⊃P Monday;

(3) P1 iP P2 ⇔ NOT P1 ⊆P P2 ∧ NOT P1 ⊃P P2 ∧ CorART(P1, P2) ∧

∀<p1h,p2k>∈ART(Ext(P1),Ext(P2)) p1h∩p2k≠∅

i.e. the intersection relation between P1 and P2 holds if none of the previous relations holds, if

the one-to-one correspondence holds, and for every corresponding pair of instances in the

two periodicities, the intersection between the first element and the second one is not empty;

as an example, Sunday&Monday iP WorkingDays;

(4) P1 niP P2 ⇔ CorART(P1, P2) ∧ ∃<p1h,p2k> ∈ ART(Ext(P1),Ext(P2)) p1h∩p2k=∅

i.e. the non-intersection relation between P1 and P2 holds if the one-to-one correspondence

holds, and for every corresponding pair of instances in the two periodicities, the intersection

between the first element and the second one is empty; as an example, Monday niP Tuesday;

(5) P1 #P P2 ⇔ NOT CorART(P1, P2)

i.e. the non-correspondence relation between P1 and P2 holds if the one-to-one correspon-

dence does not hold; as an example, Monday #P Days.

Given two user-defined base periodicities, it is possible to devise different sets of rules in or-

der to compute the relation holding between them on the basis of their definition. For example,

from any Leban’s definition of the form P1 = n / P2 :during: P3, we have P1 ⊆P P3, P1 #P P2, P2 #P

P3. Unfortunately, this set of rules is not complete; whenever the relation cannot be inferred via

the rules, it can be asked to the user (or computed by generating and checking extensions).

3.5 Intensional definition of intersection and composition about basic periodicities

Periodicity intersection and composition are defined as shown in Table 1. Each row in Table 1

 14

must be interpreted as a conditional simplification rule of the form: “If Relation Then P1 OPP P2

= formula”, where OPP is ∩P or @P.

Periodicity Intersection. Intersection applies to pairs of constraints of the form <<ev1, ev2>,

P1, C1> and <<ev1, ev2>, P2, C2>. For example, the first row states that if P1 ⊆P P2, then P1 ∩P P2

= P1. For instance, Monday ∩P WorkingDays = Monday. The last row states that, if there is no

one-to-one correspondence between P1 and P2, or the corresponding instances do not intersect,

then the intersection is empty, so that the result of <<ev1, ev2>, P1, C1> ∩ <<ev1, ev2>, P2, C2> is

an inconsistency.

Periodicity Composition. Composition applies to pairs of constraints of the form <<ev1, ev2>,

P1, C1> and <<ev2, ev3>, P2, C2>. Concerning the periodicities P1 and P2, notice that the seman-

tics of our constraints imposes that the “common” event ev2 must occur both exactly once in each

P1 (and only in P1) and exactly once in each P2 (and only in P2). As Table 1 reports, this is possi-

ble in case the relation between P1 and P2 is one of P1 ⊃P P2, P1 ⊆P P2 and P1 iP P2, while an in-

consistency must be reported in the cases P1 niP P2 and P1 #P P2. For instance, Monday @P Tues-

day = ∅ while Monday @P WorkingDays = WorkingDays.

Property 4. Correctness and simplification completeness. Our definitions of intersection and

composition (see Table 1) are correct; moreover, they are complete as regards emptiness detec-

tion and redundancy elimination. �

Relation
between P1 and P2 P1 ∩P P2 P1 @P P2

P1 ⊆P P2 P1 P2

P1 ⊃P P2 P2 P1

P1 iP P2 P1 ∩P P2 P1 ∪P P2

P1 niP P2 ∅ ∅

P1 #P P2 ∅ ∅

Table 1. Intersection and composition between periodicities.

 15

Proof (hint): correctness can be proved by showing that all simplifications are correct, i.e., (i) for

each rule IF P1 R P2 THEN Expr1 → Expr2 in Table 1, then Ext(Expr1) = Ext(Expr2), and (ii)

we output an empty value just in case intersection/composition is not possible, given the seman-

tics of the periodicity-based constraints.

Simplification completeness is proven by showing that, given any two base periodicities P1 and

P2 and an operation OPP (@P or ∩P) between them, (i) whenever Ext(P1 OPP P2) = Ext(P2), there

is a rule such that the intensional expression "P1 OPP P2" is transformed into "P2" (or vice versa,

if Ext(P1 OPP P2)=Ext(P1)); (ii) whenever the intersection or the composition operations are not

possible, given the semantics of the periodicity-based constraints, there is a rule that reports an

empty value. �

3.6 Intensional definition of intersection and composition about composite periodicities

In this section, we deal with composite periodicities, and we apply our intensional calculus to

them.

In the following, we hypothesize that composite periodicities are put in normal form, as below:

(P11 ∪P … ∪P P1s) ∩P…∩P (Pg1 ∪P … ∪P Pgf)

where each Pij is a basic periodicity. We also hypothesize that all input composite periodicities

(if any) have already been simplified (this can be done in a pre-compilation step).

The following property holds.

Property 5. Pairwise restricted union is distributive with regard to pairwise intersection. �

Given these premises and given the definitions in Table 1, temporal reasoning on composite pe-

riodicities requires to calculate:

(i) the intersection ∩P of normal forms;

(ii) the restricted union ∪P of normal forms (to compute ∩ and @ respectively: see sec-

tion 3.2).

Basically, operations (i) and (ii) consist of a set of simplification rules to detect emptiness and

to eliminate redundancies. Since periodicities are user-defined, operating directly on composite

 16

periodicities is a hardly feasible approach. In particular, it is difficult to find rules to determine

which one of the five relations holds between two composite periodicities (analogous to the rule

in section 3.5). Therefore, the only practical way of operating is that of devising a compositional

and modular calculus, in which operations between composite periodicities are decomposed by

considering pairwise the basic periodicities composing them.

Note 1. Unfortunately, since certain simplifications can only be captured considering composite

periodicities as a whole, such a compositional approach cannot be simplification-complete (see

Property 6).

Intersection of normal forms.

(α) ((P11 ∪P…∪P P1s) ∩P…∩P (Pg1 ∪P…∪P Pgf)) ∩P

((P’11 ∪P…∪P P’1t) ∩P…∩P (P’h1 ∪P…∪P P’hk)).

Emptiness detection. If there are two basic periodicities Pil and P’jk such that Pil #P P’jk, then the

intersection of the two normal forms is empty. For example, in (Monday ∪P Tuesday) ∩P Days,

since Monday #P Days, the result is empty.

If there exist two unions of basic periodicities (Pi1 ∪P…∪P Pis) and (P’j1 ∪P…∪P P’jk) such that

∀Pil in (Pi1 ∪P…∪P Pis) and ∀P’jm in (P’j1 ∪P…∪P P’jk) Pil niP P’jm, the intersection of the two

normal forms is empty. For example, (Monday ∪P Tuesday) ∩P (Friday ∪P Saturday) is empty,

because Monday niP Friday, Monday niP Saturday, Tuesday niP Friday and Tuesday niP Satur-

day.

If no emptiness is detected, the resulting periodicity can be obtained by applying the redundancy

elimination rules to the formula obtained by concatenating by ∩P the two input periodicities (i.e.,

to a formula like (α)).

Redundancy elimination. If there are two unions of basic periodicities (Pi1 ∪P…∪P Pis) and (P’j1

∪P…∪P P’jk) such that ∃P’jm in (P’j1 ∪P…∪P P’jk) such that ∀Pil in (Pi1 ∪P…∪P Pis) Pil ⊆
P P’jm,

then the intersection of the two unions is (Pi1 ∪P…∪P Pis) (and vice versa, by exchanging the role

of the two union sets). For example, in (SundayMorning ∪P SundayAfternoon) ∩P (Monday ∪P

NonWorkingDays), since SundayMorning ⊆P NonWorkingDays and SundayAfternoon ⊆P Non-

 17

WorkingDays, the intersection is (SundayMorning ∪P SundayAfternoon).

Moreover, if ∃P’jm in (P’j1 ∪P…∪P P’jk) such that ∀Pil in (Pi1 ∪P… ∪P Pis) Pil niP P’jm, P’jm can

be removed (and vice versa). For example, (SundayMorning ∪P SundayAfternoon) ∩P (Monday

∪P NonWorkingDays) is equivalent to (SundayMorning ∪P SundayAfternoon) ∩P NonWorking-

Days because SundayMorning niP Monday and SundayAfternoon niP Monday.

Union of normal forms.

(β) ((P11 ∪P…∪P P1r) ∩P…∩P (Pg1 ∪P…∪P Pgf)) ∪P

((P’11 ∪P…∪P P’1t) ∩P…∩P (P’h1 ∪P… ∪P P’hn)).

By applying property 5, the composite periodicity above can be rewritten as follows:

((P11 ∪P … ∪P P1r) ∪P (P’11 ∪P … ∪P P’1t)) ∩P… ∩P ((Pg1 ∪P… ∪P Pgf)) ∪P (P’h1 ∪P… ∪P

P’hn))

which reduces to the intersection of unions in the form

(Pi1 ∪P … ∪P Pis) ∪P (P’j1 ∪P … ∪P P’jk).

Emptiness detection. If there exist two basic periodicities Pil and P’jm such that Pil #P P’jm, then

the union of the two normal forms is empty. For example, in (Monday ∪P Tuesday) ∪P Days,

since Monday #P Days, the result is empty.

Moreover, let us consider the formula obtained after the application of the distributive property.

If there is a union of unions (Pi1 ∪P…∪P Pis) ∪P (P’j1 ∪P…∪P P’jk) which is empty, the overall

intersection is empty (from our definition, restricted union may introduce emptiness). Working

on the corresponding basic periodicities, this translates to the following rule: if ∀Pil in (Pi1

∪P…∪P Pis) and ∀P’jm in (P’j1 ∪P…∪P P’jk) Pil niP P’jm, then (Pi1 ∪P…∪P Pis) ∪P (P’j1 ∪P…∪P

P’jk) (and the whole union of normal forms) is empty. For example, (Monday ∪P Tuesday) ∪P

(Friday ∪P Saturday) is empty, because Monday niP Friday, Monday niP Saturday, Tuesday niP

Friday and Tuesday niP Saturday.

If no emptiness is detected, the resulting periodicity can be obtained by applying the redundancy

elimination rules (to a formula like (β)).

Redundancy elimination. Every union in the form (Pi1 ∪P… ∪P Pis) ∪P (P’j1 ∪P…∪P P’jk) can be

simplified as follows: if ∃Pil in (Pi1 ∪P…∪P Pis) and ∃P’jm (P’j1 ∪P…∪P P’jm) s.t. Pil ⊆
P P’jm, then

 18

Pil can be removed from (Pi1 ∪P…∪P Pis) (and vice versa). For example, in (SundayMorning ∪P

Tuesday) ∪P (Sunday ∪P Monday), since SundayMorning ⊆P Sunday, can be removed from the

formula, which is equivalent to (Tuesday) ∪P (Sunday ∪P Monday).

Moreover, the rules concerning intersection of normal forms can also be applied at this point.

Property 6. Correctness and simplification incompleteness. The simplification rules of empty

periodicity detection and redundancy elimination, applicable to composite periodicities, are cor-

rect; however, they are not simplification complete. �

Proof(hint). The correctness proof is similar to the one for basic periodicities; concerning incom-

pleteness, see Note 1. For example, (January ∪P February) ∩P (4thWeekOfTheYear ∪P

5thWeekOfTheYear) could be simplified as 4thWeekOfTheYear ∪P 5thWeekOfTheYear, because

the fourth and the fifth weeks of the year are included in the union of January and February.

However, this simplification cannot be detected by our redundancy elimination rules because it is

applicable only considering the periodicities (January ∪P February) and (4thWeekOfTheYear ∪P

5thWeekOfTheYear) as a whole.

3.7 Constraint propagation algorithm

Since our overall intensional calculus cannot be simplification complete (see Property 6), we

chose to adopt an algorithm closely inspired to the Floyd-Warshall’s all-pairs shortest paths algo-

rithm, since at least it is complete as regards the Con part of our constraints.

Constraint propagation algorithm:

1. for each evk in periodic events

2. for each evi, evj in periodic events

3. let PBCi,j the periodicity-based constraint between evi and evj, PBCi,k the periodic-

ity-based constraint between evi and evk and PBCk,j the periodicity-based constraint

between evk and evj

4. PBCi,j  PBCi,j ∩ (PBCi,k @ PBCk,j)

 19

The algorithm iteratively applies the operations of intersection and composition a cubic number

of times. The operations are applied modularly on Con components of the constraints (as defined

in section 3.1) and on Per components (as defined in sections 3.5 and 3.6). Thus, given proper-

ties 4 and 6, the following property trivially holds:

Property 7. Our intensional temporal reasoning approach is correct, but it is not simplification

complete. �

3.8 Example

The application of the constraint propagation algorithm on Example 1’ discovers no inconsis-

tency and gives as a result the periodicities in Figure 2 regarding the Per component of the con-

straints and the STP constraints in Figure 3 regarding the Con component of the constraints.

The algorithm has discovered, for example, the following constraints:

- <<email, presentation>, Monday, <(10m, 210m), (10m, 210m), (0,180m), (0,180m)>>,

i.e. on Monday Sam starts showing a presentation from 10 minutes to 3 hours and a half

(i.e., (10m, 210m) in the constraint) after starting reading his email and he shows the

presentation after reading his email but no more than 3 hours later (i.e., (0, 180m)).

- <<meet_M, head>, WorkingDays, <(60m,480m), (120m,600m), (60m,420m),

(120m,540m)>>, i.e., on working days, Mary starts talking to the head of her department

1 hour to 8 hours (i.e., (60m, 480m)) after the start of the meeting and she ends talking 2

hours to 9 hours (i.e., (120m,540m)) after the end of the meetings; moreover, she ends

talking to the head of her department from 2 hours to 10 hours (i.e., (120m,600m)) after

the start of the meeting and starts talking 1 hour to 7 hours (i.e., (60m,420m)) after the

end of the meeting.

 meet_S presentation boss rpt_S head meet_M rpt_M
email Monday Monday Monday WorkingDays WorkingDays WorkingDays WorkingDays

 meet_S Monday MondayAf-
ternoon WorkingDays WorkingDays WorkingDays WorkingDays

 20

 presentation Monday WorkingDays WorkingDays WorkingDays WorkingDays
 boss WorkingDays WorkingDays WorkingDays WorkingDays
 rpt_S WorkingDays WorkingDays WorkingDays
 head WorkingDays WorkingDays

 meet_M Monday&
Tuesday

Figure 2: The result of the propagation of Per component of periodicity-based constraints in Example 1’.

 email meet_S presenta-

tion boss rpt_S head meet_M rpt_M

 S E S E S E S E S E S E S E S E

S 0 90 90 210 210 210 450 510 330 390 510 630 450 450 480 510
email

E 0 0 60 180 180 180 420 480 300 360 480 600 420 420 450 480

S -10 0 0 180 180 180 360 420 240 300 420 540 360 360 390 420
meet_S

E -70 -60 0 0 0 0 240 300 120 180 300 420 240 240 270 300

S -10 0 0 180 0 180 360 420 240 300 420 540 360 360 390 420 presen-
tation E -10 0 0 180 0 0 360 420 240 300 420 540 360 360 390 420

S -130 -120 -60 -60 -60 -60 0 120 60 120 120 240 60 60 90 120
boss

E -190 -180 -180 -120 -120 -120 -30 0 0 30 30 150 -30 -30 0 30

S -70 -60 -60 0 0 0 120 180 0 180 180 300 120 120 150 180
rpt_S

E -100 -90 -90 -30 -30 -30 60 120 0 0 120 240 60 60 90 120

S -190 -180 -180 -120 -120 -120 -60 0 -30 0 0 150 -60 -60 -30 0
head

E -250 -240 -240 -180 -180 -180 -120 -60 -90 -60 -30 0 -120 -120 -90 -60

S 290 300 300 360 360 360 420 480 450 480 480 600 0 120 120 180
meet_M

E 230 240 240 300 300 300 360 420 390 420 420 540 0 0 60 120

S 170 180 180 240 240 240 300 360 330 360 360 480 0 0 0 120
rpt_M

E 110 120 120 180 180 180 240 300 270 300 300 420 -60 -60 0 0

Figure 3: The result of the propagation of Con component of periodicity-based constraints in Example 1’. In
the table, T[i,j]=b and T[j,i]=-a conjunctively represent the bounds on difference a < j – i < b, where i and j
are the starting/ending points of two events and a and b are measured in minutes.

5. Conclusions and comparisons

In this paper, we have described a comprehensive approach dealing with both (i) qualitative and

(ii) quantitative periodicity-based temporal constraints, and considering also (iii) user-defined

periodicities.

 21

Dealing with these issues and with the interplay between them required to devise a novel ap-

proach that integrates and extends the STP framework [Dechter et al., 91] and the Leban’s for-

malism [Leban et al., 86]. In particular, we have: (1) proposed a formalism to represent periodic-

ity-based temporal constraints; (2) extended Leban’s formalism to represent composite peri-

odicities; (3) singled out five relations between periodicities and used them to (4) defined the op-

erations of intersection and composition among periodicity-based temporal constraints consider-

ing both basic and composite periodicities; (5) described a constraint propagation algorithm

based on the specifications at item (4), which is correct and provides perspicuous (intensional)

output.

Several AI approaches have dealt with temporal constraints between periodic events. However,

to the best of our knowledge, none of them proposed a comprehensive approach covering all the

issues (i)-(iii) above. For example, in [Ligozat, 91; Morris et al., 96] only periodicity-

independent (e.g., holding “always”) qualitative constraints between repeated events have been

considered. In [Bettini et al., 02], temporal constraints expressed at multiple user-defined granu-

larities between non-repeated events have been tackled. Only periodicity-based quantitative con-

straints have been considered in [Loganantharaj & Giambrone, 96] and only periodicity-based

qualitative constraints in [Terenziani, 97]. Notice also that none of the above-cited approaches

has provided an intensional calculus about user-defined periodicities, which, on the other hand,

has been devised by some algebraic approaches to Temporal Databases (consider, e.g., [Niezette

& Stevenne, 92; Ning et al., 02; Terenziani, 03]).

References

[Allen, 83] J.F. Allen. "Maintaining Knowledge about Temporal Intervals", Comm. ACM,

26(11):832-843, 1983.

[Anselma, 04] L. Anselma, “Recursive Representation of Periodicity and Temporal Reasoning”,

Proc. TIME 2004, IEEE Society Press, pp. 52-59, 2004.

[Bettini & DeSibi, 99] C. Bettini, R. De Sibi, Symbolic Representation of User-defined Time

Granularities, Proc. TIME'99, IEEE Computer Society, pp. 17-28, 1999.

 22

[Bettini et al., 02] C. Bettini, S. Jajodia, and X. Wang, Solving multi-granularity constraints net-

works, Artificial Intelligence, 140(1-2):107-152, 2002.

[Brusoni et al., 97] V. Brusoni, L. Console, B. Pernici, and P. Terenziani. “Later: Managing

Temporal Information Efficiently”. IEEE Expert, 12(4):56-64, July/August 1997.

[Dechter et al., 91] R. Dechter, I. Meiri, J. Pearl, "Temporal Constraint Networks", Artificial In-

telligence, 49:61-95, 1991.

[Ladkin, 86] P. Ladkin, "Time Representation: A Taxonomy of Interval Relations", in Proc.

AAAI’86, Philadelphia, PA, pp. 360-366, 1986.

[Leban et al., 86] B. Leban, D.D. McDonald, D.R. Forster, A representation for collections of

temporal intervals, in Proc. AAAI’86, pp. 367-371, 1986.

[Ligozat, 91] G. Ligozat, "On Generalized Interval Calculi", in Proc. AAAI’91, pp. 234-240,

1991.

[Loganantharaj & Giambrone, 1995] R. Loganantharaj and S. Giambrone, "Representation of,

and Reasoning with, Near-Periodic Recurrent Events", In 9th IJCAI Workshop on Spatial and

Temporal Reasoning, 1995.

[Meiri, 91] I. Meiri, "Combining Qualitative and Quantitative Constraints in Temporal Reason-

ing", in Proc. AAAI'91, pp. 260-267, 1991.

[Morris et al., 96] R.A. Morris, W.D. Shoaff, and L. Khatib, "Domain Independent Temporal

Reasoning with Recurring Events", Computational Intelligence, 12(3):450-477, 1996.

[Niezette & Stevenne, 92] M. Niezette, and J.-M. Stevenne, "An Efficient Symbolic Representa-

tion of Periodic Time", In Proceedings 1st International Conference Information and Knowl-

edge Management, Baltimore, Maryland, 1992.

[Ning et al., 02] P. Ning, X.S. Wang, and S. Jajodia, An algebraic representation of calendars,

Annals of Mathematics and Artificial Intelligence, 36(1-2):5-38, 2002.

[Soo & Snodgrass, 93] M. Soo, R. Snodgrass, Multiple Calendar Support for Conventional Data-

base Management Systems, Proc. ITDB’93, 1993.

 23

[Terenziani, 97] P. Terenziani, “Integrating calendar-dates and qualitative temporal constraints in

the treatment of periodic events”, IEEE TKDE 9(5):763-783, 1997.

[Terenziani, 03] P. Terenziani, “Symbolic User-defined Periodicity in Temporal Relational Da-

tabases”, IEEE TKDE, 15(2):489-509, March/April 2003.

[Tuzhilin & Clifford, 95] A. Tuzhilin and J. Clifford, "On Periodicity in Temporal Databases",

Information Systems, 20(8):619-639, 1995.

[Vila, 94] L. Vila. "A Survey on Temporal Reasoning in Artificial Intelligence", AI Communica-

tions 7(1):4-28, 1994.

