Modeling Agents in a Logic Action Language
Matteo Baldoni', Laura Giordano?, Alberto Martelli' and Viviana Patti'

!Dipartimento di Informatica — Universita degli Studi di Torino
C.so Svizzera, 185 — 1-10149 Torino (ITALY)
E-mail: {baldoni, mrt, patti}@di.unito.it

2Dipartimento di Scienze e Tecnologie Avanzate — DSTA
Universita del Piemonte Orientale ” A. Avogadro”

Corso Borsalino 54 - 15100 Alessandria, ITALY.
e-mail: laura@di.unito.it

1 Introduction

In this paper we describe how a theory for reasoning about actions can be used for specifying
agents and for executing agent specifications. In fact, reasoning about the effects of actions in
a dynamically changing world is one of the main problems which must be faced by intelligent
agents. Furthermore, the internal dynamics of the agent itself can be regarded as resulting from
the execution of actions on the mental state. The agent mental state contains all its basic attitudes,
as its belief, desires and intentions in the BDI model [13].

The action theory we adopt is a modal action theory, which has been developed in [8, 9]. It
provides a non-monotonic solution to the frame problem by making use of abductive assumptions
and it deals with the ramification problem by introducing a “causality” operator.

The adoption of Dynamic Logic or a modal logic to deal with the problem of reasoning about
actions and change is common to many proposals, as for instance [6, 12, 5, 14, 8], and it is
motivated by the fact that modal logic allows a very natural representation of actions as state
transition, through the accessibility relation of Kripke structures. Since the intentional notions
(or attitudes), which are used to describe agents, are usually represented as modalities, our modal
action theory is also well suited to incorporate such attitudes.

In the following we will recall the definition of the action language, referring to the proposals
in [8, 9, 1], and of its extension to deal with complex actions, as proposed in [2, 4]. The formal-
ization of complex actions draws considerably from dynamic logic [11]. As a difference, rather
than referring to an Algol-like paradigm for describing complex actions as in Golog [10], it refers
to a Prolog-like paradigm: instead of using the iteration operator, complex actions are defined
through (possibly recursive) definition, given by means of Prolog-like clauses. In this context, the
nondeterministic choice among actions is allowed by alternative clause definitions.

This action theory has a computational counterpart in a logic programming language [1] which
in [2, 4] has been extended to deal with complex actions and with knowledge producing actions.
The logical characterization of the action language is rather simple and very close to the procedural
one. In [1, 2, 4] we have addressed the problem of reasoning about possible courses of actions and
we have introduced a goal directed proof procedure to solve the temporal projection problem.
This paper will focus on an implementation of the language, called Dylog, and will describe its
use for specifying agent behaviours. Dylog can be used as an ordinary programming language for
executing procedures which model the behaviour of an agent, but also to reason about them, by
extracting from them linear or conditional plans.

2 The action language

2.1 Primitive actions

In the action language each primitive action a € A is represented by a modality [a]. The meaning
of the formulas [a]a is that « holds after any execution of action a. The meaning of the formula
(a)a is that there is a possible execution of action a after which o holds. We also introduce a
modality O, which is used to denote those formulas that hold in all states, that is, after any action
sequence. The intended meaning of a formula O« is that a holds after any sequence of actions.

A state consists of a set of fluents. The simple action laws are rules that allow to describe direct
and indirect effects of primitive actions on a state. In particular, simple action clauses consist of
action laws, precondition laws, and causal lows.

Action laws define direct effects of primitive actions on a fluent and allow actions with condi-
tional effects to be represented. They have the form

O(Fs — [a]F)

where a is a primitive action name, F' is a fluent, and Fs is a fluent conjunction, meaning that
action a has effect on F', when executed in a state where the fluent preconditions Fs hold.

Precondition laws allow action preconditions, i.e. those conditions which make an action exe-
cutable in a state, to be specified. Precondition laws have form

O(Fs — {(a)true)

meaning that when the fluent conjunction Fs holds in a state, execution of the action a is possible
in that state.

Causal laws are used to express causal dependencies among fluents and, then, to describe
indirect effects of primitive actions. They have the form:

O(Fs —» F)

meaning that the fluent F holds if the fluent conjunction Fs holds too!.

In Dylog we have adopted a more readable notation: action laws have the form “a causes F' if Fs”
precondition laws have the form “a possible_if Fs” and causal laws have the form “F if Fs”.

Let us consider a simple example of a robot which moves in an environment consisting of two
rooms, 1 and 2, each one connected to a corridor. Inside each room there is a light which can be
on or off. The robot can be in a room or at one among three positions in the corridor: at(1), in
front of room 1, at(2), in front of room 2, or at(3). The fluents are:

in_room(1),in_room(2),at(1), at(2), at(3),light_on(1), light_on(2).
The first five fluents are mutually exclusive. This can be expressed by a set of causal rules like:

—in_room(l) if at(1)
-at(2) if at(1)

and so on.
Some of the actions of the robot are the following:

up : go up one step in the corridor

up possible_if at(I),I <3

up causes at(J) if at(I),J is I +12
getin(i) : get in room i

getin(I) possible if at(I)

getin(I) causes in_room(I)

Tn a logic programming context we represent causality by the directionality of implication. A more general
solution, which makes use of modality “causes”, has been provided in [9].
2Dylog can call any Prolog goal.

i): toggles the switch in room i

I) possible_if in_room(I)

I) causes light_on(I) if —light-on(I)
I) causes —light_on(I) if light-on(I)

toggle
toggle
toggle
toggle

NN AN

An action can be executed in a state s if the preconditions of the action hold in s. The
execution of the action modifies the state according to the action and causal laws. Furthermore
we assume that the value of a fluent persists from one state to the next one, if the action does not
cause the value of the fluent to change.

In general, the execution of an action will have an effect on the environment, such as for
instance moving a robot or sending a message. This can be specified in Dylog by associating with
each primitive action some Prolog code which implements the effects of the action on the world (in
our case it could be the call to a robot simulator). Therefore, when an agent executes an action it
must commit to it, and it is not allowed to backtrack by retracting the effects of the action. This
is the main difference with respect to the use of the language for reasoning about actions, where
the agent can do hypothetical reasoning on possible sequences of actions by exploring different
alternatives.

2.2 Procedures

Procedures define the behavior of complex actions. Complex actions are defined on the basis of
other complex actions, primitive actions, and test actions. Test actions are needed for testing
if some fluent holds in the current state and for expressing conditional complex actions. They
are written as “Fs?”, where Fs is a fluent conjunction. A procedure is defined as a collection of
procedure clauses of the form

po is p1,...,pn (n>0)

where pg is the name of the procedure and p;, i = 1,...,n, is either a primitive action, or a test
action, or a procedure name (i.e. a procedure call)®. Procedures can be recursive and can be
executed in a goal directed way, similarly to standard logic programs.

In our modal action theory, procedure clauses have to be regarded as axiom schemas of the
logic. More precisely, each procedure clause py is pi,...,Pn, can be regarded as the following

axiom schema?
(p1)(p2) - - - (Pr)e D (po)ep-

Its meaning is that if in a state there is a possible execution of p;, followed by an execution of ps,
and so on up to p,, then in that state there is a possible execution of pg.

Procedures can be used to describe the behaviour of an agent. In particular we assume the
behaviour of a rational agent to be driven by a set of goals. For each goal, the agent has a set of
procedures (sometimes called plans) for achieving the given goal.

The behaviour of the robot of our example can be described by giving a collection of proce-
dures for achieving various goals. For simplicity we define only one procedure, achieve(G), whose
parameter G is the goal to be achieved. Goals are fluents, and the structure of the procedure
is based on that of the primitive actions. For instance, if goal G is caused by action a whose
preconditions are p, then to achieve G we try to achieve p and then execute a.

is G?

~—

achieve(G

achieve(at(I)) is at(J)?,J > I?, down, achieve(at(I))

achieve(at(I)) is at(J)?,J < I?,up,achieve(at(I))
(
(i

AAA

achieve(at(I)) is in room(J)?,getout(J),achieve(at([))
achieve(in_room(I)) is achieve(at(I)), getin(I)
achieve(—light_on(I)) is light-on(I)?,achieve(in_room(I)),toggle(I)

3 Actually in Dylog p; can also be a Prolog goal.
4These axioms have the form of rewriting rules as in grammar logics. In [3] decidability results for subclasses of
grammar logics are provided, and right regular grammar logics are proved to be decidable.

As pointed out before, whenever the interpreter executes an action, it commits to that action,
and cannot backtrack. Thus procedures are deterministic, or, at most, they can implement a kind
of don’t care non determinism.

For instance, if the initial state is:

—at(1), -at(2), at(3), ~in-room(1), ~in_room(2),light_on(1), light_on(2)

the call to achieve(—light_on(1))) will execute the sequence of actions: down, down, getin(1),toggle(1).

The above formulation of the behaviour of the agent has many similarities with agent pro-
gramming languages based on the BDI paradigm such as dMARS [7]. As in dMARS, plans are
triggered by goals and are expressed as sequences of primitive actions, tests or goals. The main
difference is in the control of the interpreter. In our case we rely on a standard sequential Prolog
interpreter and we assume to have only one goal at a time to achieve, whereas in dMARS it is
possible to interleave the execution of several plans®.

3 Planning

Up to now we have assumed that Dylog procedures which specify the behaviour of an agent are
executed by an interpreter as in usual programming languages. However a rational agent must
also be able to cope with complex or unexpected situations, by reasoning about the effects of a
procedure before executing it.

In general, a planning problem amounts to determine, given an initial state and a goal Fs, if
there is a sequence of actions that, when executed in the initial state, leads to a state in which Fs
holds. In our context, in which complex actions are represented as procedures, we can consider a
specific instance of the planning problem in which we want to know if there is a possible execution
of a procedure p leading to a state in which some condition F's holds. In such a case the execution
sequence is not an arbitrary sequence of atomic actions but it is an execution of p. This can be
formulated by the query

(p)F's

which asks for a terminating execution of p (i.e. a finite action sequence) leading to a state in
which Fs holds.

The execution of the above query returns as a side-effect an answer which is an execution trace
“a,as,...,an”, i.e. a primitive action sequence from the initial state to the final one, which
represents a linear plan.

To achieve this, Dylog provides a metapredicate plan(p, F's, as), where p is a procedure, F's
a goal and as a sequence of primitive actions. The procedure p can be nondeterministic, and
plan will extract from it a sequence as of primitive actions, a plan, corresponding to a possible
execution of the procedure, leading to a state in which Fs holds, starting from the current state.
Procedure plan works by executing p in the same way as the interpreter of the language, with a
main differences: primitive actions are executed without any effect on the external environment,
and, as a consequence, they are backtrackable.

Instead of simply obtaining any plan, procedure plan could extract a best plan, according to
some optimality criterion. In our case, plan uses iterative deepening to find the plan with the
minimal number of actions, but it might be modified to make use of some domain dependent
heuristics.

Let us assume that in our example the robot may have the goal of switching off all lights.

achieve(all lights_of) is achieve(—light_on(1)),achieve(—light_on(2))
achieve(all lights_of) is achieve(—light_on(2)),achieve(—light_on(1))

5However this limitation can be overcome by providing an explicit representation of goals as literals, in the same
way as we suggest later for belief literals.

i.e. lights can be switched off in any order.
Let us assume that the robot is given the composite goal

? — achieve(all lights_of f), achieve(at(1))

meaning “turn off all lights and then go to 1”. By applying the planning procedure to this goal,
starting from the initial state given above, Dylog will return the sequence of primitive actions
down, getin(2), toggle(2), getout(2), down, getin(1), toggle(1), getout(1), which can subsequently
be executed by the robot. On the other hand, if the query achieve(all lights_of f), achieve(at(1))
is directly executed, the robot will commit to the first rule for achieving all lights of f and will
execute a longer sequence of actions, by going first to room 1 and then to room 2.

In general, planning before acting is required when the agent has to achieve a conjunction of
goals which may interact.

A planning problem in Dylog is restricted to a specific procedure. However, we can model the
usual planning problem by defining a general procedure:

p is ai;p.
p is a9;p.

p is an;p.
p is (true)?.

whose execution traces are all possible sequences of primitive actions.

4 Sensing

In general we cannot assume that the value of each fluent in a state is known to an agent, and we
want to be able of representing the fact that some fluents are unknown and to reason about the
execution of actions on incomplete states. If we want to represent explicitly the unknown value
of some fluents, we need to introduce an epistemic level in our representation language. Hence in
[4] we introduce an epistemic operator B, to represent the beliefs an agent has on the world: Bf
will mean that the fluent f is known to be true, B—f will mean that the fluent f is known to be
false. Fluent f is undefined in the case both —Bf and -B-f hold. In the following, we will write
u(F) for ~Bf A -~B~f.

In Dylog we do not use explicitly the epistemic operator B, but we extend our notation with
the test u(F)?. Thus each fluent can have one of the three values: true, false or unknown.

An agent will be able to know the value of F' by executing a sensing action. In our example,
we introduce a sensing action sense_light(I), for knowing whether the light in room I is on or off.
This action can be executed if the robot is in room I:

senselight(I) possible if in_room(I)
senselight(I) senses light_in(I)

We can now extend the procedure achieve of the agent by introducing a new kind of goal,
KW (F), where KW stands for knows whether, which is satisfied in a state where the value of F'
is known.

achieve(KW (light_on(I))) is light_on(I)?
achieve(KW (light_on(I))) is —light_on(I)?
achieve(KW (light_on(I))) is u(light-on(I))?, achieve(in_room(I)), sense_light(I)

Furthermore, the following rule will be added:
achieve(—light_on(I)) is u(light_on(I))?, achieve(KW (light_on(I))), achieve(—light_on(I))

By applying Dylog’s planning predicate plan to a procedure containing sensing actions, we
obtain a conditional plan whose branches correspond to the different outcomes of sensing actions.

For instance, if the robot does not know the value of fluent light-on(1) in the initial state, the
execution of plan with the previous query achieve(alldights_of f),achieve(at(1)) will return the
plan

down, getin(2), toggle(2), getout(2), down, getin(1l), senselight(1), (light-on(1)?, toggle(1),
getout(l) or -—light_on(1)?, getout(1))

5 Final remarks

Dylog can be seen both as a specification language and as an agent programming language. Its
interpreter is a straightforward implementation of the proof procedure, and thus Dylog appears as
a promising candidate to reduce the gap between theory and practical use of agent programming
languages.

In this paper we have shown how to program an agent in a goal directed way. Other formula-
tions are of course possible. For instance we might benefit from the modal approach by introducing
explicit modalities for belief, goal and intentions, in the style of BDI theories. On the other hand
we might formulate the behaviour of a “reactive” agent as follows:

p is condi?,a1,p
p is conds?,as,p

Presently Dylog is used for building web applications which require planning capabilities.
Extensions of the language with communicative actions are under way.
Dylog has been implemented in Sicstus Prolog, and is available at http://www.di.unito.it/"alice.

References

[1] M. Baldoni, L. Giordano, A. Martelli, and V. Patti. An Abductive Proof Procedure for Rea-
soning about Actions in Modal Logic Programming. In J. Dix, L. M. Pereira, and T. C. Przy-
musinski, editors, Proc. of the 2nd International Workshop on Non-Monotonic Extensions
of Logic Programming, NMELP’96, volume 1216 of LNAI, pages 132-150. Springer-Verlag,
1997.

[2] M. Baldoni, L. Giordano, A. Martelli and V. Patti. Modal programming language for rep-
resenting complex actions. In Proc. DYNAMICS’98: Transactions and Change in Logic
Databases. Technical Report MPI-9808, pages 1-15, 1998.

[3] M. Baldoni, L. Giordano, and A. Martelli. A Tableau Calculus for Multimodal Logics and
Some (Un)Decidability Results. In H. de Swart ed., Proc. TABLEAUX 98, LNAI 1397, pages
44-59, 1998.

[4] M. Baldoni, L. Giordano, A. Martelli and V. Patti. Reasoning about Complex Actions with
Incomplete Knowledge: a Modal Approach. Technical Report 53/2000, Dipartimento di In-
formatica, University of Torino, 2000.

[6] M. Castilho, O. Gasquet, and A. Herzig. Modal tableaux for reasoning about actions and
plans. In S. Steel, editor, Proc. of European Conference on Planning (ECP’97), LNAI, pages
119-130. Springer-Verlag, 1997.

[6] G. De Giacomo and M. Lenzerini. PDL-based framework for reasoning about actions. In
Topics of Artificial Intelligence, AI*IA ’95, volume 992 of LNAI pages 103—114. Springer-
Verlag, 1995.

[7] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A Formal Specification of IMARS, in
Proc. ATAL’97, LNAT 1365, pages 155-176, 1997.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

L. Giordano, A. Martelli, and C. Schwind. Dealing with concurrent actions in modal action
logic. In Proc. of ECAI’98. pp. 537541, 1998.

L. Giordano, A. Martelli, and C. Schwind. Ramification and causality in a modal action logic.
Journal of Logic and Computation, Vol. 10, No. 5, pp. 625-662, 2000.

H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG: A Logic
Programming Language for Dynamic Domains. Journal of Logic Programming, 31, 1997.

D. Harel. Dynamic Logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical
Logic, volume II, pages 497-604. D. Reidel Publishing Company, 1984.

H. Prendinger and G. Schurz. Reasoning about action and change. a dynamic logic approach.
Journal of Logic, Language, and Information, 5(2):209-245, 1996.

A.S. Rao, M.P. Georgeff. Modeling rational agents within a BDI-architecture. In Proc. KR-91,
pages 473-484, Morgan Kaufmann, 1991.

C. B. Schwind. A logic based framework for action theories. In J. Ginzburg, Z. Khasidashvili,
C. Vogel, J.-J. Lévy, and E. Vallduvi, editors, Language, Logic and Computation, pages 275—
291, Stanford, USA, 1997. CSLI publication.

