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Abstract

 
Representing and reasoning with repeated and 
periodic events is important in many real-world 
domains, such as protocol and guideline 
management. In this set, it is important to give 
support to complex periodicities, that can involve 
non-symmetric repetitions, uncertainness, 
variability, pauses between repetitions, and nested 
time intervals. Also, in these domains it can be 
useful to give support to composite events, as well 
as classes of events (i.e. types of actions) and 
instances of events (i.e. specific actions).  In this 
paper we propose a general-purpose domain-
independent knowledge server dealing with all 
these issues. In particular, we describe a compact 
and (hopefully) user-friendly formalism for 
representing repetition/periodicity temporal 
constraints that supports arbitrarily nested 
repetitions as well as possibly imprecise and 
variable delays between repetitions. Moreover,  
we define two algorithms for performing 
consistency checking on knowledge bases of 
(possibly repeated/periodic) classes and instances 
of events retaining the efficiency of less expressive 
approaches. 
 
1. Introduction 
 
The need to represent and reason with time is 
crucial within many real world domains; in 
particular, it is useful to be able to manage 
different kinds of temporal information such as: 

- qualitative temporal relations, 
- quantitative temporal relations, 
- repeated/periodic temporal relations, 
- classes and instances of events, 
- composite events. 

In the context of temporal constraint reasoning, in 
literature much attention has been devoted to 
some of these aspects (e.g. see the surveys in [2, 
23]). In particular, since the beginning of the 
eighties, several domain-independent knowledge 
servers specifically designed to manage temporal 
information (i.e. temporal reasoners) have been 

proposed. Temporal reasoners are conceived to 
deal in an efficient and ad-hoc way with different 
types of temporal constraints: as regards 
qualitative temporal constraints it is possible to 
see, e.g., [1]; as regards quantitative temporal 
constraints see [5]; as regards “mixed” qualitative 
and quantitative temporal constraints see [9]. 
On the other hand, not as much attention has been 
paid for some other aspects, such as repeated and 
periodic events (for an approach towards these 
issues see [10]). 
Besides these, there are at least two other aspects 
which have generally received very little 
attention, despite their usefulness in a plurality of 
real-world domains, such as planning, workflow 
management, and protocol and medical guideline 
management: classes and instances of events, and 
composite events. Classes and instances of events, 
for example, may result effective when dealing 
with planning issues. In fact, one may wish to 
specify a general plan with generic actions that are 
constrained by generic temporal constraints and, 
then, to execute (i.e. instantiate) the plan with 
actual actions and actual timings, maybe several 
times and in different contexts. In this set, it is 
possible to look at the generic actions as classes 
of events, and at the actual actions as instances of 
events corresponding to the actions in the plan. 
Obviously, the instances must follow (i.e. be 
consistent with) the temporal constraints on the 
classes of events. 
Furthermore, in domains such as clinical 
therapies, not only classes and instances of events 
are needed (because therapies may be regarded as 
plans), but also both periodic and composite 
events are, since therapeutic actions often have to 
be repeated at regular times and may be composed 
by subactions. Consider, for example, the 
following excerpt from a clinical guideline for the 
treatment of multiple mieloma: 
(Ex. 1) The therapy for multiple mieloma is made 
by six cycles of 5 days treatment, each one 
followed by a delay of 23 days (for a total time of 
24 weeks). Within each cycle of 5 days, 2 inner 
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cycles can be distinguished: the melphalan 
treatment, to be provided twice a day for each of 
the 5 days, and the prednisone treatment, to be 
provided once a day for each of the 5 days. These 
two treatments must be performed in parallel. 
Ex. 1 shows how both periodic and composite 
events are necessary for the representation of the 
therapy for multiple mieloma (which we may 
regard as a composite event) providing treatments 
(the melphalan treatment and the prednisone 
treatment) repeated at regular times. Moreover, 
also qualitative temporal relations are needed, in 
fact the two treatments must be performed in 
parallel. 
It is crucial to give support to all the above-
mentioned kinds of temporal information with a 
uniform domain-independent approach and hide 
the complexity of the “machinery” to the user. 
This goal is motivated by our ongoing work in the 
domain of guidelines automation ([15, 18, 21, 22], 
see also subsection 5.2). 
A first step in this direction has been made in 
[20], but with limitations that in some real-world 
cases it is necessary to overcome: in fact, while 
that approach can handle Ex. 1, it cannot handle 
more complex periodicities such as the one 
sketched in Ex. 2, an excerpt from a clinical 
guideline for the treatment of Childhood Acute 
Lymphoblastic Leukaemia: 
(Ex. 2) The therapy lasts 88 weeks and it is 
repeated twice in four years. In the therapy, 
cotrimoxazole must be given twice daily on two 
consecutive days every week. 
This case presents not only multiple nested time 
intervals (four years, 88 weeks, a week, a day), 
but also temporal constraints between repetitions 
– the two days must be consecutive –, and 
uncertainness – it is not specified when the two 
consecutive days must occur in the week. 
In the present work, we make a step further wrt 
[20]; specifically, we extend the formalism for the 
specification of repetitions/periodicity to a 
considerably more powerful one, and we 
accordingly define new algorithms for temporal 

reasoning to deal with all the aspects mentioned 
above. Moreover, we show that, even with the 
richer representation language, the complexity of 
the temporal reasoning algorithms does not 
increase wrt the complexity of the algorithms in 
[20]. 
The paper is organized as follows: in section 2, we 
introduce the problems that our temporal manager 
has to address; in section 3, we describe the 
language for representing classes and instances of 
events, the language for representing constraints 
on periodicity, and the one employed for internal 
representation; in section 4, we deal with 
consistency checking on classes only and with 
consistency checking on classes+instances by 
means of constraint inheritance (both with the 
assumption of complete observability and with the 
assumption of no observability in the future); 
moreover, we discuss the complexity of the 
reasoning mechanisms and present some 
preliminary experimental results; finally, in 
section 5, we draw some conclusions, discuss the 
related works in literature, and present 
applications and future work. 
 
2. An introduction to the problem 
 
2.1. Temporal constraints about 
classes+instances 
 
The distinction between classes of events and 
instances of events is only a specific case of the 
well-known distinction between classes and 
instances.  Let us show an example: 
(Ex. 3) The reservation of a laboratory test (RS) 
must be done within 1 and 7 days before the 
laboratory test (LT). The results are reported (RP) 
within 1 and 48 hours after the end of the test. 
Ex. 3 is illustrated in Fig. 1. In Ex. 3, the event of 
“performing a laboratory test” (LT) stands for a 
class of events, i.e. it stands for a set of individual 
occurrences (LT1, LT2, …, LTk) of the actual 
event “performing a laboratory test”, that are 
associated to specific patients and occur in 
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Fig. 1. A graphical representation for the execution of Ex. 3. 



specific intervals of time. These are, of course, 
instance events of LT. The bottom-up arcs in Fig. 
1 represent instance-of arcs. 
If we wish to check the temporal consistency of 
the instances of events wrt the classes of events, 
we have to instantiate the temporal constraints 
about the classes (in the figure, 1-7 days before 
and 1-48 hours before) on the instances: if the 
plan states that the reservation RS must be done 1-
7 days before the lab test LT, we have to test 
whether each instance RS1, …, RSk is 1-7 days 
before the relative instance LT1, …, LTk. In doing 
this, we have to face the problem of relating the 
instances, which the correlation relation 
(discussed e.g. in [10, 13]) allows us to do (it is no 
further discussed here because it is out of the 
scope of this paper). 
Moreover, we have to take into account the aspect 
of prediction. The classes of events may have an 
“existential” role, in fact, the classes of events in 
Ex. 3 not only impose temporal constraints on the 
instances, but also “existential” constraints. For 
example, it would not be possible to have a 
laboratory test without the relative report. 
Whenever we test the consistency of the execution 
of the guideline, we cannot simply inherit the 
temporal constraints on the correlated instances, 
but we also have to check whether the proper 
instances exist. 
This problem is closely related with the semantic 
assumptions we impose on the observations: are 
the observations complete or is it possible that any 
instance of event is not observed? As regards 
future events, are they present in the knowledge 
base, or (as in the majority of the application 
domains) is it impossible to know in advance 
when the future instances of events will occur? 
Of course, the semantic assumptions closely 
influence the possible consistency checking 
mechanisms, in fact, if the report is not observed 
and we assume that the observations are not 
complete, the instances may however be 
consistent (i.e., the predictive role of the classes is 
not needed), but if we assume that the 
observations are complete, a missing report surely 
leads to an inconsistency. 
 
2.2. Temporal constraints about 
periodicity/repetition 
 
Repeated events are widespread in many 
application domains. In many cases (e.g. in the 
clinical therapies, such as in Ex. 1 and Ex. 2), 
repeated events are periodic, since they occur at 
regular times.  

As regards the representation of periodicity 
constraints, we face two alternatives: the 
extensional representation or the intensional 
representation. In the extensional representation, 
we explicitly represent all the repetitions of each 
class of events: this could lead in an unnecessary 
explosion of events, in particular when the 
number of repetitions is high, such as in Ex. 2. 
Moreover, if we pursue the aim of hiding the 
complexity of the time-related tasks to the user, an 
intensional approach with a compact formalism 
representing the repetitions may result easier to 
manage and more “user-friendly”. In particular, 
the formalism has to be powerful (in order to 
capture the real-world cases), compact, and simple 
to use (in order to hide the complexity). As 
regards its expressive power, it has to be able to:  
- manage arbitrary nesting of time intervals 

(e.g., in Ex. 2 we have four nesting levels: 
four years, 88 weeks, one week, and one day); 

- give support for some degree of uncertainty 
(e.g. in Ex. 2 the guideline does not explicitly 
constrain the position of the two consecutive 
days in the week). 

In this context, when we impose a repetition 
pattern, it would be useful to have periodicity 
constraints. These may be considered as a special 
kind of temporal constraints; to be more specific, 
while duration constraints are monadic constraints 
because they regard single instances, and 
delay/precedence constraints are binary 
constraints because they regard pairs of instances, 
periodicity constraints are n-ary constraints, 
because they regard multiple events. 
This leads to a further problem that we have to 
face whenever we want to inherit the constraints 
from a plan containing repeated classes to 
instances, that is, we need to associate the 
instances to the periodicity. If we have constraints 
like “repeat twice each day A before B”, in order 
to test the precedence relation, we cannot consider 
all the (instances of) A and all the (instances of) 
B, but only the pairs of (the instances of) A and B 
that belong to the same repetition. This may be 
not a trivial task when the knowledge base of 
instances only contains atomic instances. In the 
sample constraint, e.g., it is possible that only the 
occurrences of the instances of A and B are 
observable, while the “abstract” instance 
“occurrence of A+B” is not. 
 
2.3. Extending the Integrated Temporal 
Manager 
 
To summarize, the goal of the work described in 
this paper is to allow users to abstract from the 



above-mentioned problems and to solve them 
once and for all in a general, domain-independent 
way, in order to hide the “complexity”. To do so, 
we extend the tractable temporal manager 
proposed in [20] in the direction of: 
- enhancing the expressive power of the 

representation language, especially the 
formalism regarding the periodicity/repetition 
constraints; 

- developing new algorithms for temporal 
reasoning without increasing the complexity of 
the algorithms in [20]. 

 
3. The representation formalism 
 
As regards the representation of the problem, we 
have followed a layered approach, making a 
distinction between a high representation level 
and a low representation level. 
The high level is the level that interfaces with the 
user: it is desirable that the language is expressive 
and that it is possible to provide reasoning 
facilities. It is important to take into account the 
trade-off between the expressiveness and the 
complexity of the reasoning mechanisms. In our 
approach we have chosen to retain the tractability. 
The low level is meant for the internal 
representation. We use a “standard” approach, 
such as the STP one ([5]), where the reasoning 
mechanism consists in the propagation of 
constraints. 
It is worth noting that, while reasoning on the low 
level is quite trivial since all-pairs shortest paths 
algorithms such as Floyd-Warshall’s one are 
correct and complete, filling the gap from the high 
level to the low level may not be so simple; in 
fact, one has to face all the problems mentioned in 
section 2: correlation, association, semantic 
assumptions, inheritance of periodic patterns, and 
prediction. 
 
3.1. Representing classes+instances 
 
The high-level constraint language about 
instances retains the language described in [20]. It 
provides primitives in order to represent (possibly 
imprecise) dates, delays between endpoints of 
events, durations, and qualitative constraints 
between endpoints of events. 
Such language has been deliberately designed in 
such a way that only constraints that can be 
mapped onto conjunctions of bounds on 
differences (i.e., on an STP framework [5]) can be 
represented (see [16] for more details). 
Besides temporal constraints, this high-level 
language also allows to specify: 

- instance-of relations (between an instance and 
its class), 
- correlation relations (between pairs of 
instances). 
Thus, according to our language, the instances are 
represented with a knowledge base IKB, 
composed by a quadruple <IKB_Elements, 
IKB_Instance_Of, IKB_COR, IKB_Constraints>, 
where the first term represents the set of instances, 
the second one the instance-of relations, the third 
one the correlation relations, and the last one the 
temporal constraints between instances. 
As regards qualitative and quantitative temporal 
constraints between classes, we basically retain 
the simple high-level constraint language of 
instances. Thus, our language provides primitives 
in order to describe (possibly imprecise) dates, 
durations, and delays, as well as continuous 
pointizable qualitative temporal constraints 
([25]). Notice, however, that the semantics of such 
constraints is different depending on whether they 
apply to instances or to classes (see [16]). 
Furthermore, the high-level language for classes 
provides primitives to describe composite events 
([20]) and periodicity constraints (see section 3.2).  
Thus, classes are represented in the knowledge 
base CKB, that is a triple <CKB_Elements, 
CKB_Part_of, CKB_Constraints>, where the first 
term represents the set of classes, the second one 
represents the part-of relations, and the last one 
represents temporal constraints (including the 
constraints on repetition/periodicity). 
 
3.2. Representing repetition/periodicity 
constraints 
 
The constraints on repetitions and periodicities are 
temporal constraints of the form 
 

Repetition(C, RepSpec), 
 

where C is the class to be repeated and RepSpec is 
a parameter that imposes the repetition pattern. 
The repetition specification is represented by 
means of a recursive structure of arbitrary depth, 
 

RepSpec  = <R1, R2, …, Rn>, 
 

where each level Ri states that the events 
described in the next level (i.e., Ri+1, or – by 
convention – the class C, if i=n) must be repeated 
a certain number of times in a certain time lapse. 
To be more specific, the basic element Ri consists 
of a triple: 
 

Ri = <nRepetitionsi, I-Timei, repConstraintsi>, 



 
where the first term represents the number of 
times that Ri+1 must be repeated, the second one 
represents the time lapse in which the repetitions 
must be included, and the last one may impose a 
pattern that the repetitions must follow. We can 
roughly describe the semantics of a triple Ri as the 
natural language sentence “repeat Ri+1 
nRepetitionsi times in exactly I-Timei”. 
repConstraintsi is a  (possibly empty) set of 
pattern constraints, representing possibly 
imprecise repetition patterns. Pattern constraints 
may be of type: 
- fromStart(min, max), representing a (possibly 

imprecise) delay between the start of the I-Time 
and the beginning of the first repetition; 

- toEnd(min, max), representing a (possibly 
imprecise) delay between the end of the last 
repetition and the end of the I-Time; 

- inBetweenAll(min, max) representing the 
(possibly imprecise) delay between the end of 
each repetition and the start of the subsequent 
one; 

- inBetween((min1, max1), …, (minnRepetitionsi-

1, maxnRepetitionsi-1), representing the (possibly 
imprecise) delays between each repetition and 
the subsequent one. Please note that any couple 
(mini, maxi) may be missing, to indicate that we 
do not give any temporal constraint between the 
i-th repetition and the (i+1)-th one. 

 
Let us see an example: 
(Ex. 4) Intrathecal methotrexate must be 
administered 7 times during 88 weeks, never less 
than 10 weeks apart or more then 14 weeks apart. 
Ex. 4 may be represented with a simple one level 
specification: 
Repetition(Intrathecal_methotrexate,  
< <7,88wk, {inBetweenAll(10wk, 14wk)}>>) 
 
It is worth noting that neither repConstraintsi nor 
nRepetitionsi are mandatory. If repConstraintsi is 
an empty set, the repetitions do not necessarily 
have to follow any particular pattern. If 
nRepetitionsi is missing, it is easy to automatically 
“fill the blank” considering the I-Time of the next 
level in order to infer the (maximum) number of 
repetitions that fits in the given I-Time. 
Notice that, since we aim at designing tractable 
algorithms in order to deal with correct and 
complete consistency checking, we have to 
impose that I-Times must be specified in an exact 
way. 

It should be pointed out that the formalism we are 
introducing allows to manage different kinds of 
uncertainty/variability: 
- the repetitions are not constrained to completely 

cover the I-Time, and there may be arbitrary 
delays between the repetitions; 

- the (min, max) specifications in repConstraintsi 
make it possible to indicate variable delays 
between the repetitions. 

repConstraintsi also allows to represent non-
symmetric patterns, such as in Ex. 5: 
(Ex. 5) Repeat action A every week for 8 weeks on 
Mondays and Saturdays. 
If we regard Sunday as the first day of the week, 
we represent Ex. 5 as follows: 
Repetition(A, <<_, 8wk, ∅>, <2,1wk, 
{fromStart(1d,1d), toEnd(0d,0d)}> >). 
 
Moreover, the repetitions may be nested at 
arbitrary depth, representing simple cases with 
few levels as in Ex. 4 and more complex cases 
with more levels as in Ex. 2. Ex. 2 may be 
represented in the following way: 
Repetition(Cotrimoxazole, < <2, 4y, ∅>,  
<_, 88wk, ∅>, <2, 1wk, {inBetweenAll(0,0)}>, 
<2, 1d, ∅>>), 
where the pattern constraint inBetweenAll(0,0) in 
the third triple imposes that the days must be 
consecutive. 
 
3.3. Internal representation for temporal 
constraints 
 
As in [20], we model repeated events as 
composite events and represent the constraints 
regarding repeated actions into separate STP 
frameworks, one for each repeated event.  Thus, 
in our approach, the overall set of constraints 
between classes of events is represented by a tree 
of STP frameworks (STP tree henceforth) ([18]). 
The root of the tree is the STP which 
homogeneously represents the constraints between 
all the classes of events (both composite ones and 
atomic ones), except repeated events. Each node 
in the tree is a STP and has a child for each 
repeated class. Each edge in the tree connects a 
pair of endpoints in a STP (the starting and ending 
point of a repeated event) to the STP containing 
the constraints between its subactions and is 
labelled with the recursive repetition structure 
RepSpec describing the temporal constraints on 
the repetitions. 



In Fig. 2, e.g., a graphical representation regarding 
Ex. 1 is shown.  
 
4. Temporal reasoning 
 
In order to deal with the more powerful formalism 
described in this work, it is not possible to use the 
reasoning mechanisms depicted in [20]. In this 
section, we first describe an algorithm designed 
for checking the consistency of a knowledge base 
of (possibly repeated) classes. Then, we describe 
an algorithm that checks in an integrated way the 
consistency of instances of events wrt the relative 
classes, and we show that, despite the more 
expressive formalism, the complexity of the 
algorithm does not increase wrt [20]. 
 
4.1 Consistency checking on (possibly repeated) 
classes of events 
 
The procedure classConsistency in Fig. 3 tests the 
consistency of the classes by filling the gap 
between the high-level expressive representation 
language and the low-level “simple” internal 
representation as STP ([5]), making explicit the 
semantic assumptions carried by the intensional 
high-level language. At the end of step 2 of the 
procedure classConsistency, S is a STP which is 
semantically equivalent to the STP tree T. 
This task is accomplished by: 
i) visiting recursively the STP tree (task 

performed by the procedure unfoldNode); 
ii) “unfolding” the repetitions (task performed by 

the procedure unfoldRep). 
The procedure unfoldNode, recursively called on 
each STP node X in the STP tree, inserts in S (step 
1) a class CX representing the whole node X, and 
(steps 2-3) a class CA representing each non-
repeated class. 
For each repeated class CR (steps 4-7) it calls the 
procedure unfoldRep in order to “unfold” the 
repetitions. Finally, in steps 8-11 the monadic and 

binary temporal constraints are carried to S. 
The procedure unfoldRep, after inserting in S a 
class C1 representing the whole I-Time in which 
the repetitions must take place, exploits the 
recursive structure of the repetition specifications 
to recursively call itself (step 5, please note the 
shift of the triples) as many times as prescribed by 
the specification R1. This is done until the last 
triple in RepSpec is reached (else branch of if 
statement in step 4), then the procedure 
unfoldNode is called (step 6) to continue the 
unfolding on the child node in the STP tree. 
Finally, unfoldRep adds to the STP (steps 7-12) 
the constraints corresponding to the semantic 
assumptions of the construct:  
- the repetitions must be included in a time 

 

 

 

 

 

  

Fig. 2 . Graphical representation of the internal representation 
for Ex. 1.   
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procedure classConsistency(T : CKB) 
(1) initialize S to an empty STP 
(2) unfoldNode(root(T), S) 
(3) S’ := FloydWarshall(S) 
(4) return S’ 
 
procedure unfoldNode(X : STPNode, S : STP) 
(1) add to S the placeholder class CX 
(2) forall CA | CA is not a repeated class in X do 
(3)  add to S the class CA
  od 
(4) forall CR | CR is a repeated class in X do 
(5)  let RepSpec = (R1, …, Rn) be the repetition 

specification of class CR
(6)  Csub := unfoldRep(X, CR, RepSpec) 
(7) add to S the constraints that Csub ⊆ CX
     od 
(8) for each monadic constraint in X do 
(9)  add the constraint to the corresponding classes in S 
(10)for each binary constraint in X do 
(11) add the constraint to the corresponding classes in S 
    return CX
 
procedure unfoldRep(X : STPNode, S : STP, C : Class,

RepSpec = < R1, R2,…, Rn>) 
(1) add to S the placeholder class C1
(2) let R1 = <nRep1, IT1, constrs1> 
(3) for r := 1 to nRep1 do 
(4)  if R1 is not the last one in RepSpec then 
(5)   Csub,r := unfoldRep(X, C, (R2, …, Rn)) 
      else 
(6)   Csub,r := unfoldNode(child(C, X)) 
     od 
(7) add to S the constraint that duration of C1 is IT1
(8) add to S the constraints that Csub,i ⊆ C1, i = 1, …, nRep1
(9) add to S the constraints that Csub,i+1 is after Csub,i, i = 1,

…, nRep1-1 
(10)add to S the possible constraint fromStart in constrs1 in

R1 between C1 and Csub,1
(11)add to S the possible constraint toEnd in constrs1 in R1

between Csub,nRep1 and C1
(12)add to S the constraints inBetween and inBetweenAll in

constrs1 in R1 between Csub,i and Csub,i+1, i = 1, …, nRep1-
1 

  return C1 
 
Fig. 3. Algorithms for temporal reasoning on classes of
events. 



interval lasting exactly IT1 (step 7); procedure integratedConsistency(T : CKB, I : IKB) 
(1) S := classConsistency(T) 
(2) add to I the placeholder instances corresponding to the 

placeholder classes in S 
(3) I’ := FloydWarshall(I) 
(4) for each class C in S taken in temporal order do 
(5)  let i be the first instance of C in I’ not yet taken in 

consideration 
(6)  if i does not exist then return INCONSISTENT 
  od 
(7) if there exists an instance in I’ not yet considered then 

return INCONSISTENT 
(8) inherit the monadic constraints from the classes in S to 

the corresponding instances in I’ 
(9) inherit the binary constraints from the classes in S to the 

corresponding instances in I’ 
(10)I” := FloydWarshall(I’) 
 
Fig. 4. Algorithm for temporal reasoning on 
classes+instances of events (complete observations).

- each repetition must be included in the I-Time 
(step 8); 

- the repetitions must not overlap (step 9); 
- the repetitions must follow the possible pattern 

in repConstraints (steps 10-12). 
It is possible to test the consistency of the 
resulting STP S (step 3 of procedure 
classConsistency) by propagating the constraints 
using the Floyd-Warshall’s all-pairs shortest path 
algorithm. 
 
4.2 Consistency checking on classes+instances 
 
We will start by describing an algorithm that 
assumes full observability of the events even in 
the future and total ordering of the instances, and 
then we will relax the first assumption to include 
the case where there is no observability in the 
future. The problem of relaxing the assumption of 
full observability in the past and the assumption of 
total ordering is discussed in note 2 and in 
subsection 5.3. We intend that, whenever an 
inconsistency is detected, the algorithms report it 
and stop. For the sake of brevity, we assume that 
all the input instances are correlated. This is not a 
restrictive assumption, in fact, since correlation 
allows to partition instances into independent sets 
([10, 13]), the consistency checking of the 
instances may be iterated for each partition. 
In order to test the consistency of 
classes+instances, the basic idea in the procedure 
integratedConsistency in Fig. 4 is to: 
i) test the consistency of the classes and obtain the 

unfolded STP (step 1); 
ii) establish a one-to-one correspondence between 

the classes and the instances (steps 4-6); 
iii) inherit the constraints from the classes to the 

instances (steps 8-9); 
iv) test the consistency of the new “augmented” 

STP (step 10). 
After checking the consistency of the classes (step 
1), the instances corresponding to the composite 
and repeated classes are inserted (step 2) in the 
IKB1. 
Then, the constraints on the instances are 
propagated in order to infer a possible not explicit 
total order between the instances. 
Steps 4-6, as said above, try to establish a one-to-
one correspondence between the classes in S and 
the instances in I. This task may be efficiently 

                                                 

                                                

1 It is worth noticing that they are not already in the IKB, 
because we assume that only atomic events may be observed. 
If this assumption does not hold, then it suffices to simply 
remove step 2. 

performed thanks to the assumption of total 
ordering on the instances2. 
In the event that an instance that the CKB predicts 
to be in the IKB is missing (step 6) (e.g. because a 
repetition is not complete), the procedure stops 
and reports an inconsistency. 
In step 7, we check whether there are instances 
that are missing the corresponding classes (e.g., 
because there are more repetitions than expected). 
In step 8, monadic constraints (i.e. constraints 
regarding durations of events) are inherited, and in 
step 9 binary constraints are inherited, according 
to the semantics of the constraints on classes 
([16]). Steps 8 and 9 may be easily performed 
thanks to the correspondence between classes in S 
and instances in I established in the previous 
steps. 
Finally, consistency checking on the STP on 
instances, augmented by the inherited constraints, 
is performed by the Floyd-Warshall’s all-to-all 
shortest path algorithm (step 10). 
In the procedure integratedConsistencyNoFuture 
in Fig. 5 we relax the assumption of full 
observability even in the future to the case where 
there is no observability in the future. The steps 
added or changed wrt the procedure 
integratedConsistency are the ones with line 
numbers in bold type. 
The procedure integratedConsistencyNoFuture 

 
2 To be more specific, without total ordering it could happen 
that in the IKB there are instances of a repeated class, and we 
do not know which specific repetitions they belong to. In this 
case, it would be necessary to perform an inefficient search in 
order to establish which specific instance corresponds to 
which specific repetition. Because for each possible 
correspondence instance-repetition it is necessary to check 
whether it is consistent with the other temporal constraints, 
this may lead the problem to intractability. This is the reason 
why we retain the assumption of total ordering, at least 
between the instances of a repeated class. 



accepts the additional parameter NOW, 
corresponding to the time of the present. In steps 
1a-1b we make explicit the fact that it is not 
possible to observe future events: all observed 
instances must start before NOW.  
However, the main differences between the 
procedures integratedConsistencyNoFuture and 
integratedConsistency lie in steps 6-6b and 11: 
when we do not find an instance that a class 
predicts to be in the IKB, we no longer report an 
inconsistency because that instance may start in 
the future. Thus, there is an inconsistency only in 
the case that the temporal constraints in IKB and 
CKB impose that the instance must be observed 
before NOW. Therefore, we collect all the missing 
instances in the set hypothesizedInstances (steps 6 
and 6b) and we provisionally insert them in IKB 
(step 6a). Then, we perform the inheritance and 
the propagation of the constraints on 
input+hypothesized instances, and, at the end 
(step 11), we test whether any hypothesized 
instance necessarily starts before NOW. In this 
case we report the inconsistency. 
It is worth noting that, in the case that the missing 
instances belong to a repeated class, it is not 
necessary to hypothesize all the repetitions, but 
only the first missing one; in fact, if this instance 
may start in the future, also the subsequent ones 
will, and it is not necessary to hypothesize them; 
on the other hand, if this instance must start before 
NOW, we may report the inconsistency even 

without hypothesizing the others. 
 
4.3 Complexity of the algorithms 
 
As regards the consistency checking on the 
classes, it is useful to observe that the recursive 
calls (see step 6 of procedure unfoldNode and 
steps 5 and 6 of procedure unfoldRep in Fig. 3), 
and the for loops (see step 4 of procedure 
unfoldNode and step 3 of procedure unfoldRep) 
basically traverse the STP tree, visiting each node 
as many times as it is repeated. In other words, if 
there exists a class C such that Repetition(C, <R1, 
R2, …, Rn>), Ri = <nRepetitionsi, I-Timei, 
repConstraintsi> – and C is not a component of 
another repeated class –, then the class C is visited 

times. If the class C is a 

composite class, then, thanks to the recursive call 
in step 6 of unfoldRep, also its component classes 

are visited ∏ times. We 

accommodate this by expressing the complexity 
of the algorithm wrt the number C

∏
=

n

i
insnRepetitio

1

=

n

i
insnRepetitio

1

U of classes in 
the extensional representation, where a class C is 
present as many times as it is repeated. If we 
denote with L the number of classes in the 
intensional representation and with R the 
maximum number of times that any class is 
repeated, we can estimate CU as CU = O(R ⋅ L). 
Because the step 7 of the procedure unfoldNode is 
constant in time, and is executed – considering all 
executions – at most O(CU) times, the procedure is 
dominated by step 11, that is executed – 
considering all executions –  for every couple of 
classes, i.e. O(CU

2) times. 
The procedure unfoldRep is dominated by steps 8 
and 12, that add the constraints imposing that the 
repetitions must not overlap and the constraints 
corresponding to the repetition patterns. These 
steps, considering again all executions, are 
performed in time O(CU). 
Thus, step 2 of procedure classConsistency takes 
O(CU

2), and gives as output a STP which contains 
CU events and the placeholder classes added by 
the algorithm. The added classes are at most CU, 
so that the STP contains O(CU) points. 
Therefore, since Floyd-Warshall’s algorithm is 
cubic on the number of points, step 3 is executed 
in time O(CU

3) and the complexity of 
classConsistency is O(CU

3). 
As regards the consistency checking on instances, 
we denote with S the number of input instances. 
Thanks to a possible precompilation that 
associates with every class its instances 

procedure integratedConsistencyNoFuture(T : CKB, I : IKB, 
NOW) 

(1) S := classConsistency(T) 
(1a)for each instance i in I do 
(1b)  add the constraint the i starts before NOW 
(1c)hypothesizedInstances := ∅ 
(2) add to I the placeholder instances corresponding to the 

placeholder classes in S 
(3) I’ := FloydWarshall(I) 
(4) for each class C in S taken in temporal order do 
(5)  let i be the first instance of C in I’ not yet taken in 

consideration 
(6)  if i does not exist then 
(6a) add to I a new instance i’ of C 
(6b) hypothesizedInstances := hypothesizedInstances ∪ i’ 
  od 
(7) if there exists an instance in I’ not yet considered then 

return INCONSISTENT 
(8) inherit the monadic constraints from the classes in S to 

the corresponding instances in I’ 
(9) inherit the binary constraints from the classes in S to the 

corresponding instances in I’ 
(10)I” := FloydWarshall(I’) 
(11)for each i ∈ hypothesizedInstances do 
  if NEC(Start(i) before NOW) then  
   return INCONSISTENT 
 
Fig. 5. Algorithm for temporal reasoning on 
classes+instances (no observations in the future). 



(performable in O(S)), and thanks to the total 
ordering of the instances, step 5 of procedure 
integratedConsistency in Fig. 4 is performed in 
constant time and the entire for loop in steps 4-6 is 
linear in the number of classes. As regards the 
inheritance of the constraints in steps 8-9, 
dominates the inheritance of binary constraints, 
which is quadratic over the number of classes. 
Therefore, in the procedure integratedConsistency 
in Fig. 5, steps 1, 3 and 10 dominate, and the 
overall complexity is O(max{CU

3, S3}), or, in 
terms of the number of input classes L and of the 
maximum number of repetitions R, O(max{R3 L3, 
S3}). 
In the procedure integratedConsistencyNoFuture, 
steps 1a-1c are linear in the number of instances, 
and steps 6-6b are linear on the number of classes. 
It is worth noting that for step 11 we may exploit 
the locality properties of STP constraints proved 
in [3] and perform step 11 in time linear in the 
number of instances in hypothesizedInstances. 
The cardinality of hypothesizedInstances is at 
most CU, since we at most hypothesize one 
instance for each class. Therefore, even relaxing 
the hypothesis of complete observability as 
regards the future, the complexity of integrated 
reasoning remains O(max{R3 L3, S3}). 
It should be pointed out that, despite the more 
powerful representation language wrt the 
representation language described in [20], the 
complexity of the reasoning mechanisms does 
remain the same. 
  
4.3 Preliminary experimental results 
 
The system is currently being developed in Java. 
We provide preliminary experimental results 
regarding the algorithm that checks the 
consistency of the classes only, namely, the 
procedures classConsistency, unfoldNode and 
unfoldRep in Fig. 3. The system has been 
implemented in JDK 1.4.  The experiments were 
run on a PC with a Pentium IV CPU at 2 GHz 
with 1 GB RAM and Windows 2000 operating 
system. 
The system was provided with five knowledge 

bases of classes, with increasing number of 
classes. In Tab. 1 the number of classes CU (as 
described in section 4.3) and the time for the 
consistency checking of the CKBs are reported. 
More extensive experiments are needed in order 
to evaluate the integrated consistency checking on 
classes+instances. 
 
5. Conclusions and discussion 
 
In this paper, we describe a formalism for 
representing temporal constraints on repetition 
and periodicity in a compact and powerful way. 
Its intuitiveness makes it easy to use and its 
recursive structure proves to be adapt to represent 
arbitrary nested repetitions and supports some 
degree of uncertainty. We have described two 
tractable algorithms for consistency checking that 
address all the aspects mentioned in section 1, 
namely, classes and instances of events, 
repetition/periodicity constraints, composite 
events, and qualitative and quantitative temporal 
relations. We first have described an algorithm 
that assumes full observability of the instances of 
events, and then we have illustrated an algorithm 
that assumes no observability in the future and full 
observability in the past. 
 
5.1. Related works 
 
Morris et al. ([10, 11, 12]) dealt only with 
qualitative constraints between repeated events. 
Repeated events are used as “classes” of events, 
with different quantifiers relating them. Morris et 
al. introduced the notion of consistent scenario in 
[11] and sketched an algorithm for a scenario 
consistent with a knowledge base of temporal 
constraints between repeated events. 
Loganantharaj mainly faced the problem of 
associating possibilistic distributions to qualitative 
temporal constraints between periodic events ([6]) 
and to metric constraints concerning the durations 
of events, which are also expressed using 
transition rules ([7, 8]). Such constraints are used 
in a “predictive” way: temporal reasoning is used 
for projecting the constraints on the durations in 
the future using the current domain information. 
In [19] Terenziani proposed a high-level language 
to deal with periodicity and in [13, 23] a high-
level language to deal with period-dependent 
qualitative temporal constraints between repeated 
events, which are used as “classes”. In [14] he 
also defined an initial algorithm for temporal 
reasoning with such constraints and a set of 
instances of events exactly located in time. In [16] 
he approached the problem of checking the 

# of classes (CU) Time 
10 344 ms 
20 360 ms 
50 828 ms 

100 3203 ms 
200 22890 ms 

 
Tab. 1. Number of classes and relative times for checking the 
consistency of the knowledge base of classes. 



consistency of classes and instances of events 
with both qualitative and quantitative constraints; 
in [17, 18] Terenziani et al. proposed an approach 
to deal with periodic, qualitative and quantitative 
constraints between classes of events in clinical 
guidelines.  
Finally, in [20] Terenziani and the author of this 
paper defined an approach dealing with periodic, 
qualitative, and quantitative constraints between 
both classes and instances of events. 
This work represents an extension of the work 
presented in [20]; in particular, our purpose is to 
improve the representation language described in 
[20] preserving its efficiency. 
To illustrate this, [20] has a much more limited 
language for the specification of repetitions and 
periodicity. In fact, that work presents 5 
parameters to specify a periodicity: the frame 
time, the action time, the delay time, the I-Time, 
and the frequency. The frame time corresponds to 
the whole time interval in which all the repetitions 
take place and is subdivided into action times and 
delay times. Delay times represent fixed delays 
between an action time and the next one, whereas 
action times are in their turn subdivided into I-
Times, where finally the events occur, at groups 
of “frequency”. 
This structure is narrow: in fact, it does not allow 
to subdivide the intervals into more than three 
levels (frame times, action/delay times and I-
times), thus making it impossible to represent a 
case such as the one depicted in Ex. 2, which 
requires – as shown in section 3.2 – four levels. 
On the other hand, despite its richer expressive 
power, the formalism described in this work is 
more “user-friendly”. For example, when dealing 
with simple cases which do not require multiple 
levels, the formalism described in [20] implies to 
arbitrarily impose that action times equal I-Times, 
whereas the formalism defined in this work allows 
to simply use fewer recursive levels. To illustrate 
this, let us suppose that we want to represent the 
simple case “repeat A twice for a week”. While 
with the formalism in [20] it is necessary to state: 

FrameTime=1wk, ActionTime=1wk, 
DelayTime=0, I-Time=1wk, freq=2, 

with the formalism described in this work it is 
sufficient to state: 

< <2, 1wk, ∅> >. 
Moreover, in [20] it is mandatory that the 
subdivisions are a partition of the higher level; in 
fact, the union of the action times and the delay 
times must be equal to the frame time, and the 
union of the I-Times must be equal to the action 
time. Furthermore, the “pauses” between the 
intervals must only be specified at the level of 

action times, and they must have a fixed duration, 
which is equal for all the repetitions. 
With the periodicity constraint formalism 
introduced in this work, we provide a more 
compact and more expressive language. Its 
recursive structure supports an arbitrary number 
of nested levels, where any level may or may not 
be a partition of the higher level: this way we 
provide for uncertainty in the subdivision of the 
time intervals. A further support for uncertainty 
lies in the possibility to specify variable delays 
between the repetitions. 
As regards repetition patterns, not only the 
repetitions can follow different patterns on each 
level, but they can also be differently constrained 
within each level. 
 
5.2. Applications 
 
The need to cope with the various temporal 
constraints we described in section 1 aroused from 
our previous work in  the field of clinical 
guideline management. The described system 
integrates in a joint project with Azienda 
Ospedaliera S. Giovanni Battista of Torino for the 
design and development of GLARE (GuideLine 
Acquisition, Representation and Execution) ([15, 
21, 22, 18]). Furthermore, it will integrate in a 
starting joint project with Cancer Research of 
London. 
 
5.3. Future work 
 
We are currently trying to extend our approach in 
order to manage repetitions based on conditions 
(e.g., while B holds, repeat the action A). This 
influences both the consistency checking on 
classes and the consistency checking on instances, 
because appeals to the predictive role of the 
classes and therefore deserves specific attention. 
Furthermore, we are studying the possibility to 
exploit the locality properties proved in [3, 4] in 
order to efficiently answer to temporal queries. 
Other possible developments comprise the 
overcoming of some limiting assumptions, such as 
those of total ordering of the instances and full 
observability. Although both assumptions are 
reasonable in the domain of clinical guidelines, 
there may be domains where they cannot hold. 
Unfortunately, these two assumptions make it 
possible to devise tractable temporal reasoning 
mechanisms, because it is fundamental to 
associate an instance with the relative repetition. 
In fact, if the two assumptions hold, this task may 
be performed efficiently (as shown in section 4.2), 
but, if they do not hold, it would be necessary to 



generate a “scenario” for each possible pair 
(instance, repetition), and test its consistency with 
the temporal constraints in the knowledge base. 
Moreover, releasing the tractability for complete 
reasoning would make it possible to further enrich 
the expressiveness dealing with different forms of 
disjunctions of temporal constraints. 
In the context of overcoming the limiting 
assumption discussed above, in order to save 
some efficiency, we are also investigating the 
possibility to incorporate the approach described 
in this work into a backtracking system and to use 
the temporal constraints in order to restrict the 
search space. 
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