
Recursive Representation of Periodicity and Temporal Reasoning*

Luca Anselma
Dipartimento di Informatica, Università di Torino,

Corso Svizzera 185, 10149 Torino, Italy
Phone: +39 011 6706821 – anselma@di.unito.it

Abstract

Representing and reasoning with repeated and
periodic events is important in many real-world
domains, such as protocol and guideline
management. In this set, it is important to give
support to complex periodicities, that can involve
non-symmetric repetitions, uncertainness,
variability, pauses between repetitions, and nested
time intervals. Also, in these domains it can be
useful to give support to composite events, as well
as classes of events (i.e. types of actions) and
instances of events (i.e. specific actions). In this
paper we propose a general-purpose domain-
independent knowledge server dealing with all
these issues. In particular, we describe a compact
and (hopefully) user-friendly formalism for
representing repetition/periodicity temporal
constraints that supports arbitrarily nested
repetitions as well as possibly imprecise and
variable delays between repetitions. Moreover,
we define two algorithms for performing
consistency checking on knowledge bases of
(possibly repeated/periodic) classes and instances
of events retaining the efficiency of less expressive
approaches.

1. Introduction

The need to represent and reason with time is
crucial within many real world domains; in
particular, it is useful to be able to manage
different kinds of temporal information such as:

- qualitative temporal relations,
- quantitative temporal relations,
- repeated/periodic temporal relations,
- classes and instances of events,
- composite events.

In the context of temporal constraint reasoning, in
literature much attention has been devoted to
some of these aspects (e.g. see the surveys in [2,
23]). In particular, since the beginning of the
eighties, several domain-independent knowledge
servers specifically designed to manage temporal
information (i.e. temporal reasoners) have been

proposed. Temporal reasoners are conceived to
deal in an efficient and ad-hoc way with different
types of temporal constraints: as regards
qualitative temporal constraints it is possible to
see, e.g., [1]; as regards quantitative temporal
constraints see [5]; as regards “mixed” qualitative
and quantitative temporal constraints see [9].
On the other hand, not as much attention has been
paid for some other aspects, such as repeated and
periodic events (for an approach towards these
issues see [10]).
Besides these, there are at least two other aspects
which have generally received very little
attention, despite their usefulness in a plurality of
real-world domains, such as planning, workflow
management, and protocol and medical guideline
management: classes and instances of events, and
composite events. Classes and instances of events,
for example, may result effective when dealing
with planning issues. In fact, one may wish to
specify a general plan with generic actions that are
constrained by generic temporal constraints and,
then, to execute (i.e. instantiate) the plan with
actual actions and actual timings, maybe several
times and in different contexts. In this set, it is
possible to look at the generic actions as classes
of events, and at the actual actions as instances of
events corresponding to the actions in the plan.
Obviously, the instances must follow (i.e. be
consistent with) the temporal constraints on the
classes of events.
Furthermore, in domains such as clinical
therapies, not only classes and instances of events
are needed (because therapies may be regarded as
plans), but also both periodic and composite
events are, since therapeutic actions often have to
be repeated at regular times and may be composed
by subactions. Consider, for example, the
following excerpt from a clinical guideline for the
treatment of multiple mieloma:
(Ex. 1) The therapy for multiple mieloma is made
by six cycles of 5 days treatment, each one
followed by a delay of 23 days (for a total time of
24 weeks). Within each cycle of 5 days, 2 inner

* This is a preprint of a paper accepted for publication in the proceedings of 11th International Symposium on Temporal
Representation and Reasoning (TIME'04), © IEEE Computer Society Press, 2004 (copyright owner as specified in the
proceedings)

cycles can be distinguished: the melphalan
treatment, to be provided twice a day for each of
the 5 days, and the prednisone treatment, to be
provided once a day for each of the 5 days. These
two treatments must be performed in parallel.
Ex. 1 shows how both periodic and composite
events are necessary for the representation of the
therapy for multiple mieloma (which we may
regard as a composite event) providing treatments
(the melphalan treatment and the prednisone
treatment) repeated at regular times. Moreover,
also qualitative temporal relations are needed, in
fact the two treatments must be performed in
parallel.
It is crucial to give support to all the above-
mentioned kinds of temporal information with a
uniform domain-independent approach and hide
the complexity of the “machinery” to the user.
This goal is motivated by our ongoing work in the
domain of guidelines automation ([15, 18, 21, 22],
see also subsection 5.2).
A first step in this direction has been made in
[20], but with limitations that in some real-world
cases it is necessary to overcome: in fact, while
that approach can handle Ex. 1, it cannot handle
more complex periodicities such as the one
sketched in Ex. 2, an excerpt from a clinical
guideline for the treatment of Childhood Acute
Lymphoblastic Leukaemia:
(Ex. 2) The therapy lasts 88 weeks and it is
repeated twice in four years. In the therapy,
cotrimoxazole must be given twice daily on two
consecutive days every week.
This case presents not only multiple nested time
intervals (four years, 88 weeks, a week, a day),
but also temporal constraints between repetitions
– the two days must be consecutive –, and
uncertainness – it is not specified when the two
consecutive days must occur in the week.
In the present work, we make a step further wrt
[20]; specifically, we extend the formalism for the
specification of repetitions/periodicity to a
considerably more powerful one, and we
accordingly define new algorithms for temporal

reasoning to deal with all the aspects mentioned
above. Moreover, we show that, even with the
richer representation language, the complexity of
the temporal reasoning algorithms does not
increase wrt the complexity of the algorithms in
[20].
The paper is organized as follows: in section 2, we
introduce the problems that our temporal manager
has to address; in section 3, we describe the
language for representing classes and instances of
events, the language for representing constraints
on periodicity, and the one employed for internal
representation; in section 4, we deal with
consistency checking on classes only and with
consistency checking on classes+instances by
means of constraint inheritance (both with the
assumption of complete observability and with the
assumption of no observability in the future);
moreover, we discuss the complexity of the
reasoning mechanisms and present some
preliminary experimental results; finally, in
section 5, we draw some conclusions, discuss the
related works in literature, and present
applications and future work.

2. An introduction to the problem

2.1. Temporal constraints about
classes+instances

The distinction between classes of events and
instances of events is only a specific case of the
well-known distinction between classes and
instances. Let us show an example:
(Ex. 3) The reservation of a laboratory test (RS)
must be done within 1 and 7 days before the
laboratory test (LT). The results are reported (RP)
within 1 and 48 hours after the end of the test.
Ex. 3 is illustrated in Fig. 1. In Ex. 3, the event of
“performing a laboratory test” (LT) stands for a
class of events, i.e. it stands for a set of individual
occurrences (LT1, LT2, …, LTk) of the actual
event “performing a laboratory test”, that are
associated to specific patients and occur in

INSTANCES

CLASSES

time-line

RS1 RS2 RSk

RP1 RP2 RPk

before
 Reservation Lab_Test Report

(RS) (LT) (RP)

1-7 days 1-48 hours
before

LT1 LT2
LTk

Instance_of

Correlation:
{<C1,RS1,LT1>,<C2,RS2,LT2>,.., <Ck,RSk,LTk>, <C1,LT1,RP1>, <C2,LT2,RP2>, ..., <Ck,LTk,RPk>}

temp. constraints

Fig. 1. A graphical representation for the execution of Ex. 3.

specific intervals of time. These are, of course,
instance events of LT. The bottom-up arcs in Fig.
1 represent instance-of arcs.
If we wish to check the temporal consistency of
the instances of events wrt the classes of events,
we have to instantiate the temporal constraints
about the classes (in the figure, 1-7 days before
and 1-48 hours before) on the instances: if the
plan states that the reservation RS must be done 1-
7 days before the lab test LT, we have to test
whether each instance RS1, …, RSk is 1-7 days
before the relative instance LT1, …, LTk. In doing
this, we have to face the problem of relating the
instances, which the correlation relation
(discussed e.g. in [10, 13]) allows us to do (it is no
further discussed here because it is out of the
scope of this paper).
Moreover, we have to take into account the aspect
of prediction. The classes of events may have an
“existential” role, in fact, the classes of events in
Ex. 3 not only impose temporal constraints on the
instances, but also “existential” constraints. For
example, it would not be possible to have a
laboratory test without the relative report.
Whenever we test the consistency of the execution
of the guideline, we cannot simply inherit the
temporal constraints on the correlated instances,
but we also have to check whether the proper
instances exist.
This problem is closely related with the semantic
assumptions we impose on the observations: are
the observations complete or is it possible that any
instance of event is not observed? As regards
future events, are they present in the knowledge
base, or (as in the majority of the application
domains) is it impossible to know in advance
when the future instances of events will occur?
Of course, the semantic assumptions closely
influence the possible consistency checking
mechanisms, in fact, if the report is not observed
and we assume that the observations are not
complete, the instances may however be
consistent (i.e., the predictive role of the classes is
not needed), but if we assume that the
observations are complete, a missing report surely
leads to an inconsistency.

2.2. Temporal constraints about
periodicity/repetition

Repeated events are widespread in many
application domains. In many cases (e.g. in the
clinical therapies, such as in Ex. 1 and Ex. 2),
repeated events are periodic, since they occur at
regular times.

As regards the representation of periodicity
constraints, we face two alternatives: the
extensional representation or the intensional
representation. In the extensional representation,
we explicitly represent all the repetitions of each
class of events: this could lead in an unnecessary
explosion of events, in particular when the
number of repetitions is high, such as in Ex. 2.
Moreover, if we pursue the aim of hiding the
complexity of the time-related tasks to the user, an
intensional approach with a compact formalism
representing the repetitions may result easier to
manage and more “user-friendly”. In particular,
the formalism has to be powerful (in order to
capture the real-world cases), compact, and simple
to use (in order to hide the complexity). As
regards its expressive power, it has to be able to:
- manage arbitrary nesting of time intervals

(e.g., in Ex. 2 we have four nesting levels:
four years, 88 weeks, one week, and one day);

- give support for some degree of uncertainty
(e.g. in Ex. 2 the guideline does not explicitly
constrain the position of the two consecutive
days in the week).

In this context, when we impose a repetition
pattern, it would be useful to have periodicity
constraints. These may be considered as a special
kind of temporal constraints; to be more specific,
while duration constraints are monadic constraints
because they regard single instances, and
delay/precedence constraints are binary
constraints because they regard pairs of instances,
periodicity constraints are n-ary constraints,
because they regard multiple events.
This leads to a further problem that we have to
face whenever we want to inherit the constraints
from a plan containing repeated classes to
instances, that is, we need to associate the
instances to the periodicity. If we have constraints
like “repeat twice each day A before B”, in order
to test the precedence relation, we cannot consider
all the (instances of) A and all the (instances of)
B, but only the pairs of (the instances of) A and B
that belong to the same repetition. This may be
not a trivial task when the knowledge base of
instances only contains atomic instances. In the
sample constraint, e.g., it is possible that only the
occurrences of the instances of A and B are
observable, while the “abstract” instance
“occurrence of A+B” is not.

2.3. Extending the Integrated Temporal
Manager

To summarize, the goal of the work described in
this paper is to allow users to abstract from the

above-mentioned problems and to solve them
once and for all in a general, domain-independent
way, in order to hide the “complexity”. To do so,
we extend the tractable temporal manager
proposed in [20] in the direction of:
- enhancing the expressive power of the

representation language, especially the
formalism regarding the periodicity/repetition
constraints;

- developing new algorithms for temporal
reasoning without increasing the complexity of
the algorithms in [20].

3. The representation formalism

As regards the representation of the problem, we
have followed a layered approach, making a
distinction between a high representation level
and a low representation level.
The high level is the level that interfaces with the
user: it is desirable that the language is expressive
and that it is possible to provide reasoning
facilities. It is important to take into account the
trade-off between the expressiveness and the
complexity of the reasoning mechanisms. In our
approach we have chosen to retain the tractability.
The low level is meant for the internal
representation. We use a “standard” approach,
such as the STP one ([5]), where the reasoning
mechanism consists in the propagation of
constraints.
It is worth noting that, while reasoning on the low
level is quite trivial since all-pairs shortest paths
algorithms such as Floyd-Warshall’s one are
correct and complete, filling the gap from the high
level to the low level may not be so simple; in
fact, one has to face all the problems mentioned in
section 2: correlation, association, semantic
assumptions, inheritance of periodic patterns, and
prediction.

3.1. Representing classes+instances

The high-level constraint language about
instances retains the language described in [20]. It
provides primitives in order to represent (possibly
imprecise) dates, delays between endpoints of
events, durations, and qualitative constraints
between endpoints of events.
Such language has been deliberately designed in
such a way that only constraints that can be
mapped onto conjunctions of bounds on
differences (i.e., on an STP framework [5]) can be
represented (see [16] for more details).
Besides temporal constraints, this high-level
language also allows to specify:

- instance-of relations (between an instance and
its class),
- correlation relations (between pairs of
instances).
Thus, according to our language, the instances are
represented with a knowledge base IKB,
composed by a quadruple <IKB_Elements,
IKB_Instance_Of, IKB_COR, IKB_Constraints>,
where the first term represents the set of instances,
the second one the instance-of relations, the third
one the correlation relations, and the last one the
temporal constraints between instances.
As regards qualitative and quantitative temporal
constraints between classes, we basically retain
the simple high-level constraint language of
instances. Thus, our language provides primitives
in order to describe (possibly imprecise) dates,
durations, and delays, as well as continuous
pointizable qualitative temporal constraints
([25]). Notice, however, that the semantics of such
constraints is different depending on whether they
apply to instances or to classes (see [16]).
Furthermore, the high-level language for classes
provides primitives to describe composite events
([20]) and periodicity constraints (see section 3.2).
Thus, classes are represented in the knowledge
base CKB, that is a triple <CKB_Elements,
CKB_Part_of, CKB_Constraints>, where the first
term represents the set of classes, the second one
represents the part-of relations, and the last one
represents temporal constraints (including the
constraints on repetition/periodicity).

3.2. Representing repetition/periodicity
constraints

The constraints on repetitions and periodicities are
temporal constraints of the form

Repetition(C, RepSpec),

where C is the class to be repeated and RepSpec is
a parameter that imposes the repetition pattern.
The repetition specification is represented by
means of a recursive structure of arbitrary depth,

RepSpec = <R1, R2, …, Rn>,

where each level Ri states that the events
described in the next level (i.e., Ri+1, or – by
convention – the class C, if i=n) must be repeated
a certain number of times in a certain time lapse.
To be more specific, the basic element Ri consists
of a triple:

Ri = <nRepetitionsi, I-Timei, repConstraintsi>,

where the first term represents the number of
times that Ri+1 must be repeated, the second one
represents the time lapse in which the repetitions
must be included, and the last one may impose a
pattern that the repetitions must follow. We can
roughly describe the semantics of a triple Ri as the
natural language sentence “repeat Ri+1
nRepetitionsi times in exactly I-Timei”.
repConstraintsi is a (possibly empty) set of
pattern constraints, representing possibly
imprecise repetition patterns. Pattern constraints
may be of type:
- fromStart(min, max), representing a (possibly

imprecise) delay between the start of the I-Time
and the beginning of the first repetition;

- toEnd(min, max), representing a (possibly
imprecise) delay between the end of the last
repetition and the end of the I-Time;

- inBetweenAll(min, max) representing the
(possibly imprecise) delay between the end of
each repetition and the start of the subsequent
one;

- inBetween((min1, max1), …, (minnRepetitionsi-

1, maxnRepetitionsi-1), representing the (possibly
imprecise) delays between each repetition and
the subsequent one. Please note that any couple
(mini, maxi) may be missing, to indicate that we
do not give any temporal constraint between the
i-th repetition and the (i+1)-th one.

Let us see an example:
(Ex. 4) Intrathecal methotrexate must be
administered 7 times during 88 weeks, never less
than 10 weeks apart or more then 14 weeks apart.
Ex. 4 may be represented with a simple one level
specification:
Repetition(Intrathecal_methotrexate,
< <7,88wk, {inBetweenAll(10wk, 14wk)}>>)

It is worth noting that neither repConstraintsi nor
nRepetitionsi are mandatory. If repConstraintsi is
an empty set, the repetitions do not necessarily
have to follow any particular pattern. If
nRepetitionsi is missing, it is easy to automatically
“fill the blank” considering the I-Time of the next
level in order to infer the (maximum) number of
repetitions that fits in the given I-Time.
Notice that, since we aim at designing tractable
algorithms in order to deal with correct and
complete consistency checking, we have to
impose that I-Times must be specified in an exact
way.

It should be pointed out that the formalism we are
introducing allows to manage different kinds of
uncertainty/variability:
- the repetitions are not constrained to completely

cover the I-Time, and there may be arbitrary
delays between the repetitions;

- the (min, max) specifications in repConstraintsi
make it possible to indicate variable delays
between the repetitions.

repConstraintsi also allows to represent non-
symmetric patterns, such as in Ex. 5:
(Ex. 5) Repeat action A every week for 8 weeks on
Mondays and Saturdays.
If we regard Sunday as the first day of the week,
we represent Ex. 5 as follows:
Repetition(A, <<_, 8wk, ∅>, <2,1wk,
{fromStart(1d,1d), toEnd(0d,0d)}> >).

Moreover, the repetitions may be nested at
arbitrary depth, representing simple cases with
few levels as in Ex. 4 and more complex cases
with more levels as in Ex. 2. Ex. 2 may be
represented in the following way:
Repetition(Cotrimoxazole, < <2, 4y, ∅>,
<_, 88wk, ∅>, <2, 1wk, {inBetweenAll(0,0)}>,
<2, 1d, ∅>>),
where the pattern constraint inBetweenAll(0,0) in
the third triple imposes that the days must be
consecutive.

3.3. Internal representation for temporal
constraints

As in [20], we model repeated events as
composite events and represent the constraints
regarding repeated actions into separate STP
frameworks, one for each repeated event. Thus,
in our approach, the overall set of constraints
between classes of events is represented by a tree
of STP frameworks (STP tree henceforth) ([18]).
The root of the tree is the STP which
homogeneously represents the constraints between
all the classes of events (both composite ones and
atomic ones), except repeated events. Each node
in the tree is a STP and has a child for each
repeated class. Each edge in the tree connects a
pair of endpoints in a STP (the starting and ending
point of a repeated event) to the STP containing
the constraints between its subactions and is
labelled with the recursive repetition structure
RepSpec describing the temporal constraints on
the repetitions.

In Fig. 2, e.g., a graphical representation regarding
Ex. 1 is shown.

4. Temporal reasoning

In order to deal with the more powerful formalism
described in this work, it is not possible to use the
reasoning mechanisms depicted in [20]. In this
section, we first describe an algorithm designed
for checking the consistency of a knowledge base
of (possibly repeated) classes. Then, we describe
an algorithm that checks in an integrated way the
consistency of instances of events wrt the relative
classes, and we show that, despite the more
expressive formalism, the complexity of the
algorithm does not increase wrt [20].

4.1 Consistency checking on (possibly repeated)
classes of events

The procedure classConsistency in Fig. 3 tests the
consistency of the classes by filling the gap
between the high-level expressive representation
language and the low-level “simple” internal
representation as STP ([5]), making explicit the
semantic assumptions carried by the intensional
high-level language. At the end of step 2 of the
procedure classConsistency, S is a STP which is
semantically equivalent to the STP tree T.
This task is accomplished by:
i) visiting recursively the STP tree (task

performed by the procedure unfoldNode);
ii) “unfolding” the repetitions (task performed by

the procedure unfoldRep).
The procedure unfoldNode, recursively called on
each STP node X in the STP tree, inserts in S (step
1) a class CX representing the whole node X, and
(steps 2-3) a class CA representing each non-
repeated class.
For each repeated class CR (steps 4-7) it calls the
procedure unfoldRep in order to “unfold” the
repetitions. Finally, in steps 8-11 the monadic and

binary temporal constraints are carried to S.
The procedure unfoldRep, after inserting in S a
class C1 representing the whole I-Time in which
the repetitions must take place, exploits the
recursive structure of the repetition specifications
to recursively call itself (step 5, please note the
shift of the triples) as many times as prescribed by
the specification R1. This is done until the last
triple in RepSpec is reached (else branch of if
statement in step 4), then the procedure
unfoldNode is called (step 6) to continue the
unfolding on the child node in the STP tree.
Finally, unfoldRep adds to the STP (steps 7-12)
the constraints corresponding to the semantic
assumptions of the construct:
- the repetitions must be included in a time

Fig. 2 . Graphical representation of the internal representation
for Ex. 1.

Sm Sp

<<5, 5d, {} >,<2, 1d, {}>>

[0d,1d]

[0d,0d]

[168d,168d]

[0d,0d]

[5d,5d]

[5d,5d]

[0d,1d]

 N3 N4

N2

N1 Sch

Emc

Smc

 Epc

Spc

Ep Em

Ech

<<6, 24wk, {inBetweenAll(23d,23d)}>>

<<5, 5d, {}>, <1,1d,{}>>
procedure classConsistency(T : CKB)
(1) initialize S to an empty STP
(2) unfoldNode(root(T), S)
(3) S’ := FloydWarshall(S)
(4) return S’

procedure unfoldNode(X : STPNode, S : STP)
(1) add to S the placeholder class CX
(2) forall CA | CA is not a repeated class in X do
(3) add to S the class CA
 od
(4) forall CR | CR is a repeated class in X do
(5) let RepSpec = (R1, …, Rn) be the repetition

specification of class CR
(6) Csub := unfoldRep(X, CR, RepSpec)
(7) add to S the constraints that Csub ⊆ CX
 od
(8) for each monadic constraint in X do
(9) add the constraint to the corresponding classes in S
(10)for each binary constraint in X do
(11) add the constraint to the corresponding classes in S
 return CX

procedure unfoldRep(X : STPNode, S : STP, C : Class,

RepSpec = < R1, R2,…, Rn>)
(1) add to S the placeholder class C1
(2) let R1 = <nRep1, IT1, constrs1>
(3) for r := 1 to nRep1 do
(4) if R1 is not the last one in RepSpec then
(5) Csub,r := unfoldRep(X, C, (R2, …, Rn))
 else
(6) Csub,r := unfoldNode(child(C, X))
 od
(7) add to S the constraint that duration of C1 is IT1
(8) add to S the constraints that Csub,i ⊆ C1, i = 1, …, nRep1
(9) add to S the constraints that Csub,i+1 is after Csub,i, i = 1,

…, nRep1-1
(10)add to S the possible constraint fromStart in constrs1 in

R1 between C1 and Csub,1
(11)add to S the possible constraint toEnd in constrs1 in R1

between Csub,nRep1 and C1
(12)add to S the constraints inBetween and inBetweenAll in

constrs1 in R1 between Csub,i and Csub,i+1, i = 1, …, nRep1-
1

 return C1

Fig. 3. Algorithms for temporal reasoning on classes of
events.

interval lasting exactly IT1 (step 7); procedure integratedConsistency(T : CKB, I : IKB)
(1) S := classConsistency(T)
(2) add to I the placeholder instances corresponding to the

placeholder classes in S
(3) I’ := FloydWarshall(I)
(4) for each class C in S taken in temporal order do
(5) let i be the first instance of C in I’ not yet taken in

consideration
(6) if i does not exist then return INCONSISTENT
 od
(7) if there exists an instance in I’ not yet considered then

return INCONSISTENT
(8) inherit the monadic constraints from the classes in S to

the corresponding instances in I’
(9) inherit the binary constraints from the classes in S to the

corresponding instances in I’
(10)I” := FloydWarshall(I’)

Fig. 4. Algorithm for temporal reasoning on
classes+instances of events (complete observations).

- each repetition must be included in the I-Time
(step 8);

- the repetitions must not overlap (step 9);
- the repetitions must follow the possible pattern

in repConstraints (steps 10-12).
It is possible to test the consistency of the
resulting STP S (step 3 of procedure
classConsistency) by propagating the constraints
using the Floyd-Warshall’s all-pairs shortest path
algorithm.

4.2 Consistency checking on classes+instances

We will start by describing an algorithm that
assumes full observability of the events even in
the future and total ordering of the instances, and
then we will relax the first assumption to include
the case where there is no observability in the
future. The problem of relaxing the assumption of
full observability in the past and the assumption of
total ordering is discussed in note 2 and in
subsection 5.3. We intend that, whenever an
inconsistency is detected, the algorithms report it
and stop. For the sake of brevity, we assume that
all the input instances are correlated. This is not a
restrictive assumption, in fact, since correlation
allows to partition instances into independent sets
([10, 13]), the consistency checking of the
instances may be iterated for each partition.
In order to test the consistency of
classes+instances, the basic idea in the procedure
integratedConsistency in Fig. 4 is to:
i) test the consistency of the classes and obtain the

unfolded STP (step 1);
ii) establish a one-to-one correspondence between

the classes and the instances (steps 4-6);
iii) inherit the constraints from the classes to the

instances (steps 8-9);
iv) test the consistency of the new “augmented”

STP (step 10).
After checking the consistency of the classes (step
1), the instances corresponding to the composite
and repeated classes are inserted (step 2) in the
IKB1.
Then, the constraints on the instances are
propagated in order to infer a possible not explicit
total order between the instances.
Steps 4-6, as said above, try to establish a one-to-
one correspondence between the classes in S and
the instances in I. This task may be efficiently

1 It is worth noticing that they are not already in the IKB,
because we assume that only atomic events may be observed.
If this assumption does not hold, then it suffices to simply
remove step 2.

performed thanks to the assumption of total
ordering on the instances2.
In the event that an instance that the CKB predicts
to be in the IKB is missing (step 6) (e.g. because a
repetition is not complete), the procedure stops
and reports an inconsistency.
In step 7, we check whether there are instances
that are missing the corresponding classes (e.g.,
because there are more repetitions than expected).
In step 8, monadic constraints (i.e. constraints
regarding durations of events) are inherited, and in
step 9 binary constraints are inherited, according
to the semantics of the constraints on classes
([16]). Steps 8 and 9 may be easily performed
thanks to the correspondence between classes in S
and instances in I established in the previous
steps.
Finally, consistency checking on the STP on
instances, augmented by the inherited constraints,
is performed by the Floyd-Warshall’s all-to-all
shortest path algorithm (step 10).
In the procedure integratedConsistencyNoFuture
in Fig. 5 we relax the assumption of full
observability even in the future to the case where
there is no observability in the future. The steps
added or changed wrt the procedure
integratedConsistency are the ones with line
numbers in bold type.
The procedure integratedConsistencyNoFuture

2 To be more specific, without total ordering it could happen
that in the IKB there are instances of a repeated class, and we
do not know which specific repetitions they belong to. In this
case, it would be necessary to perform an inefficient search in
order to establish which specific instance corresponds to
which specific repetition. Because for each possible
correspondence instance-repetition it is necessary to check
whether it is consistent with the other temporal constraints,
this may lead the problem to intractability. This is the reason
why we retain the assumption of total ordering, at least
between the instances of a repeated class.

accepts the additional parameter NOW,
corresponding to the time of the present. In steps
1a-1b we make explicit the fact that it is not
possible to observe future events: all observed
instances must start before NOW.
However, the main differences between the
procedures integratedConsistencyNoFuture and
integratedConsistency lie in steps 6-6b and 11:
when we do not find an instance that a class
predicts to be in the IKB, we no longer report an
inconsistency because that instance may start in
the future. Thus, there is an inconsistency only in
the case that the temporal constraints in IKB and
CKB impose that the instance must be observed
before NOW. Therefore, we collect all the missing
instances in the set hypothesizedInstances (steps 6
and 6b) and we provisionally insert them in IKB
(step 6a). Then, we perform the inheritance and
the propagation of the constraints on
input+hypothesized instances, and, at the end
(step 11), we test whether any hypothesized
instance necessarily starts before NOW. In this
case we report the inconsistency.
It is worth noting that, in the case that the missing
instances belong to a repeated class, it is not
necessary to hypothesize all the repetitions, but
only the first missing one; in fact, if this instance
may start in the future, also the subsequent ones
will, and it is not necessary to hypothesize them;
on the other hand, if this instance must start before
NOW, we may report the inconsistency even

without hypothesizing the others.

4.3 Complexity of the algorithms

As regards the consistency checking on the
classes, it is useful to observe that the recursive
calls (see step 6 of procedure unfoldNode and
steps 5 and 6 of procedure unfoldRep in Fig. 3),
and the for loops (see step 4 of procedure
unfoldNode and step 3 of procedure unfoldRep)
basically traverse the STP tree, visiting each node
as many times as it is repeated. In other words, if
there exists a class C such that Repetition(C, <R1,
R2, …, Rn>), Ri = <nRepetitionsi, I-Timei,
repConstraintsi> – and C is not a component of
another repeated class –, then the class C is visited

times. If the class C is a

composite class, then, thanks to the recursive call
in step 6 of unfoldRep, also its component classes

are visited ∏ times. We

accommodate this by expressing the complexity
of the algorithm wrt the number C

∏
=

n

i
insnRepetitio

1

=

n

i
insnRepetitio

1

U of classes in
the extensional representation, where a class C is
present as many times as it is repeated. If we
denote with L the number of classes in the
intensional representation and with R the
maximum number of times that any class is
repeated, we can estimate CU as CU = O(R ⋅ L).
Because the step 7 of the procedure unfoldNode is
constant in time, and is executed – considering all
executions – at most O(CU) times, the procedure is
dominated by step 11, that is executed –
considering all executions – for every couple of
classes, i.e. O(CU

2) times.
The procedure unfoldRep is dominated by steps 8
and 12, that add the constraints imposing that the
repetitions must not overlap and the constraints
corresponding to the repetition patterns. These
steps, considering again all executions, are
performed in time O(CU).
Thus, step 2 of procedure classConsistency takes
O(CU

2), and gives as output a STP which contains
CU events and the placeholder classes added by
the algorithm. The added classes are at most CU,
so that the STP contains O(CU) points.
Therefore, since Floyd-Warshall’s algorithm is
cubic on the number of points, step 3 is executed
in time O(CU

3) and the complexity of
classConsistency is O(CU

3).
As regards the consistency checking on instances,
we denote with S the number of input instances.
Thanks to a possible precompilation that
associates with every class its instances

procedure integratedConsistencyNoFuture(T : CKB, I : IKB,
NOW)

(1) S := classConsistency(T)
(1a)for each instance i in I do
(1b) add the constraint the i starts before NOW
(1c)hypothesizedInstances := ∅
(2) add to I the placeholder instances corresponding to the

placeholder classes in S
(3) I’ := FloydWarshall(I)
(4) for each class C in S taken in temporal order do
(5) let i be the first instance of C in I’ not yet taken in

consideration
(6) if i does not exist then
(6a) add to I a new instance i’ of C
(6b) hypothesizedInstances := hypothesizedInstances ∪ i’
 od
(7) if there exists an instance in I’ not yet considered then

return INCONSISTENT
(8) inherit the monadic constraints from the classes in S to

the corresponding instances in I’
(9) inherit the binary constraints from the classes in S to the

corresponding instances in I’
(10)I” := FloydWarshall(I’)
(11)for each i ∈ hypothesizedInstances do
 if NEC(Start(i) before NOW) then
 return INCONSISTENT

Fig. 5. Algorithm for temporal reasoning on
classes+instances (no observations in the future).

(performable in O(S)), and thanks to the total
ordering of the instances, step 5 of procedure
integratedConsistency in Fig. 4 is performed in
constant time and the entire for loop in steps 4-6 is
linear in the number of classes. As regards the
inheritance of the constraints in steps 8-9,
dominates the inheritance of binary constraints,
which is quadratic over the number of classes.
Therefore, in the procedure integratedConsistency
in Fig. 5, steps 1, 3 and 10 dominate, and the
overall complexity is O(max{CU

3, S3}), or, in
terms of the number of input classes L and of the
maximum number of repetitions R, O(max{R3 L3,
S3}).
In the procedure integratedConsistencyNoFuture,
steps 1a-1c are linear in the number of instances,
and steps 6-6b are linear on the number of classes.
It is worth noting that for step 11 we may exploit
the locality properties of STP constraints proved
in [3] and perform step 11 in time linear in the
number of instances in hypothesizedInstances.
The cardinality of hypothesizedInstances is at
most CU, since we at most hypothesize one
instance for each class. Therefore, even relaxing
the hypothesis of complete observability as
regards the future, the complexity of integrated
reasoning remains O(max{R3 L3, S3}).
It should be pointed out that, despite the more
powerful representation language wrt the
representation language described in [20], the
complexity of the reasoning mechanisms does
remain the same.

4.3 Preliminary experimental results

The system is currently being developed in Java.
We provide preliminary experimental results
regarding the algorithm that checks the
consistency of the classes only, namely, the
procedures classConsistency, unfoldNode and
unfoldRep in Fig. 3. The system has been
implemented in JDK 1.4. The experiments were
run on a PC with a Pentium IV CPU at 2 GHz
with 1 GB RAM and Windows 2000 operating
system.
The system was provided with five knowledge

bases of classes, with increasing number of
classes. In Tab. 1 the number of classes CU (as
described in section 4.3) and the time for the
consistency checking of the CKBs are reported.
More extensive experiments are needed in order
to evaluate the integrated consistency checking on
classes+instances.

5. Conclusions and discussion

In this paper, we describe a formalism for
representing temporal constraints on repetition
and periodicity in a compact and powerful way.
Its intuitiveness makes it easy to use and its
recursive structure proves to be adapt to represent
arbitrary nested repetitions and supports some
degree of uncertainty. We have described two
tractable algorithms for consistency checking that
address all the aspects mentioned in section 1,
namely, classes and instances of events,
repetition/periodicity constraints, composite
events, and qualitative and quantitative temporal
relations. We first have described an algorithm
that assumes full observability of the instances of
events, and then we have illustrated an algorithm
that assumes no observability in the future and full
observability in the past.

5.1. Related works

Morris et al. ([10, 11, 12]) dealt only with
qualitative constraints between repeated events.
Repeated events are used as “classes” of events,
with different quantifiers relating them. Morris et
al. introduced the notion of consistent scenario in
[11] and sketched an algorithm for a scenario
consistent with a knowledge base of temporal
constraints between repeated events.
Loganantharaj mainly faced the problem of
associating possibilistic distributions to qualitative
temporal constraints between periodic events ([6])
and to metric constraints concerning the durations
of events, which are also expressed using
transition rules ([7, 8]). Such constraints are used
in a “predictive” way: temporal reasoning is used
for projecting the constraints on the durations in
the future using the current domain information.
In [19] Terenziani proposed a high-level language
to deal with periodicity and in [13, 23] a high-
level language to deal with period-dependent
qualitative temporal constraints between repeated
events, which are used as “classes”. In [14] he
also defined an initial algorithm for temporal
reasoning with such constraints and a set of
instances of events exactly located in time. In [16]
he approached the problem of checking the

of classes (CU) Time
10 344 ms
20 360 ms
50 828 ms

100 3203 ms
200 22890 ms

Tab. 1. Number of classes and relative times for checking the
consistency of the knowledge base of classes.

consistency of classes and instances of events
with both qualitative and quantitative constraints;
in [17, 18] Terenziani et al. proposed an approach
to deal with periodic, qualitative and quantitative
constraints between classes of events in clinical
guidelines.
Finally, in [20] Terenziani and the author of this
paper defined an approach dealing with periodic,
qualitative, and quantitative constraints between
both classes and instances of events.
This work represents an extension of the work
presented in [20]; in particular, our purpose is to
improve the representation language described in
[20] preserving its efficiency.
To illustrate this, [20] has a much more limited
language for the specification of repetitions and
periodicity. In fact, that work presents 5
parameters to specify a periodicity: the frame
time, the action time, the delay time, the I-Time,
and the frequency. The frame time corresponds to
the whole time interval in which all the repetitions
take place and is subdivided into action times and
delay times. Delay times represent fixed delays
between an action time and the next one, whereas
action times are in their turn subdivided into I-
Times, where finally the events occur, at groups
of “frequency”.
This structure is narrow: in fact, it does not allow
to subdivide the intervals into more than three
levels (frame times, action/delay times and I-
times), thus making it impossible to represent a
case such as the one depicted in Ex. 2, which
requires – as shown in section 3.2 – four levels.
On the other hand, despite its richer expressive
power, the formalism described in this work is
more “user-friendly”. For example, when dealing
with simple cases which do not require multiple
levels, the formalism described in [20] implies to
arbitrarily impose that action times equal I-Times,
whereas the formalism defined in this work allows
to simply use fewer recursive levels. To illustrate
this, let us suppose that we want to represent the
simple case “repeat A twice for a week”. While
with the formalism in [20] it is necessary to state:

FrameTime=1wk, ActionTime=1wk,
DelayTime=0, I-Time=1wk, freq=2,

with the formalism described in this work it is
sufficient to state:

< <2, 1wk, ∅> >.
Moreover, in [20] it is mandatory that the
subdivisions are a partition of the higher level; in
fact, the union of the action times and the delay
times must be equal to the frame time, and the
union of the I-Times must be equal to the action
time. Furthermore, the “pauses” between the
intervals must only be specified at the level of

action times, and they must have a fixed duration,
which is equal for all the repetitions.
With the periodicity constraint formalism
introduced in this work, we provide a more
compact and more expressive language. Its
recursive structure supports an arbitrary number
of nested levels, where any level may or may not
be a partition of the higher level: this way we
provide for uncertainty in the subdivision of the
time intervals. A further support for uncertainty
lies in the possibility to specify variable delays
between the repetitions.
As regards repetition patterns, not only the
repetitions can follow different patterns on each
level, but they can also be differently constrained
within each level.

5.2. Applications

The need to cope with the various temporal
constraints we described in section 1 aroused from
our previous work in the field of clinical
guideline management. The described system
integrates in a joint project with Azienda
Ospedaliera S. Giovanni Battista of Torino for the
design and development of GLARE (GuideLine
Acquisition, Representation and Execution) ([15,
21, 22, 18]). Furthermore, it will integrate in a
starting joint project with Cancer Research of
London.

5.3. Future work

We are currently trying to extend our approach in
order to manage repetitions based on conditions
(e.g., while B holds, repeat the action A). This
influences both the consistency checking on
classes and the consistency checking on instances,
because appeals to the predictive role of the
classes and therefore deserves specific attention.
Furthermore, we are studying the possibility to
exploit the locality properties proved in [3, 4] in
order to efficiently answer to temporal queries.
Other possible developments comprise the
overcoming of some limiting assumptions, such as
those of total ordering of the instances and full
observability. Although both assumptions are
reasonable in the domain of clinical guidelines,
there may be domains where they cannot hold.
Unfortunately, these two assumptions make it
possible to devise tractable temporal reasoning
mechanisms, because it is fundamental to
associate an instance with the relative repetition.
In fact, if the two assumptions hold, this task may
be performed efficiently (as shown in section 4.2),
but, if they do not hold, it would be necessary to

generate a “scenario” for each possible pair
(instance, repetition), and test its consistency with
the temporal constraints in the knowledge base.
Moreover, releasing the tractability for complete
reasoning would make it possible to further enrich
the expressiveness dealing with different forms of
disjunctions of temporal constraints.
In the context of overcoming the limiting
assumption discussed above, in order to save
some efficiency, we are also investigating the
possibility to incorporate the approach described
in this work into a backtracking system and to use
the temporal constraints in order to restrict the
search space.

Acknowledgements

The author wishes to thank prof. Paolo Terenziani
for the fundamental contribution as well as his
precious help and valuable guidance.

References

[1] J.F. Allen. "Maintaining Knowledge about Temporal
Intervals", Comm. of the ACM, 26(11): 832-843, 1983.
[2] J. Allen, "Time and Time again: the Many Ways to
Represent Time", Int'l J. Intelligent Systems, vol. 6, no. 4, pp.
341-355, July 1991.
[3] V. Brusoni, L. Console, and P. Terenziani, "On the
computational complexity of querying bounds on differences
constraints", Artificial Intelligence 74(2), pp. 367-379, 1995.
[4] L. Console, P. Terenziani, “Efficient processing of
queries and assertions about qualitative and quantitative
temporal constraints”, Computational Intelligence 15(4), pp.
442-465, November 1999.
[5] R. Dechter, I. Meiri, J. Pearl, "Temporal Constraint
Networks", Artificial Intelligence 49, pp. 61-95, 1991.
[6] R. Loganantharaj, and S. Gimbrone. "Probabilistic
Approach for Representing and Reasoning with Repetitive
Events", Proc. second International Workshop on Temporal
Representation and Reasoning (TIME'95), Melbourne, FL,
pp. 26-30, 1995.
[7] R. Loganantharaj, and S. Kurkovsky. "A new model for
projecting temporal distance using fuzzy temporal
constraints", Proc. IEA/AIE'97, 1997.
[8] R. Loganantharaj, and S. Gimbrone, "Issues on
Synchronizing when Propagating Temporal Constraints",
Proc. National Conference on Artificial Intelligence
Workshop on Spatial and Temporal Reasoning, 1997.
[9] I. Meiri, "Combining Qualitative and Quantitative
Constraints in Temporal Reasoning", In Proceedings National
Conference on Artificial Intelligence, pp. 260-267, 1991.
[10] R.A. Morris, W.D. Shoaff, and L. Khatib, "Path
Consistency in a Network of Non-convex Intervals", Proc.
thirteenth Int'l Joint Conf. on Artificial Intelligence, pp. 655-
660, Chambery, France, 1993.
[11] R.A. Morris, L. Khatib, and G. Ligozat. "Generating
Scenarios from specifications of Repeating Events", Proc.
second International Workshop on Temporal Representation
and Reasoning (TIME'95), Melbourne, FL, pp. 41-48, 1995.
[12] R.A. Morris, W.D. Shoaff, and L. Khatib, "Domain
Independent Temporal Reasoning with Recurring Events",
Computational Intelligence 12(3) pp. 450-477, 1996.

[13] P. Terenziani, “Integrating calendar-dates and qualitative
temporal constraints in the treatment of periodic events”,
IEEE Trans. on Knowledge and Data Engineering 9(5),
1997.
[14] P. Terenziani, “Integrated Temporal Reasoning with
Periodic Events”, Computational Intelligence 16(2), pp. 210-
256, May 2000.
[15] P. Terenziani, G. Molino, and M. Torchio, “A modular
approach for representing and executing clinical guidelines”,
Artificial Intelligence in Medicine 23, pp. 249-276, 2001.
[16] P. Terenziani, “Temporal Reasoning with classes and
instances of events”, Proc. TIME 2002, Manchester, UK,
IEEE Press, pp. 100-107, 2002.
[17] P. Terenziani, S. Montani, C. Carlini, G. Molino, M.
Torchio, “Supporting physicians in taking decisions in
Clinical Guidelines: the GLARE’s ‘what if’ facility”, Journal
of the American Association of Medical Informatics
(JAMIA), Proc. Annual Fall Symposium, 2002.
[18] P. Terenziani, C. Carlini, S. Montani, “Towards a
Comprehensive Treatment of Temporal Constraints in
Clinical Guidelines”, Proc. TIME 2002, Manchester, UK,
IEEE Press, pp. 20-27, 2002.
[19] P. Terenziani, “Symbolic User-defined Periodicity in
Temporal Relational Databases”, IEEE Transactions on
Knowledge and Data Engineering, 15(2), pp. 489-509,
March/April 2003.
[20] P. Terenziani, and L. Anselma, “Towards an Integrated
Approach Dealing with Part-of, Instance-of and Periodicity
Constraints”, Proc. TIME 2003, IEEE Society Press, pp. 37-
46, 2003
[21] P. Terenziani, S. Montani, M. Torchio, G. Molino, and
L. Anselma, “Temporal Consistency Checking in Clinical
Guidelines Acquisition and Execution: the GLARE’s
Approach”. Journal of the American Association of Medical
Informatics (JAMIA), Proc. Annual Fall Symposium, pp.
659-663, 2003.
[22] P. Terenziani, S. Montani, A. Bottrighi, M. Torchio, G.
Molino, L. Anselma, and G. Correndo, “Applying Artificial
Intelligence to clinical guidelines: the GLARE approach”,
Proc. of 8th Congress AI*IA, Lecture Notes in Artificial
Intelligence, 2829:536-547, Springer-Verlag, 2003
[23] P. Terenziani, “Towards a Comprehensive Treatment of
Temporal Constraints about Periodic Events”, International
Journal of Intelligent Systems, 18(4), 429-468, 2003.
[24] L.Vila, "A Survey on Temporal Reasoning in Artificial
Intelligence", AI Communications 7(1), pp. 4-28, 1994.
[25] M. Vilain, H. Kautz, and P. VanBeek, "Constraint
Propagation Algorithms for temporal reasoning: a Revised
Report", D.S. Weld, J. deKleer, eds., Readings in Qualitative
Reasoning about Physical Systems. Morgan Kaufmann, pp.
373-381, 1990.

	Abstract
	Representing and reasoning with repeated and periodic events
	Acknowledgements
	References

