Translating a Modal Language with Embedded
Implication into Horn Clause Logic

Matteo Baldoni, Laura Giordano and Alberto Martelli

Dipartimento di Informatica - Universita di Torino
C.so Svizzera 185 - 10149 TORINO
E-mail: {baldoni,laura,mrt}@di.unito.it
Phone: +39 11 74 29 111 Fax: +39 11 75 16 03

Abstract. In this paper we present a method for translating Horn
clauses extended with modalities and embedded implication (which pro-
vide reasoning capabilities in a multiagent situation and hypothetical
reasoning) into Horn clauses, therefore suitable for SLD resolution. The
translation takes two steps: the first one eliminates embedded implica-
tions by introducing new modalities; the second eliminates modalities by
adding an argument which represents the worlds of the Kripke semantics
to all predicates.

Keywords: Multimodal Logic, Embedded Implication, Translation.

1 Introduction

Modal logics are widely used in computer science and artificial intelligence to
deal with knowledge and beliefs, time, actions, and several researchers have pro-
posed modal extensions of logic programming languages [7, 1, 13, 19, 17, 6]. In
particular, in [5] we have defined a modal logic programming language which
allows both multiple modalities and embedded implications. The language has
been shown to be well suited for structuring knowledge, and, in particular, for
defining module constructs within programs, for representing agent beliefs and
also for hypothetical reasoning. This language has a goal directed operational
semantics which has been proved to be sound and complete with respect to the
Kripke semantics. The operational derivability of a goal is defined with respect to
a notion of modal context, which consists of a sequence of modal operators. The
modal context keeps track of the new clauses which are added to the program
when evaluating implication goals.

The modal operators of this language are rather specific, since the language
was defined for providing constructs for modularizing programs, and for allowing
simple reasoning capabilities in a multiple agent environment. However, the goal
directed procedure can be extended to similar languages whose modal operators
have different properties.

In the next section we introduce the modal language, and recall its opera-
tional semantics. The goal directed procedure gives a precise definition of the
operation behaviour of a program, and provides a means for executing a pro-
gram. However the actual implementation of the procedure can raise several
problems. The simplest solution of building an interpreter (say in Prolog), may
turn out to be extremely inefficient, since the interpreter will have to deal with
the modal context, and, in particular, with the dynamically added clauses.

In this paper we present a different approach, based on translating our lan-
guage into Horn clause logic, so that the translated program can be executed
by any Prolog interpreter or compiler, with the advantage that many features,
such as unification or variable renaming, are directly provided. Furthermore, a

real program usually needs to use built-in predicates and extra logical features,
which, again, are provided by the Prolog environment (as, for instance, cut).

A possible disadvantage of translation methods is that the translated pro-
gram can be very different from the original one, so that the steps of the proof
will be entirely unrelated with the original proof. We will show that this is not
the case with our translation, and that there is a precise correspondence between
the two kinds of proofs.

The translation method consists of two steps, which are presented in Sec-
tion 3 and 4. In the first step all embedded implications are eliminated so as to
obtain a program consisting only of modal Horn clauses. This step requires the
introduction of new modal operators which ensure that the extracted clauses
can be used only in the right way. In the second step modalities are eliminated
by adding to all predicates an argument which represents the modal context.

Section 5 describes some possible extensions of this work, and compares the
approach of this paper with translation methods which have been developed in
the context of modal theorem proving.

2 The source language

In this section we show the source programming language £ introduced in [5].
It extends Horn clause language with k modal operators [ai],...,[ak], where
the a;’s are constants, and a modal operator O; moreover, it allows implication
goals to occur in goals and in clause bodies. £ is an extension of the language
defined in [13, 3] and more details can be found in [4]. Tt provides a simple
way to formulate reasoning capabilities in multiple agent situation; intuitively
[ai]a can be read “agent a; believes o” and O« as “a is common knowledge of
agents”; furthermore it allows both to define module construct and to perform
hypothetical reasoning.

2.1 Syntax of £

Let A be an atomic formula of the form p(ty,...,ts), with p a predicative symbol
and t1,...,ts terms of the language, and T a distinguished symbol (true). The
syntax of the language £ is the following
G:=T|A|G1, Go| LG| L(D > G)
D:=H|H:—G|Dy.Dy|LD
H:=A|LH
L:=Ja;] |0
where (G stands for a ezxtended goal, D for a extended clause, H for a extended
clause head or a fact (we will refer to extended clauses and goals without the

word extended, when no confusion arises). Note that all free variables in a clause
are (implicitly) assumed to be universally quantified. For example, the clause

p(X) = 0O((r(a) . ¢(X) = r(X)) D ¢(X)) (1)
is implicitly universally quantified in the following way
(VX)(p(X) := O((r(a) . (VX)(¢(X) = r(X))) D ¢(X)))

and so, the variable X in the nested clause (VX)(¢(X) :— r(X))) is different
from the X in p(X); in other words, (1) is equivalent to

p(X) = B((r(a) . ¢(Y) := r(Y)) D ¢(X)),

where Y is any variable different from X. Moreover, in the following, D will
be interchangeably regarded as a conjunction or a set of universally quantified
closed clauses. A program P consists of a set of clauses D.

In this language, embedded implications are allowed and modal operators [a;]
and O can freely occur in front of clauses, in front of clause heads, in front of each
goal and, in particular, in front of embedded implications (or implication goals).
[a;]G is a goal and means that G has to be proved in the beliefs of agent a;,
while [a;] D means that the clause D is part of the beliefs of agent a;. As regards
implication goals, they must be preceded by at least one modal operator, for
example [a;](D D G).

Note that, for uniformity with Prolog notation, we have used the symbol “:—
as the implication in clauses, while we have used the simbol “O” in embedded
implications. However, we regard both of the symbols as material implication.
Moreover, we have used the symbol “” and “.” as the conjunction in goals and
clauses, respectively.

To give an idea of how a program in this language is defined, let us consider
the following example. Tt is a formulation of the (two) wise men puzzle.

»”

Ezample 1. (The (two) wise men puzzle) The formulation is the following:

alws(a) :— [a]((bs(a)) D false))

In this example, false is a distinguished symbol representing falsity; bs(a)
(ws(a)) represents the fact that a has a black (white) spot on his forehead. Clause
(1) and (2) say that at least one wise man has a white spot; clause (3) and (4)
say that if a wise man has a black spot then the other wise man knows that he
has a black spot. Clause (5) and (6) can be read: if a wise man knows that he
has not the black spot, then he knows that he has the white spot. Finally, modal
operator O in front of all clauses (1)—(6) defines them as common knowledge of
agents a and b.

Assume that a is the first which is asked if he has a white spot on his fore-
head, that he does not know the answer and that b knows that (i.e., [b](false :

— [a]ws(a))). When the wise man b is asked, he can answer yes (b knows that
he has the white spot). Hence the following goal G

O(([8)(false — [alws(a))) > [Blws(b))

is a consequence of the program. a

[: .
F)]'ws(b) —[b]((bs b)) D false)).

In Example 1, while the modal operators [a], [b)] and O give a way of dis-
tinguishing among information of the single agents and information common to
all of them, embedded implications allow forms of hypothetical reasoning to be

! The modal logic on which our language is based contains all classical tautologies.
Since we aim at defining a sound and complete proof procedure for our language, we
cannot allow clauses like a :— a D b in the language. In fact, while a is a consequence
in classical logic of the formula (@ D b) D a, a cannot be proved from a :— a D b
using a goal directed proof procedure, unless it makes use of a “restart rule” (see
[10] for a study of goal directed proof procedures with restart for classical logic).

performed. It will be useful to note that, since all modalities are distributive
with respect to conjunction, we can assume the general form I'y(I'hA :— G) for
clauses of £, where Iy, I'y, are arbitrary sequences of modalities (including the
empty one).

Following [3], in our language the modal operators [a;] are all ruled by the
axioms of K, while the operator O is ruled by the axioms of S4. Thus, the

axiomatization contains the following axiom schemas

(Kfa,1) [a:](B D A) D ([ai] B D [a;]4)
(Ko) O(B D> A)D (OB D0OA)
(TD) 0ADA

(40) DADODA

Moreover, since the operator O is intended to represent what is known by
all agents, it interacts with each operator [a;] through the following interaction
arioms

(In[a,]) OA D [a;]A

As already remarked in [3] our modal operators [a;] and O are quite similar to
the notions of knowledge and common knowledge introduced in [14, 12]. However,
our modality O can be taken as a weaker version of common knowledge operator
in [14, 12]. In particular the formula A A O(A D [a;]AA ... Afag]A) D OA (the
induction ariom for common knowledge) does not hold, while it is expected to
hold when O is the common knowledge operator. So, O expresses only what any
agent knows, and any agent knows that others know (and so on). In [3, 5] we
have defined both Kripke semantics and a sequent calculus for modal language £
containing the logical connectives =, A, D, quantifiers 3 and V, and the modalities
[a1],...,[ax]) and O.2

2.2 Operational Semantics of £

In this section we will define operational derivability of a closed goal (EIY)G

(with X the list of all free variables of G) from a program P by induction on
the structure of GG. Since the language allows modal operators, and in particular
free occurrence of modalities in front of a goal, in the operational semantics we
will introduce a notion of operational derivability of a closed goal (3X)G from a
program P in a certain modal contert. A modal context is a sequence of modal
operators Li|...|Ly.

To deal with embedded implications, each modal operator L; in the sequence
is associated with a (possibly empty) set of clauses D;. In [13] the modal context
has the simpler form of a list of sets of atoms D1|...|D, which are used for the
only purpose of recording the ordering of the hypothetical updates of the D;’s
during the computation.

To deal with both modalities and embedded implications we define the op-
erational derivability of a closed goal G from a list of pairs (Lo, Do) | (L1, D1) |
.| (Ln, Dyp) which keeps trace of embedded implications and modalized goals
in a run of a proof: Lq,..., L, are modalities, D1, ..., D, are sets of clauses, Dy
is the initial program P, and L (introduced for uniformity) is not used.

Following [16], in order to avoid problems with variable renaming and sub-
stitutions, given a set of clauses D, we denote by [D] the set of all ground in-
stances of the clauses in D. Moreover, in the following, we define the operational

2 In particular, without loss of generality, we can take Herbrand domain as the constant
domain for our Kripke interpretation (see [4] for more details).

derivability of a closed goal (3X)G from a modal context as the operational

derivability of goal G[X /1], for some list of ground terms Z. The definition is by
induction on the structure of the goal G.

Definition1 (Operational Semantics of £). A closed goal (3X)G is opera-
tionally derivable from a modal context (Lo, Do) | (L1, D1) | ... | (Ln, Dy) if, for
some list of ground terms ¢, it holds that ((Lo, Do) | (L1, D1) | ... | (Ln, Dn)) b2
G[X/f]. The derivability of the ground goal G[X /7] in turn is defined by induc-
tion on the structure of G[X /] as follows:

L. ((Lo, Do) | (L1, D1) | ... | (Ln, Dn)) b T}
2. ((Lo, Do) | (L1,D1) | ... | (Ln, Dn)) k¢ Aif for some j € {0,1,...,n}, there
is a clause I',(I'hA :— G)® € [D;] and a k, j < k < n, such that
Iy matches I't = L1 ... Ly, I', matches Iy = Lgyq...L,, and

|
3. (Lo, Do) | (L1,D1) |-+ | (L, D)y Fe Gy, Goif
) | (Ln, Dp)) b G1 and
Voo (L D)) e Go;
4. ((Lo, Do) | (L1, D1) | ... | (Lpy, D)) b L1 G if
(Lo, Do) [(L1, Da) | ... | (Ln, Dn) | (Lng1, 0)) Fe G
- (Lo, Do) | (L1, D1) |)|| (LT,Dn» Fe Loyi(D D G)if

In the definition above, the rules for the distinguished proposition 7 for
conjunctions and for goals are the usual ones. The rules 4) and 5) for embedded
implications and modalized goals are quite similar. Embedded implications are
always preceded by at least one modal operator. To prove a goal L(D D G),
where L is an arbitrary modal operator, the modal operator L is added to the
current context together with the clauses in D, and G is proved in the resulting
context. Similarly a goal LG is proved by adding the modal operator L to the
current context (with associated empty set of clauses) and proving G in the
resulting context.

To prove an atomic goal A a clause is selected in the initial program Dy or
from a set of clauses D; that has been added in the context, by proving some
implication goal. In both cases, to verify that a clause is applicable in the current
context, it must be checked whether the modal operators in the clause (both in
front of it and in front of its head) match the current context, from L;4;1 to
L. In particular, the sequence of the modal operators I}, in front of the selected
clause must match a prefix of the sequence L; 41 ... Ly, while the sequence of the
modal operators I, in front of the head of the selected clause must match the
remaining part of the sequence. We say that a sequence I' of modal operators
matches another sequence I if each modal operator in I' matches a sequence
of operators in I'V in the ordering. More precisely, each modal operator [a;] in I"
may only match the operator [a;] itself, while each operator O in I" may match
either an empty sequence or an arbitrary sequence of modalities in I".

ot

(Lny Dp) | (Lnt1, D)) Fe G.

Definition2 (Matching Operation for £). Let I' = Ly ... L, and I be two
sequences of modalities, then we say that I matches I'" if there exist r functions
fi,-.-, fr such that the following conditions hold:

— fi(la:]) = [ai], for all j =1,...,r and for all modal operators [a;];

® For simplicity, we will represent facts H as clauses H :— T.

— f;(0) is any sequence of modalities (including the empty one), for all j =
1,...,7;
- (L) . fe(Le) =T,

Given a program P and a closed goal GG, we say that GG is provable from P,
if {((Lo, P)) Fz G can be derived by applying the operational rules above.

Ezample 2. (The (two) wise men puzzle) Given the formulation of the (two) wise
men puzzle of Example 1, the goal O(([b](false :—[a]ws(a))) D [b]ws(b)) has the
following derivation:

(Lo,)} Fe D(([8)(false — [alws(a))) D [Hus(8)
((Lo, P) (,[b](false :— [alws(a)))) Fz [blws(b)
(Lor P) | () [](False — [afws(a))) | (B, 0)) Fe ws(b)
((Lo, P) | (O, [b](false :— [a]ws(a)))) Fc [b]((bs(b)) D false) by (5)
((Lo, P) | (O, [b](false :— [a]ws(a))) | ([b], bs(b))) k- false
(Lo, P) | () [(False — [aJws(a))) | (5] bs(8))} F ¢ [a]ws(a) by (7
(Lo, P) | () #](False — [aJws(a))) | (18], bs(8)) | ([a]. 0)) F ws(a)
(Lo, P) | (0.) False -~ [afws(a))) | (] bs(8)) | ([a],0)) 2 bs(3) by (1)
(Lo, P | (0[5 False i [ajuws(a))) | (|5 5(3))) Fe 65(5) by (3
((Lo, P) | (O, [b](false :— [a]ws(a))) | ([b], bs(b))) Fc T by (5").
where (7) and (5”) are the two clauses added to the modal context during the
computatlon le. respectlvely [b](false -— [a]ws(a)) and bs(b). a

3 The first step of the translation

The aim of this section is to introduce the first step of the translation and its
target language. The goal of this step is to eliminate embedded implications from
programs and queries in the language £, and to transform extended clauses and
goals in Horn clauses and goals which allow only modalities to occur freely in
front of clauses, in front of clause heads and in front of goals.

The idea is to introduce some new agents, one for each goal L(D D G), and
to associate the set of clauses D to it as its beliefs. After this, we can replace
each goal L(D D G) by a goal which asks if the introduced agent believes G.
Each new agent will be represented by a new modality of type K. We will denote
the new modality introduced for L(D D G) by L°¢, where ¢ is a new constant, so
that clauses D can only be used at the point where they have been extracted.
Before showing the procedure to transform programs and goals, let us see an
example.

Ezample 3. (Extracting an embedded implication from a clause) Let
C= Fb(FhA — Gl,...,[ai](Dj D Gj),...,Gm)

be a clause of a program P in language £, then our goal is to transform C' in a
new clause C’ without implication goal [az](D D (). Let us introduce a new
modal operator of type K, [a;]¢, where ¢ is a constant which is never used in the
program P. Then C” will be the clause

Fb(FhA — Gl, ey [ai]ch, .. .,Gm)
and we could modify P by replacing C' with C’ and by adding the definition
Ola;]*D;

to the resulting program. Intuitively, the updated definition O[a;]°D; specifies
the beliefs of the new agent ¢, and the presence of common knowledge operator
O in the definition above allows it to be visible through nested modal operators
during a computation. The goal [a;]°G; allows to ask if G; belongs to beliefs of
c. The goal [a;]°G; plays the role of embedded implication [a;](D; D G;), where
D; is the set of clauses associated with agent c. The difference is that, within
the embedded implication, D; is local to GG; and only goal G; can use it; vice
versa in O[a;]°D;, D; is not local to any goals (the difference 1s similar to that
between blocks and modules in imperative languages).

Nevertheless, if the modal operator [¢;]° is only used in the goal [a;]°G; and,
for defining beliefs of ¢, in O[a;]°Dj, then the goals [¢;]°G; and [a;](D; D Gj)
have precisely the same meaning. The first step of translation uses this idea to
eliminate embedded implications from programs in the language £. a

It is worth noting that embedded implications must be also eliminated from
queries. We will deal with programs and queries uniformly by introducing a
fictitious goal. That is, let P be a program and G a goal, to ask if a ground
instance of G is derivable from P is equivalent to ask if a ground istance of
1(X1,...,Xs) is derivable from P updated with the clause L(Xy,..., X) :— G,
where | is a new predicative symbol and X1, ..., X are all free variables of G.

Now we are ready to introduce our procedure for extracting embedded im-
plications from a pair program and query. The functions |.|, and |.|; are for
distributing modalities through goals and clauses and are defined as follows:

I =\ I
|I'(D1 . D3)|p = |I'Dalp U |I' Dy, |I'(Gy, ?QA)|Z - |FAGl|g , [T'Galg
Iy(IhA— G)|p = Tv(IpA— |G —
Il A= Gl = A= 1Gla)rp 5 6)l; = (D), > [61,)
with I, I, and I, any sequence of modalities.

Definition 3 (Procedure for Extracting Embedded Implications). Let

P be a program and G a goal. Then the procedure in Fig. 1 takes as input the
pair P and G and returns as output P°¢, the program obtained by extracting
embedded implications from P and GG, where the function gen_symbol returns a

begin o
§:= [PULL(R) = G}y |
while (3 a clause C = I ([hA = G1,...,[4L(D; D Gj),...,Gp)in S) do

begin
¢ := gen_symbol,
C' = L(IhA = Gr,..., |4 L°Gylg, ..., Gm);
S= (5- {Chu{CYURLD,],
end;
P .= S,

Fig. 1. Procedure for Extracting Embedded Implications.

new constant never used before, so that L¢ is a new modality of type K for each
step, L is a new predicative symbol and X the list of all free variables of G.

We denote with £° the language £ extended with a (finite) set of new modal
operators L¢ of type K, where L is a modality O or [a;] and ¢ is a constant. £°
is the language in which the procedure in Fig. 1 translates programs and goals.
Note that translated programs and goals do not contain embedded implications.

The matching operation for £° must be extended with respect to that of £ to
take into account the new modal operators. In Example 3, we have introduced a
new modality [a;]°, so that only goal G; can exploit the clauses in D;. We now
want to compare the computation of goal [a;](D; D G;) and that of the goal
[¢;]°G; obtained from the translation step above. Let us suppose that [a;](D; D
G;) is operatlonally derivable from a modal context (Lo, Do)|(L1, D1)|...|(Ln,
D,), and G; is an atomic formula A. Following Definition 1, we have

(Lo, Do) | (L1, D) | - | (Lu Da)) e (D 5 A4)
(Lo Do) | (L1, D) | -1 (L D) | (fas), D)) P A
for some j =0, ...,n, there is a clause [}, (I A :— G) € [Dj]
and a k, j <k <n+ 1, such that
I, matches I't = Ljyq ... Lg, I'y matches I's = Lgqq ... Ly[as],
and ((Lo, Do) | (L1, D1) | ... | (L, Dg)) Fe G

Thus, by Definition 2, since I'y, matches Lgy1 ... Ly[a;i], then I, has the form
I'f[a;]. Let us now consider the goal [a;]°G;

((Los Do) | (L1, Dr) | - | (Lny Dn)) Fr [ai]°A
(Lo, Do) | (L1, D1) [... | (En, Dn) | ([ai]?, 0)) Fr A.

The above selected clause I'y(I'h A :— G) is not applicable to prove A, because
I'y = I'[a;] does not match Lgyi ... Ly[a;]%, since [a;] does not match [a;]°. In
other Words to move a goal [¢;]°G; we cannot use the believes of agent a;, as we
would expect. To avoid this problem we must allow each modality L to match
L¢, for all constant ¢, and modal operator O to match all modalities. Hence, we
introduce the following definition of matching for the language £°.

Definition4 (Matching Operation for £°¢). Let I' = L;...L, and I be
two sequence of modalities, then we say that I' matches I if there exist r
functions f1,..., fr such that the following conditions hold:

— fi(lai]) = [ai] or [a;]°, j = 1,...,r, for all modal operators [a;] and for all

constant c;
- (L) = Lc j= 1 .., r, for all modal operators L and for all constant ¢;
- f@),5= 1 .., s any sequence of modalities (including the empty one)

= Filla) (L r) I

Definition5 (Operational Semantics of £°). Operational semantics -z for
the language £° is defined as - of Definition 1, apart from the matching oper-
ation which is given in Definition 4.

Note that Fze subsumes .. However, if the program and the goal do not
contain embedded implications (as it is the case), then D; = 0, for all j =
1,...,n, in all modal contexts of derivations, and rule 5) of Definition 1 is never
used 1n F e.

The axiomatization of Sect. 2.1 for language £ must be modified for £°.
In particular, the modal operators [a;] and the new modal operators L¢ are all
ruled by axioms of K. Moreover, since we wish that clauses in updated definition
O[a;]°D can use believes of agent a;, the axiom [a;]4 D [a;]°A must be included
for all [a;] and for all constants c. Finally, the set of interaction axioms for
modality O also contains the axioms OA D L°A for all modalities L°.

Ezample . (First step of translation on the (two) wise men puzzle) Given the
program P and the goal G of the Example 1, then after applying the procedure
for extracting embedded implications (Definition 3), we will obtain the following
program P¢:

(1) DO(ws(a) :— bs(b)).

(2) DO(ws(b) :— bs(a)).

(3) O([a]bs(b) :— bs(b)).

(4) O([8]bs(a) - bs(a)).

(5" O([b]ws(b) :— [b]°* false)
(57) O[5J (bs().

(6") O([a]ws(a) :— [a]°* false)
(6) Ola]"* (bs(a).

(7) DO%[b](false :— [a]ws(a))
(5) L 0% [Buws(b)

Note that clauses (7), (5") and (6”) have been added. The first one by ex-
tracting the embedded implication of goal GG, and the other ones by extracting
the embedded implications from clauses (5) and (6) of the program P. Clauses
(5") and (6’) in P¢ replace (5) and (6) in P. Finally, clause (8) represents the
new goal. The derivation of L from P® mimics the derivation in Example 2:

(Lo, Pe)) Fre L

((Lo, P°)) Fre O [blws(b) by (8)

(Lo, P) | (3%, 0)) ke [blws(b)

(Lo, P¥Y | (0%, 0) | (5], 0)) Fce ws(b)

((Lo, P) | (O%,0)) ke [b]° false by (5"

(Lo, P) | (T, 0) | ([6],0) | ([b]°,0)) ke false

(Lo, Pe) | (T, 0) | ([6],0) | ([b]°*,0)) Fee [G]ws(by (7)
(Lo, Pe) | (T, 0) | ([b],0) | ([b]°,0) | ([a],0)) Fte ws(a)

(Lo, Pe) | (T, 0) | ([b],0) | ([b]°,0) | ([a],)) Fce bs(b) by (1)
(Lo, P) | (T, 0) | ([6],0) | ([b]°,0)) ke bs(b) by (3)

(Lo, Pe) | (T%,0) | ([6],0) | ([b],0)) Fce T by (5”)

The correctness of the first step of translation is based on Lemma 6. It cor-
responds to a step of transformation of procedure in Fig. 1 in the operational
semantics.

Lemma6 (Extracting an implication from a clause). Let
(Lo, Do) (L1, D1)| ...|(Ln, Dpn) be a modal context and G a goal, then

((Lo, Do)| ... |(Ln, Dn)) bre G iff (Lo, Dy UDLD;)| ... |(Ln, Dn)) Fre G
where:
— C=0L(IhWA:—=Ghr,...,I4L(D; D Gj),...,Gn) is a clause of Dy;
- CIEFb(FhA — Gl,...,FchGj,...,Gm);

— Dy = (Do —{CHu{C"},
— L° is a new modality used only in C' and for defining OL°D;.

The proof of this lemma, omitted for lack of space, is done by induction on
lenght of the derivation of G. The equivalent relation between pairs (P, G) and
(P¢, L) of Definition 3 is given by the following theorem.

Theorem 7 (Soundness and Completeness of Fze w.r.t. Fz). Let P be a
program and (3X)G a goal in the language £, with X the list of all free variables
of G, then Pt G[X/T] iff P® bze L(X)[X/?], for some list of ground terms £,
where P¢ is the new program obtained from P and G as in Definition 3.

Proof. We prove that {P F; G[X/f] <= S kg L(X)[X/t]} is a while-loop
invariant for the procedure in Fig. 1. At the end of procedure, P® will be setted
with the final values of S. Moreover, the procedure terminates, since the number
of implications D in P is finite and it decreases at each step. Let us suppose that
{Pt; G[X/t] <= Stge L(X)[X/t]} holds at the beginning of the loop. We
prove that {P F; G[X/T] <= St L(X)[X/]} holds at the end of the loop,
where S" = (S — {C}H) U{C'} U |OL°Dj|p, C = Iy(IpA :— G1,...,I4yL(D; D
G5), ... ,Gm) and C" = Ty(ThA 1= G1, ..., [T4L°Glly, ..., Gpm). Thus, we have
to show that ((Lg,S)) Fze L(X)[X/t] if and only if (Lo, S")) Fge L(X)[X /1],

O

and this is true by Lemma 6.

4 The second step of the translation

In this section we will show how the language £° can be translated into a set of
Horn clauses, which can then be executed as a standard logic program.

The translation methods is based on the idea of implementing directly the
operational semantics making explicit reference to the modal context. This is
achieved by adding to all predicates an extra argument representing the modal
context where the predicate must hold. In particular, a modal context allows
us to record the ordering between modalities found in front of goals, during
a computation. Note that the notion of modal context plays a role similar to
that of prefizes of formulas in Fitting’s tableaux system (see [9]). Intuitively, a
prefix is a name for a possible world, and the same is for a modal context. A
prefix allows us to recognize syntactically whether the worlds being named are
accessible or not.

First of all, it is worth noting that after applying first step of translation,
since a program and a goal do not contain embedded implication, we can simplify
the notation of operational semantics of Definition 5:

Definition8. (Operational Semantics of £° without embedded implica-

tion) Given a program P and a modal context Ly | La | ... | L,, operational
derivability of a ground goal G[X /] from P in the modal context L; | La | ...]|
Ly, that is (P, Ly | Ly | ... | Lp) Fee G[X/1], is defined by induction on the
structure of G[X /7] as follows:

1. <P,L1 |L2 | |Ln> |_£e T,

2. (P, L1 | La|...| Lp) Fge A if there is a clause I',(I'hA :— G) € [P] and a k,

0 < k <n, such that
I, matches Ly ... Ly, I', matches Lg4q... Ly, and

<P,L1|L2|...|Lk>|_£e G,
3. (P, Ly | Ly | ... | L) bre Gy, Goif
<P,L1|L2||Ln>|_5e G1 and <P,L1|L2||Ln>}_£e Gz;

4. (P Ly | Ly |...| L) Fre LnpiG if

(PyLi| La|...| Ln | Lng1) Feze G.

To prove a goal GG from a program P means to show that G is operationally
derivable from P in the empty modal context ¢, that is (P, &) bz G.

Moreover, since functions |.|, and |.|; distribute modalities through conjunc-
tions of goals and clauses, clauses after the first step of the translation will have
the general form

Fb(FhAO — Fg1A1;~~~:FgmAm) (2)
where A;j—o 1. m are atomic predicates and I, Iy, [y,,..., [y, arbitrary se-
quences of modalities. Thus, by combining rules 2), 3) and 4) of Definition §
rule 2/) <P,L1 | L2 | | Ln> '_L:e A

if there is a clause C' = [, (I A :— I'y, A1, ..., Iy, Ap) € [P]
and a k, 0 < k < n, such that
I, matches Ly ...Lg, I'h matches Lgyq...L,, and
(P,Ly | Lo |...| Ly | Tg,) Fre Aq,

(P,Ly | Lo |...| L | Iy,) Fre Am.

Intuitively, if a modal context is a name of a world, then rule 2’) is equivalent
to ask if A is true in the world L, ... L, using C, which is true in the initial
world. Now, the world L;...L, is accessible from L; ...Lg through the path
Liy1|...|Ln. Thus, if the sequence of modalities I', and I'y, allow to go through
the path Li|...|Ly and Lgy1]...|Ly, and the body of C' is true in the world
Li...Lg, then A holdsin Ly ...L,. The body of C is true in the world L ... L
if each subgoals A; is true in the world L, ...L;ly,. A sequence of modalities
I' allows the formula « to go through a path L, |...|L;, if I' matches the path
L;.|...|Lj., according to the properties of modal operators.

The idea of second step of translation for eliminating modalities is based on
adding to all atomic predicates an argument which represents the name of world
where the predicates have to be proved. In others worlds, to move the modal
context of operational semantics directly into the predicates.

Let match(Iy, I'y, X,Y) be a predicate such that it has success if the joint
sequence of modalities I, and I, matches the current context X, according to
Definition 4, and it returns the matched sequence of X by I in Y. So (2) can
be translated as

Ao(X) :— mateh(Iy, I'n, X,Y), A1(Y o I'y,), ..., A (Y o Iy,)? (3)

obtaining a Horn clause, and operational derivability will be defined as SLD
resolution. In particular, let I';A be a subgoal in the body of a clause, we can
translate it in A(Y o I';), where Y is a variable which is unified with the current
context (the name of the world where I'; A has to be proved) and linked (denoted
by “o”) with I'; for proving A.

Finally, note that the added argument “X” will always be ground during the
computation. In fact, since we ask to prove a query in the empty initial modal
context, we start each resolution with a goal as A(I"), where I' does not contain
variables. Thus, it is not possible to introduce variables into resolvent, so the
match operation works correctly as above described.

We can now give the procedure for translating goals and extended clauses of
the language £¢ into first order logic, by eliminating modal operators.

* X and Y do not belong to the set of variables of clause (2).

Definition9 (Procedure for Translating into Horn Clauses Language).
Let P be a program and GG a goal of language £, let P° be the program obtained
applying the procedure of Definition 3 to P and G, then the procedure in Fig. 2
takes as input P® and returns as output P*", the program obtained by translation
of P¢ into Horn clauses language, where the sequence I'' o I'"' is the concatena-

begin
S := P%;
for (each clause C = [H([hA :— Iy, A1, ..., Iy, Am)in S) do
begin
C' = A(X) :— match(lp, [n, X, Y), A1(Y o g) ..., Am(Y 0o I,,.);
S=(s-{chu{c}
end;
P =5,
end

Fig. 2. Procedure for Translating into Horn Clause Language.

tion of sequence I'' the sequence I'"". Moreover, if A is p(t1,...,1s), then A(X)
and A(Y oly,) are p(X,ty,...,t;) and p(Y oIy, t1,...,t5), respectively. Finally,
the predicate match/4 carries out the matching operation of Definition 5, and
X and Y are variables.

Let us see how the second step of translation works on the program P°¢ of
the Example 4.

Ezample 5. (Second step of translation on the (two) wise men puzzle) Given the
program P¢ of the Example 4, after applying the procedure of Definition 9, we
will obtain the following program P!" (we will denote with ¢ the empty sequence
of modalities):

&
2
I

8

') :— match(O, [a], X,Y), false(Y o [a]®?).

") bs(X,a) :— match(D[a]**, ¢, - _
) false(X) :— match(OO%[b],e, X,Y), ws(Y o [a], a)

(8) L(X):— match(e, e, X,Y), ws(O%[b],b)

and the goal L(e) succeeds from P'" with the following SLD derivation:

P E 1(e)

P'" & match(e,e,e,Ys), ws(Yo 0 O[], b) by (8), Xo = ¢

P b+ ws(0%[b],b) with Yo = ¢

P+ match(O, [b],0°[b], Y1), false(Y7 o [b]°*) by (5'), X1 = O°[b]
P'" & false(O%[b]°) with YV} = O¢

P' + match(00%[b],e,0%[b]1, V), ws(Y2 o [a], a) by (7), Xo = O [h]
P b ws(O%[b]°1[a], a) with Y = O [b]

P+ match(O,e,0%%[b]°*[a], Y3), bs(Y3 0 &,b) by (1), X3 = O [b]°![a]
P+ bs(0O%[b]°*[a], b) with Y3 = 0% [b]°*[a]

P+ match(Q,[a],0%[b]°*[a], Ya), bs(Ys 0 €,a) by (3), X4 = O [b]*[d]
P+ bs(0O%[b]°1, @) with Yy = O[]

P' = match(QO[b]°*, e,0%[b]°, Y5) by (5"), X5 = O[]

P T with Y5 = O¢[p]%

Again, notice that the steps of this derivation correspond to the step of the
previous derivations. a

The correctness of the whole process of translation is given by the following
theorem.

Theorem 10 (Correctness of the Translation). Let P be a program and
(3X)G a goal in the language L, with X the list of all free variables of G, then
P e GIX/T] iff P+ L(e, X)[X /F], for some list of ground terms t, where P
s the new program after applying procedures of Definition 3 and Definition 9 to
P and G, and & s standard operational deriwability relation for Horn clause
language.

5 Conclusions and related works

In this paper we have presented a technique for translating extended logic pro-
grams with multiple modalities and embedded implication into standard Prolog.
This technique has been implemented and tested on several examples. Since the
performance of the translated program heavily dependes on the predicate match,
special care was devoted to its implementation.

As we have already pointed out, the approach of this paper could be easily
modified to deal with modal operators with different properties. Since the prop-
erties of modal operators are described by the matching operation, it would be
easy to modify predicate match accordingly.

Translation methods for modal logics have been developed by many authors
[8] as an alternative approach to the development of specific theorem proving
techniques and tools. In fact, by translating a modal theorem into predicate
logic, it is possible to use a standard theorem prover without the need to build
a new one.

The translation methods for modal logics are based on the idea of making ex-
plicit reference to the worlds by adding to all predicates an argument representing
the world where the predicate holds, so that modal operators can be transformed
in quantifiers of classical logic. In particular, in the functional approach [18, 2],
accessibility is represented by means of functions: a modal operator [m] is trans-
lated into VF,,, where F,, is a function of sort m, and the worlds will always be
represented by a composition of functions, such as Fy,, o...0 Fy, . For instance,
the following clause of language £

O([alp == [b]g)
will be translated into

VFo((YGaq(Fa o Ga)) i— (YHyp(Fo o Hy)))

This translation is correct if the accessibility relation is assumed to be serial
and if the domain of interpretations is constant. We can assume that these
conditions hold in our case.

The above formula can be transformed to clausal form as follows

p(Fa o Gq) :— q(Fo o cp)

where ¢ is a Skolem constant of sort b. Note that, since the body is negated, all
universally quantified variables in the body have to be skolemized.

The properties of the accessibility relation, such as reflexivity or transitivity,
can usually be described with equations which can be translated into a theory
unification algorithm. In our case, a variable Fn can match any sequence of
functions, whereas a variable F,; can match only a function of sort m.

An advantage of the functional method with respect to other translation
methods is that it keeps the structure of the original formula. A variant of this
approach is presented in [17].

It is easy to see that this approach closely corresponds to the second step of
our translation. Sequences of functions in the functional approach correspond to
sequences of modal operators in our case, Skolem constants correspond to the
new modal operators, and the equational unification is performed by predicate
match (in our case we do not need full unification, but only matching).

However it would not be possible to apply directly the translation method to
a program in the language £. In fact, given a clause of £ containing embedded
implication, the translation will produce a formula of predicate logic with the
same structure. It is easy to see that, by transforming such a formula to clause
form, does not yield, in general, a Horn clause.

Language £ does not use quantifiers, and all clauses are implicitly universally
closed. The method of this paper can be extended the the more general case of
the language presented in [5], where universal and existential quantifiers occur
explicitely. In this case there can be shared variables between a clause and the
enclosing environment, as for instance in YXO(p(X) :— [a](VY¢(X,Y) D r(X)))
where variable X in ¢ is the same as the one in r and p.

This case can be dealt with by extending the logic so that a modal operator
name can be any term, instead of a constant. Then, the first step of the trans-
lation will yield

Ofa(X)]°q(X,Y)
O(p(X) = [a(X)]°r(X))

so that the value of the shared variable will be passed through the name of the
new modal operator.

Note that the approach of this paper provides a way of translating logic pro-
gramming languages extended with embedded implication (such as N-Prolog)
into standard Prolog. In fact, the semantics of those languages is given by intu-
itionistic logic, and it is well known that intuitionistic logic can be translated into
modal logic S4. Since our O operator is S4, by translating an N-Prolog clause
into modal logic, we obtain a clause in our language, which can be translated to
Prolog with the technique presented in this paper.

A similar approach applies as well to other languages with embedded impli-
cation such as CondLP [11], a language which supports hypothetical updates

5 This way of dealing with variables has also strong similarities with the compilation
scheme proposed in [15] for a first-order version of hereditary Harrop formulas.

together with integrity constraints, and makes use of a revision mechanism to
restore consistency when an update violates some integrity constraint.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M. Abadi and Z. Manna. Temporal logic programming. J. Symbolic Computation,
(8):277-295, 1989.

Y. Auffray and P. Enjalbert. Modal theorem proving: An equational viewpoint.
Journal of Logic and Computation, 2(3):247-297, 1992.

M. Baldoni, L. Giordano, and A. Martelli. A multimodal logic to define modules
in logic programming. In Proc. 1993 International Logic Programming Symposium,
pages 473-487, Vancouver, 1993.

. M. Baldoni, L. Giordano, and A. Martelli. A modal extention of logic program-

ming: modularity, beliefs and hypothetical reasoning. Technical report, Diparti-
mento di Informatica, University of Turin, 1995.

. M. Baldoni, L. Giordano, and A. Martelli. A modal extention of logic program-

ming. In Proc. 1994 Joint Conference on Declarative Programming GULP-PRODE
1994, volume 2, pages 324-335, Peniscola, Spain, September, 1994.

. F. Debart, P. Enjalbert, and M. Lescot. Multimodal logic programming using

equational and order-sorter logic. Theoretical Computer Science, (105):141-166,
1992.

. L. Farinias del Cerro. Molog: A system that extends Prolog with modal logic. New

Generation Computing, (4):35-50, 1986.

. L. Farinas del Cerro and A. Herzig. Modal deduction with applications in epis-

temic and temporal logics. In D. M. Gabbay, C.J. Hogger, and J.A. Robinson,
editors, Handbook of Logic in Artificial Intelligence and Logic Programming, vol-
ume 4, pages 499-594. Oxford Science Publications, 1995.

. M. Fitting. Basic modal logic. In D. Gabbay, C.J. Hogger, and J.A. Robinson, edi-

tors, Handbook of Logic in Artificial Intelligence and Logic programming, volume 1,
pages 365—448. Oxford Science Publications, 1993.

D. M. Gabbay. Elements of algoritmic proof. In T.S.E. Maibaum S. Abramsky,
D.M. Gabbay, editor, Handbook of Logic in Theoretical Computer Science. Oxford
University Press, 1992.

D. M. Gabbay, L. Giordano, A. Martelli, and N. Olivetti. Hypothetical updates,
priority and inconsistency in a logic programming language. In Proc. of the Third
Int. Conference on Logic Programming and Non-monotonic Reasoning, volume 928
of LNAI pages 203216, Lexington, KY, USA, 1995. Springer Verlag.

M. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence. Mor-
gan Kaufmann, 1987.

L. Giordano and A. Martelli. Structuring logic programs: a modal approach. Jour-
nal of Logic Programming, 21:59-94, 1994.

J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal
logics of knowledge and belief. Artificial Intelligence, 54:319-379, 1992.

B. Jayaraman, K. Know, and G. Nadathur. Scoping constructs in logic program-
ming: Implementation problems and their solution. Technical Report No. CS-1994-
35, Duke University, October, 1994. To appear in Journal of Logic Programming,
November 1995.

D. Miller. A logical analysis of modules in logic programming. Journal of Logic
Programming, (6):79-108, 1989.

A. Nonnengard. How to use modalities and sorts in Prolog. In Proc. of the
JELIA’9: Logics in Artificial Intelligence, volume 838 of LNAI pages 365-378,
York, UK, 1994. Springer Verlag.

H. J. Ohlbach. Semantics-based translation method for modal logics. Journal of
Logic and Computation, 1(5):691-746, 1991.

D. S. Warren. Database updates in pure Prolog. In Proc. Int. Conf. on Fifth
Generation Computer Systems, pages 244-253, Tokyo, 1984.

This article was processed using the IATRX macro package with LLNCS style

