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c.so Svizzera 185, 10149, Torino
E-mail:

�
baldoni,baroglio,davide,saitta � @di.unito.it

Abstract. In this paper the results of a research aimed at showing that IFS-based representations
capture image discriminant information are presented. One of the most appealing characteristics of
IFS-based representations is that they are suitable to be used jointly with adaptive classifiers, which
allow the classification knowledge extraction process to be made automatic.

1 Introduction

An automatic classifier capable of recognizing imperfectly drawn bidimensional images can be used
for a variety of applications, ranging from easier-to-use CAD systems to indexing systems and retrieval
engines for large repositories of images and documents; to this aim, the system should be able to abstract
from inessential details by focussing its attention on few distinctive features [12, 18, 10]. The extraction
of concise but distinctive representations is particularly important when the classification system (or
classifier) is built exploting Machine Learning techniques to overcome the difficulties that are intrinsic
to the production of prototypes for the classes of interest. In fact, as shown in [15], Machine Learning
systems have difficulties in dealing with hundreds of inputs while images are notoriously characterized
by extremely large raw representations.

In our work we have investigated the use of Iterated Function Systems (IFSs) for producing concise
and distinctive image encodings, showing that they can be used to make the construction of image clas-
sifiers fully automatic. The novelty is that IFSs were never used before for image classification purposes.
The only task for which they are actually exploited in the Image Analysis field is image compression
[6, 5, 9]. Briefly, algorithms for fractal compression are based on the idea that if two portions of the
image look the same, they do not need to be repeated twice in the coding and it is sufficient to record
their similarity. The similarities and the operations carried out on the picture are recorded by means of a
collection of contractive transformations of the two dimensional space, i.e. by means of an IFS. In prin-
ciple, these systems may be used also to generate encodings to be used in classification tasks; this is why
in our first attempt we applied one of the best-known among them, enc by Fisher [9]. Soon, however, the
need for a different approach emerged [1]. The reason is that enc proved to be too specialized to the task
of compression, allowing to achieve a quite poor overall performance in a task of image recognition. We
believe that the same would happen using any other encoder which, like enc, was developed for image
compression.

Indeed, the application that we tackle is pretty different than compression. In particular, we know
that the object at hand belongs to a class out of a given set and all we need to capture in an image is the
information sufficient to allow classification. These considerations have encouraged us to search for ad
hoc IFS-based feature extraction systems. In order to show that such systems can be developed we went
back to the origin of IFS-based encodings, i.e. the original formulation of the Collage Theorem [6, 8],
which our algorithm, XFF, operationalizes.

We tested our systems on two collections of images, namely digits and trees. We chose the first set
of images because we could profit from a large database of hand-written digits and compare our results
with experiments described in the literature; besides, digits offer a challenge to a feature extraction
system based on fractal techniques, because the latter seem to be better suited for working on shapes
that have a planar extension than on purely linear figures. On the other hand we believe that the method



we present may be paricularly interesting to deal with classification of very irregular shapes, on which
traditional methods do not perform well. For this reason we tested it also on trees, as an example of class
of images with an instrinsic complex structure. The tests are carried out using neural nets.

In this paper we propose our new application of techniques based on the mathematics of fractals,
mainly with the hope of raising enough interest in the community to have some feed-back from experts
in the area. We feel that our research might evolve in interesting directions and yield useful applications,
but we are limited by our little experience with image classification methods.

2 IFS-based feature extraction

The basic idea underlying fractals is that, at any scale, they are self-similar. In the plane, fractal images
can be generated simply by iterating a geometrical transformation that maps the given image in smaller
copies of itself. The fractal is the limit obtained when the number of iterations goes to infinity. Even
though, in principle, this mapping can be any transformation, in practice, affine transformations, which
preserve the object’s shape, are preferred. The only necessary condition imposed on the transformations
is that they must be contractive, i.e. they must move points closer together.

In words, an affine transformation is a combination of rotations, scalings and translations of the
coordinates. For instance, a two-dimensional affine transformation has the general matrix form:��������	��
����� �� � ������	�������� �
where � , � , � , and � encode rotations and scalings while � and

�
encode the translations.

In general, an Iterated Function System (IFS for short) is any collection � ������ ! � "�#�%$'& of contrac-
tions; here we focus on collections of affine contractive transformations. For every IFS in R ( there exists
a set ) such that ) �+*-,.0/ � � . � ) 
 . ) is called invariant set; it is unique and non-empty and can be a
fractal. Moreover, due to the Collage Theorem [3, 8], given any subset 1 of R ( and an arbitrary preci-
sion of approximation, it is always possible to find an IFS, whose invariant set approximates 1 as finely
as desired. In the plane the Collage Theorem helps in reconstructing an image by giving a method for
doing it, ensuring at the same time the accuracy of the reconstruction. In particular, an image can be
reconstructed by covering it with a set of contracted affine copies of itself. Other characteristics of the
IFS are that it is robust and stable, i.e., small changes in the transformations produce small changes in
its invariant set; hence, varying the coefficients in a continuous way, the shape of the invariant set also
changes in a continuous manner [8, 5].

Following from the Collage Theorem [4], each image can be approximated to any desired precision
by computing the invariant set of some IFS. The advantage of these approximations is that they allow
very complex images to be encoded in a concise way, the size of the representation being independent
from the image size. In our work we use the parameters of the transformations

� .
as a set of descriptive

features: given an image we look for an IFS whose invariant set approximates it and use the parameters of
such an IFS to represent the original image. The obtained encodings are used to feed a learning system
(a Neural Network) to produce a classifier. This approach is quite different than the common one to
feature extraction (see [18, 12]), in which the image undergoes a sequence of processing steps aimed at
representing it by means of more and more abstract descriptors. On the contrary, the IFS-based features
are simple to extract and allow the use of learning systems for building the classification knowledge in an
automatic way. Moreover, fractal features allow to represent in a very concise way extremely irregular
objects, such as landscapes, clouds, trees [19].

3 System XFF

In this section system XFF is briefly described; the interested reader can find all the details in [2]. XFF
extracts discriminant fractal encodings of 2-D isolated objects and is implemented in C. To this aim it



looks for an IFS of predefined cardinality (IFS ����� $ in the following), whose invariant set approximates
the object depicted in the image at hand, disregarding the background. The parameters of the transfor-
mations in IFS ����� $ are used as descriptive features of the processed image. XFF is basically divided in
two main processing phases: during the first a predefined number of contractions of the image are pro-
duced by scaling and properly rotating it (we call these contractions proto-transformations because they
are parametric w.r.t. the translations); then, the proto-transformations are used to produce the transfor-
mations that constitute IFS ����� $ . The first phase is implemented by following standard image processing
techniques, while the second consists in a search process in which IFS ����� $ is built by iteratively select-
ing and adding a transformation

���
to an initially empty set. At each iteration, a set of candidates is

produced, its elements are evaluated according to a scoring criterion and the one with the least score
is selected. The candidates are built by instantiating all the proto-transformations on a regular grid of
points, whose step is decided by the user.

The scoring criterion that we used is a variant of the Hamming distance. Briefly, it is designed
so that the transformation with the least score together with those that are already in IFS ����� $ cover
the maximum number of foreground pixels. More in detail, this procedure compares two matrices:
one corresponding to the current candidate (say ��� �
	�� �� ��� ) and one corresponding to a part of the
original image ( ��� ��� � ), which has the same size as ��� ��	�� �� ��� and whose top-left vertex is the point� � � � 
 of the grid which allowed to produce the candidate. Calling ��� the width of ��� �
	�� �� ��� and� � its height, its score is the sum, over all the pixels that belong to its foreground, of the value � .�� ��"� ��� ������� �! " � #  $"&%'��� �
	�� �� ��� � �(" � # " 
*)� � 
,+.-0/ 	 � � � .�� , where �21 � � � ���3" , # 1 � � � � �4" , �! � � � � and
#  � � � # . The “

� � ” in the formula had to be added to take into account the information given by-0/ 	 � � � .5� in the case of a perfect covering, i.e. when 67� � # � ��� ��� �8� �  " � #  " � ��� ��	�� �� ��� � �(" � # " 
 . -0/ 	 � � � .5�
forces the covering operation to prefer pixels that belong to the foreground of the original image and, as
a second requirement, that have not been covered yet; its value varies pixel by pixel and changes over
time to take into account the growing part of image being covered by the contractions added to IFS ����� $ .

The output of XFF is an IFS � � ���! 0 0 0�#�%$ & . Since the scaling factors are fixed a priori and only
a finite number of user-specified rotations is allowed, the set of possible transformations becomes finite
modulo translations. As a consequence, only three parameters are needed to identify each transformation���

: the first one encodes the applied proto-transformation and the other two encode the translations. The
so obtained encodings can be used to train an adaptive classifier to perform the classification task.

XFF derives from the prototype presented in [1] but, differently than the prototype, it can deal with
any kind of image.

4 Experiments

The first experiments were done on the digit data set, a collection of hand-written instances of the ten
digits, supplied by the German Federal Post, acquired with a resolution of �:92;��<9 pixels with 256 grey
levels (see Figure 1 (b)). The learning sets were made of 30 instances per class while the test sets were

(a) (b)

Fig. 1. (a) Instances of elm oak and lime-tree; (b) instances of the ten digits.

made of 70 instances per class, all different than those shown during training. Details can be found in
[1]. The first note is that the fractal features have quite a high discriminant power (for 8 classes out of 10



Table 1. Digit average recognition rates obtained using the features extracted by XFF and by enc.
0 1 2 3 4 5 6 7 8 9 avg.

XFF 85.0 96.7 91.9 84.2 81.4 86.7 90.2 92.4 62.4 79.0 85.0
enc 79.6 78.0 71.6 60.8 65.6 81.6 72.4 69.2 26.0 47.2 65.2

Table 2. Recognition rates obtained on the tree data set.
class (a) (b) (c) (d) (e) (f)
elm 100 % 88.61 % 86.00 % 90.18 % 100 % 56.00 %
oak 100 % 91.38 % 95.34 % 83.64 % 100 % 76.00 %
lime-tree 100 % 75.38 % 67.34 % 61.45 % 100 % 60.00 %
average 100 % 85.12 % 82.89 % 78.42 % 100 % 64.00 %

over 80 % of the test instances are correctly classified). The second is that this capability emerges only
when ad hoc feature extraction systems are used. In fact, using the features produced by enc the average
recognition performance is drastically reduced.

The second test-bed we chose is a classification problem of shapes with a complex structure: tree
recognition (see also [13]). The problem consists in learning to distinguish three kinds of trees, namely
lime-tree, oak and elm (Figure 1 (a)). All images’ size is ����� ;������ pixels; 150 instances were available,
50 per class. Each experiment was repeated from 3 to 5 times and 6-fold cross-validation was applied.
Depending on the experiment, each instance was encoded simply by using 3, 4 or 5 transformations, i.e.
using alternatively 9, 12, or 15 numbers. These encodings are very concise w.r.t. those that would be
obtained by means of other common techniques such as chain codes, which would be overwhelmed by
the extreme irregularity of the shapes. Note that shape extreme irregularity is, nevertheless, typical of
many image classification tasks especially in biology (e.g. lichen classification [14, 17], bacteria colonies
recognition, etc.).

The proto-transformations were obtained using only rotations that are multiple of 	�
�� . The best
results were obtained using 4 transformations with a side scaling factor equal to 0.35. The classifier
was implemented as a feed-forward neural network, trained by means of the Scaled Conjugate Gradient
(SCG) rule [16]. The networks were trained in a number of epochs in the range �� ��� � �������:" .

The outcomes of the experiments are reported in Table 2. Columns (a) and (b) report the results
obtained using the best setup described above. Those of column (a) were obtained on some specific
runs and are not averages. They were reported just to show that in some cases a perfect recognition
was obtained also for class “lime-tree”, which is always the most difficult to capture. Column (b),
instead, reports the average results obtained by cross-validation. All these results were obtained using
100 hidden neurons; different numbers of neurons were also tried always obtaining average recognition
rates higher than ����� . Recognition rates in between � � � and ����� were achieved using smaller learning
sets. Columns (c) and (d) report the average results obtained when encoding the trees respectively by
means of 3 and 5 transformations. Different numbers of hidden neurons were tried also in this case; in
particular, when 5 transformations are applied, the best results were obtained using 200 hidden neurons.
A ������� recognition rate was always achieved on the learning set, see column (e), independently from
the setup. Column (f) reports the results obtained encoding the same images by means of enc [9]. As can
be observed, the average recognition rate is about 20 percentage points less than when using XFF.

A first observation is that 12 numbers resulted to be a sufficient encoding for very irregular images
of size ����� ;������ , allowing an average � �  ����� recognition rate to be achieved. We think that this
result is a sufficient proof of the power of discrimination that can be obtained from an IFS. The optimal
performance obtained in some cases strengthens this result. The second observation is that once again
the IFS-based features extracted by our operationalization of the Collage Theorem are more discriminant



than those produced by another system based on the same principles (enc) and we believe that much
higher recognition rates could be achieved by properly specializing the method.

5 Conclusions

Even though IFSs have been extensively studied and used for image compression, they were never taken
into account as a means for characterizing visual representations of objects for recognition purposes.
In the literature, in fact, there are very few examples of works where fractals have been used in image
classification tasks. The only ones that we could find are [11], where a neural network is trained to dis-
tinguish fractal images from non-fractal images, [7], where fractals are used to build the belief functions
of a Bayesian classifier, and [13], where a metric for planar self-similar forms is proposed.

In this last work, the closest to the topics we explored, a metric is defined and used for measuring
the distance between IFSs: the smaller the distance the more similar the represented shapes. Note that
image classification is a natural application of similar metrics, however, in order to use this metric in
recognition tasks some models are to be given for comparison. Furthermore, it is necessary to find a
technique for producing IFS encoding for the learn/test instances. Only then, it would be possible to
apply a metric to compute the similarity between instances and/or between instances and prototypes.

The greatest novelty of our work is that we focused on finding the IFS representations of a set of
given images and, then, we used these representations to learn a classification knowledge. Then, by
attacking the problems of image feature extraction and classification knowledge acquisition, our method
is to some extent complementary to [13]. In particular, we have shown that IFS encodings can be used
to discriminate between images of different kinds of objects and can, then, be used also in classification
tasks. In fact, as shown in [1], when a perfect encoding is produced the recognition rates achieved are
optimal. The problem is to find good techniques for making fractal feature extraction automatic. In order
to show that such algorithms can be developed, we implemented XFF, a simple fractal feature extraction
system, that can be applied to any isolated shape. Experiments showed that recognition rates obtained
using XFF are twenty percentage points better than those obtained using fractal compression systems
(see Table 2, column (f)). Furthermore, the encodings are generally much more compact.

We think that these results are a sufficient motivation for a deeper investigation of IFS-based feature
extraction methods, with particular care to the constraints that decide which transformations are to be
taken into account. In fact, as we have shown, when no restriction was imposed on the transformations to
use, the recognition rates were optimal [1]. The new open problem is, then, to find an optimal criterion
for guiding transformation selection. We think that this problem is worthwhile a deeper investigation
because of the very appealing characteristics that are shown by IFS-based features. The most interesting
one is that their use reduces both the number of the input space dimensions and the set of possible
values for each input feature. So, for instance, in the experiments which gave the best results each
tree image (whose size is ����� ; ����� ) was represented by just 12 numbers. Moreover, the number of
fractal features used to represent a shape is independent from the size, being related to the intrinsic shape
complexity only. These two characteristics make IFS representations extremely interesting in the case of
image classification. In fact, according to the results of StatLog [15], many learning algorithms cannot
deal with applications having hundreds of dimensions while those that can, take a too long time before
converging. The use of IFSs, then, widens the range of learning systems that can be applied to image
classification tasks, decreasing the time required by the training phase.
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