
Reasoning about Conversation Protocols in a

Logic-based Agent Language

Matteo Baldoni, Cristina Baroglio, Alberto Martelli, and Viviana Patti

Dipartimento di Informatica — Università degli Studi di Torino
C.so Svizzera 185, I-10149 Torino (Italy)

E-mail: {baldoni,baroglio,mrt,patti}@di.unito.it

Abstract. We present an approach to reasoning about conversations
within the framework of a logic-based agent language. Our agent theory
is based on a modal logic of actions and beliefs and permits the rep-
resentation of communicative acts and conversation protocols, allowing
agents to reason about them before their execution. The work is framed
in a world wide web context, in which we show how reasoning about the
interaction with web service providers can be exploited for personalizing
the service fruition.

1 Introduction

In this work we face the problem of allowing a rational agent, which is situated in
a multi-agent framework, to reason about the conversations that it could carry
on with other agents as a means of pursuing some goal of its own interest.

The capability of reasoning about conversations is, indeed, extremely useful
in different application domains. Besides the often mentioned robotic applica-
tions, where, for instance, groups of agents must trade how to cooperate in order
to perform some task, also the web world offers many interesting scenarios. Let
us consider, as an example, a software agent, which is a user personal assistant.
The task that it performs is to search the web in order to find web services, ac-
cording to the user’s specification. The scientific literature offers some standard
languages for describing web services (such as DAML-S [5] and WSDL [4]) and
there already are systems for finding web services that perform tasks of interest
(e.g. the UDDI framework, where the WSDL standard is exploited). Currently,
these languages base the description of a service on the lists of the inputs and
of the outputs respectively required and returned by it. Let us suppose that you
asked the agent to “book two tickets at a cinema where they show Akira” and
that it should “not give the credit card number”. The agent should match the
information that you supplied to the inputs and outputs of the available services
and select one of them that satisfies the requests. If we take a closer look to
the two conditions, however, we can see that while the first identifies the kind

of service and the goal to achieve, the second condition constrains the way in
which the interaction between the service provider and the personal assistant
should be carried on. The personal assistant, however, has no way for knowing



how its interlocutor will carry on the interaction because the service description
does not contain any behavioral information, as noticed by McIlraith et al. [3].
In our work we focus on a specific kind of behavioral information, the interaction

protocol followed by the provider. Whether or not a provider is a software agent,
for communicating with its clients, it will follow some possibly non-deterministic
protocol, aimed at getting/supplying all the necessary information. The cinema
booking service and our personal assistant can, then, be seen as the two actors of
a conversation, determined by the protocol imposed by the provider. If the per-
sonal assistant could reason about the possible interactions outcoming from such
a conversation protocol, it could either verify if the interaction may be person-

alized by following an execution path that satisfies all the user’s requirements,
or, when this is not possible, it could search for another provider.

We faced the problem of describing and reasoning about conversation pro-
tocols in an agent logic programming setting by extending the modal action
and belief framework of the language DyLOG, introduced in [2], so to deal also
with communicative behaviors. In particular, we model how an agent can reason
about the interaction that it is going to enact with another agent, with the aim
of proving if there is a possible execution of the communication protocol, after
which a set of beliefs of interest (goal) will be true in the agent mental state.
Such a form of reasoning implies making assumptions about the mental state
of the other agent, the one ours wishes to interact with. We considered a con-
versation protocol as (possibly non-deterministic) procedure that specifies the
complex communicative behavior of a single agent, based upon simpler FIPA-
like communicative acts, where the agent can either play the part of the sender
or of the receiver of a message.

2 The agent language

DyLOG, introduced in [2], is a logic programming language for specifying and
reasoning about the behavior of rational agents. It is based on a modal logic for
reasoning about actions and beliefs and permits to define both complex actions
and sensing actions for information gathering. Agents programmed in DyLOG can
choose a course of actions, conditioned by their beliefs about the world and about
other agents, and can use sensors for acquiring knowledge. Originally, DyLOG

did not encompass communicative acts, but since in a multi-agent environment

conversations with other agents can be a means of pursuing some goal of interest,
we aim at integrating in the language a communication kit, that includes both
primitive speech acts and pre-defined conversation protocols, that the agents
can use to communicate with one another. Our action logic accounts both for
atomic and complex actions, or procedures. Atomic actions are either world
actions, which affect the world, or mental actions, i.e. sensing or communicative
actions which only affect the mental state of an agent by modifying its beliefs.
The set of atomic action consists of the set A of the world actions, the set C of
communicative acts, and the set S of sensing actions. For each atomic action a

and agent agi we introduce the modalities [aagi ] and 〈aagi〉. [aagi ]α means that α



holds after every execution of action a by agent agi; 〈a
agi〉α means that there is

a possible execution of a (by agi) after which α holds. For each atomic action a

in A∪C we also introduce a modality Done(aagi) for expressing that a has been
executed. Done(aagi)α is read “a has been executed by agi; before its execution,
α was true”1. The modality 2 denotes those formulas that hold in all possible
agent mental states. Our formalization of complex actions draws considerably
from dynamic logic for the definition of action operators like sequence, test and
non-deterministic choice. However, differently than [10], we refer to a Prolog-like

paradigm: procedures are defined by means of (possibly recursive) Prolog-like
clauses. For each procedure p, the language contains also the modalities [p] and
〈p〉 (universal and existential modalities respectively).

The mental state of an agent is described in terms of a consistent set of belief

fluents. We enriched the belief state of a DyLOG agent by allowing also nested
beliefs, for representing what other agents believe and reasoning on how they
can be affected by communicative actions. We use the modal operator Bagi to
model the beliefs of agent agi. The modality Magi is defined as the dual of Bagi

(Magiϕ ≡ ¬Bagi¬ϕ). Intuitively Magiϕ means that agi consider ϕ possible.

All the modalities of the language are normal, 2 is reflexive and transitive;
its interaction with action modalities is ruled by 2ϕ ⊃ [aagi ]ϕ. The epistemic
modality Bagi is serial, transitive and euclidean. The interaction of Done(aagi)
with other modalities is ruled by: ϕ ⊃ [aagi ]Done(aagi)ϕ and Done(aagj )ϕ ⊃
BagiDone(aagj )ϕ (awareness), with agi = agj when aagi 6∈ C. A non-monotonic
solution to the persistency problem is given, which consists in maximizing per-
sistency assumptions about fluents after the execution of action sequences, in
the context of an abductive characterization. Such a solution is a generalization
of the one in [2] for dealing with persistency of nested beliefs [13].

Beliefs Our agents are modelled as individuals, each having its subjective point
of view; we do not model the real world, the only relevant characterization of the
states concerning the internal dynamics of each agent: its mental state, modelled
as a set of beliefs. A belief state contains what agi (dis)believes about the world
and about the other agents. Agents do not control other agents beliefs: when an
agent agj informs agi about l, it cannot be sure that agi will believe l; this will
happen only if agi believes agj to be an authority about l. We denote by l either
a fluent literal (f or ¬f), or a done fluent, i.e. a modal atom Done(aagi)> or
its negation. The belief state includes both a (possibly negated) epistemic fluent
Bagi l for each literal, and, for each agent agj , a (possibly negated) epistemic flu-
ent for each of its beliefs (BagiBagj l); agj may also be equal to agi. To guarantee
the consistency of the belief state, we impose the modality Bagi to be serial. In
the single agent case [2], seriality guarantees that it is not possible that both Bagi l

and Bagi¬l hold in the same state. In a multi-agent setting, when we deal with
nested beliefs, seriality also guarantees that no agent ascribes inconsistent beliefs
to other agents; so for each couple of agents agi, agj and for each belief formula
Bagi l: neither it is possible that BagjBagi l and BagjBagi¬l nor that BagjBagi l

1 Done(aagi)> is read “the action a has been executed by agent agi”.



and Bagj¬Bagi l hold in the same state. From the seriality of the Bagi operators,
the general formula schema for the rank 2 beliefs BagiBagj¬ϕ ⊃ ¬BagiBagj ϕ

holds in our logic for any two agents agi and agj . This property guarantees that
when an inconsistency arises “locally” in the beliefs ascribed from agi to other
agents, then the beliefs of agi itself will be inconsistent. In essence a belief state
is a complete and consistent set of rank 1 and 2 epistemic fluents. It provides,
for each agent agi, a three-valued interpretation of all the possible belief argu-
ments, i.e. fluent literals, done fluents and epistemic fluents of rank 1: each belief
argument L is either true, false, or undefined when both ¬BagiL and ¬Bagi¬L

hold. In the last case we use UagiL for expressing the ignorance of agi about L.

Behavior In the line of [2] the behavior of an agent agi can be specified by a
domain description, which includes, besides a specification of the agent current
beliefs: (1) action and precondition laws for describing the atomic world actions

in terms of their preconditions and effects on the executor’s mental state; (2)
sensing axioms for describing atomic sensing actions; (3) procedure axioms for
describing complex behaviors.
World actions are described by their preconditions and effects on the actor’s
mental state; they trigger a revision process on the actor’s beliefs. Formally,
action laws describe the conditional effects on agi’s belief state of an atomic
action a ∈ A, executed by agi itself. They have the form:

2(BagiL1 ∧ . . . ∧ BagiLn ⊃ [aagi ]BagiL0) (1)

2(MagiL1 ∧ . . . ∧MagiLn ⊃ [aagi ]MagiL0) (2)

Law (1) states that if agi believes the preconditions to an action a in a certain
epistemic state, after a execution, agi will also believe the action’s effects. (2)
states that when the preconditions of a are unknown to agi, after the execution
of a, agi will consider unknown also its effects2.

Precondition laws specify mental conditions that make an action in A ∪ C
executable in a state. They have form:

2(BagiL1 ∧ . . . ∧ BagiLn ⊃ 〈aagi〉>) (3)

The meaning is trivial: agi can execute a when the precondition fluents of a are
in agi’s belief state.
Sensing Actions produce knowledge about fluents; they are defined as non-
deterministic actions, with unpredictable outcome, formally modelled by a set of
sensing axioms. If we associate to each sensing action s a set dom(s) of literals
(domain), when agi executes s, it will know which of such literals is true:

[s]ϕ ≡ [
⋃

l∈dom(s)

sB
agi l]ϕ (4)

∪ is the choice operator of dynamic logic and sB
agi l, for each l ∈ dom(s), is an

ad hoc primitive action, that probes one of the possible outcomes of the sensing.

2 Laws of form (2) allow actions with non-deterministic effects, that may cause a loss
of knowledge, to be specified.



Notice that the binary sensing action on a literal l is a special case of sensing
where the associated finite set is {l,¬l}.
Complex actions We specify agent complex behaviors by means of procedure

definitions, built upon other actions. Formally, a complex action is defined by
means of a collection of inclusion axiom schema of our modal logic, of form:

〈p0〉ϕ ⊂ 〈p1; p2; . . . ; pm〉ϕ (5)

p0 is a procedure name and the pi’s (i = 1, . . . ,m) are either procedure names,
atomic actions, or test actions; the operator “;” is the sequencing operator of
dynamic logic. Procedure definitions may be recursive and procedure clauses can
be executed in a goal directed way, similarly to standard logic programs.

3 Communication

The integration of a communication theory in the general agent theory came
straightforwardly by adding further axioms and laws to agi’s domain descrip-
tion. In this section we enrich the specification of an agent behavior with a
communication kit, that includes a predefined set of primitive speech acts, a set
of special get message actions, and a set of conversation protocols.

Speech Acts Communication primitives are treated as atomic actions and de-
scribed in terms of preconditions and effects on the agent mental state. Each com-
municative primitive action has the form speech act(sender, receiver, l), where
sender and receiver are agents and l is the propositional content of the speech
act3. As a difference with world actions, in the case of communication primi-
tives, the sender aims at modifying the mental state of the receiver, possibly
inducing a cooperative behavior. Such actions can be seen as special mental ac-
tions, affecting both the sender’s and the receiver’s mental state. In our model
we focused on the internal representation, that each agent has of each speech
act, by specifying agi’s belief changes both when agi is the sender and when it
is the receiver. Such a representation is necessary for providing the capability
of reasoning about conversation effects. Hence, speech acts are modelled by gen-
eralizing the action and precondition laws of form (1), (2), and (3), so to allow
the representation of the effects of communications performed by other agents
on our agent mental state. Then, our speech act specification is twofold: one
definition holds when the agent is the executor (the sender), the other when it
is the receiver. In the first case, the precondition laws contain some sincerity

condition that must hold in the agent mental state. When it is the receiver, the
action is considered always executable. Let us define the primitive speech acts
we will use, inform, queryIf, and refuseInform; a wider set can be found in [13].

inform(sender, receiver, l)
a) 2(Bagi l ∧ BagiUagj l ⊃ 〈inform(agi, agj , l)〉>)

3 For the sake of simplicity we allow as propositional contents only attitude-free fluents,
i.e fluent literals or done fluents.



b) 2([inform(agi, agj , l)]M
agiBagj l)

c) 2(BagiBagj authority(agi, l) ⊃ [inform(agi, agj , l)]B
agiBagj l)

d) 2(> ⊃ 〈inform(agj , agi, l)〉>)
e) 2([inform(agj , agi, l)]B

agiBagj l)
f) 2(Bagiauthority(agj , l) ⊃ [inform(agj , agi, l)]B

agi l)
g) 2(Magiauthority(agj , l) ⊃ [inform(agj , agi, l)]M

agi l)

Clause (a) states that an inform act can be executed when the sender believes l

and believes that the receiver does not know l. When agi is the sender it thinks
possible that the receiver will adopt its belief, although it cannot be certain
(autonomy assumption (b)). If it believes to be a trusted authority about l, it is
confident that the receiver will adopt its belief, (c). When agi is the receiver of
an inform act, it will believe that l is believed by the sender agj (e), but it will
adopt l as itw own belief only if it recognizes agj as a trusted authority, (f)-(g).

queryIf(sender, receiver, l)
a) 2(Uagi l ∧ ¬BagiUagj l ⊃ 〈queryIf(agi, agj , l)〉>)
b) 2(> ⊃ 〈queryIf(agj , agi, l)〉>)
c) 2([queryIf(agj , agi, l)]B

agiUagj l)

By queryIf agi asks agj if it believes that l is true. To perform a queryIf act, agi

must ignore l and it must believe that the receiver does not ignore l (a). After a
queryIf act, the receiver will believe that the sender ignores l.

refuseInform(sender, receiver, l)
a) 2(Uagi l ∧ BagiDone(queryIf(agj , agi, l))> ⊃ 〈refuseInform(agi, agj , l)〉>)
b) 2(> ⊃ 〈refuseInform(agj , agi, l)〉>)
c) 2([refuseInform(agj , agi, l)]B

agiUagj l)

By refuseInform an agent refuses to give an information it was asked for. The
refusal can be executed only if: the sender is ignorant about l and it believes that
the receiver previously queried it about l. After a refusal the receiver believes
the sender to be ignorant about l.

Get Message Actions are used for receiving messages from other agents; they
can be viewed as queries for an external input, whose outcome is unpredictable.
We model them as a special kind of sensing actions, the main difference being
that they are defined by means of speech acts. Formally, we represent the fact
that agi expects a communication from agj , by means of a get message action,
given by an axiom schema of form:

[get message(agi, agj , l)]ϕ ≡ [
⋃

speech act∈Cget message

speech act(agj , agi, l)]ϕ (6)

having as defining primitive actions a finite set of speech acts Cget message ⊆ C.
Cget message is the set of the possible communications that agi expects from agj in
the context of a given conversation. Then, we do not associate to a get message

action a domain of mental fluents, but we calculate the information obtained by
looking at the effects of the speech acts in Cget message on agi’s mental state.



Conversation protocols Often primitive communication acts occur in the
context of predefined conversation schemas [11] that specify communication pat-
terns. To cope with these aspects we provide agents with conversation proto-
cols. Each agent has a subjective perception of on-going communications, for
this reason protocols have as many procedural representations as possible roles
in the conversation. Let us consider, for instance the yes no query protocol re-
ported hereafter, a simplified version of the FIPA Query Interaction Protocol
[8]. The protocol has two representations, one to be followed for making a query
(yes no queryQ) and a complementary one for responding (yes no queryI):

〈yes no queryQ(Self,Other, F luent)〉ϕ ⊂
〈queryIf(Self,Other, F luent); get answer(Self,Other, F luent)〉ϕ

[get answer(Self,Other, F luent)]ϕ ≡
[inform(Other, Self, F luent) ∪ inform(Other, Self,¬Fluent) ∪
refuseInform(Other, Self, F luent)]ϕ

Intuitively, the right hand side of get answer represents all the possible answers
expected by agent Self from agent Other about Fluent, in the context of a
conversation ruled by the yes no queryQ protocol.

〈yes no queryI(Self,Other, F luent)〉ϕ ⊂
〈get start(Self,Other, F luent);
BSelfFluent?; inform(Self,Other, F luent)〉ϕ

〈yes no queryI(Self,Other, F luent)〉ϕ ⊂
〈get start(Self,Other, F luent);
BSelf¬Fluent?; inform(Self,Other,¬Fluent)〉ϕ

〈yes no queryI(Self,Other, F luent)〉ϕ ⊂
〈get start(Self,Other, F luent);
USelfFluent?; refuseInform(Self,Other, F luent)〉ϕ

Intuitively the yes no queryI protocol specifies the behavior of the agent Self ,
that waits a query from Other; afterwards, it replies according to its beliefs on
the query subject. get start is a get message action ruled by the following axiom:

[get start(Self,Other, F luent)]ϕ ≡ [queryIf(Other, Self, F luent)]ϕ

We define the communication kit of an agent agi, CKitagi , as the triple (ΠC , ΠCP ,
ΠSget), where ΠC is the set of simple action laws defining agi’s primitive com-
municative speech acts, ΠSget is a set of axioms for agi’s get message actions and
ΠCP is the set of procedure axioms specifying agi’s conversation protocols. In
this extension of the DyLOG language, the Domain Description for agent agi is
a triple (Π,CKitagi , S0), where CKitagi is agi communication kit, S0 is the initial
set of agi’s belief fluents, and Π is a tuple (ΠA, ΠS , ΠP), where ΠA is the set
of agi’s action and precondition laws for world actions, ΠS is a set of axioms for
agi’s sensing actions, ΠP a set of axioms that define complex actions.



4 Reasoning about conversations

Given a domain description, we can reason about it and formalize the temporal

projection problem and the planning problem, by means of existential queries
having the form:

〈p1〉〈p2〉 . . . 〈pm〉Fs (7)

Each pk, k = 1, . . . ,m in (7) may either be an (atomic or complex) action
executed by agi or an external speech act, that belongs to CKitagi (by the word
external we denote a speech act in which our agent plays the role of the receiver).
By checking if a query of form (7) succeeds we can cope with the planning
problem. In fact this corresponds to answering the question “is there an execution
trace of p1, . . . , pn leading to a state where the conjunction of belief fluents
Fs holds for agi?”. Such an execution trace is a plan to bring about Fs. The
procedure definition constrains the search space. Notice that when all the pk

in the query are atomic actions that belong to A ∪ C, by checking if the query
succeeds, we cope also with the temporal projection problem: “does Fs hold for
agi, after the execution of the action sequence a1, . . . , am?”.

In presence of communication, the planning and the temporal projection
problems turn respectively into the problem of reasoning about conversation

protocols and reasoning about simple conversations, where a conversation is a
sequence of speech acts. This allows, for instance, an agent to investigate the
possible changes to its mental state, produced by a specific conversation, or if a
conversation is an instance of some predefined protocol [7].

In the case of planning, the action sequence will contain both actions in which
the agent is the sender and actions in which it is the receiver. In this process we
treat get message actions as sensing actions, whose outcome cannot be known
at planning time. Since agents cannot read each other’s mind, they cannot know
in advance the answers that they will receive. For this reason all of the possible
alternatives are to be taken into account (and we can foresee them because of
the existence of the protocol). Therefore, the extracted plan will be conditional,
meaning that for each get message and for each sensing action, it will contain
as many branches as possible action outcomes. Each path in the resulting tree
is a linear plan that brings about the desired condition Fs. More formally, a
conditional plan σ is either:

– a action sequence a1; . . . ; am, with m ≥ 0;
– if a1; . . . ; am is an action sequence (m ≥ 0), s ∈ S is a sensing action,

and σ1, . . . , σt are conditional plans then a1; . . . ; am; s; ((Bagi l1?);σ1 ∪ . . . ∪
(Bagi lt?);σt), where l1, . . . , lt ∈ dom(s);

– if a1; . . . ; am is an action sequence (m ≥ 0), g ∈ S is a get message action, and
σ1, . . . , σt are conditional plans then a1; . . . ; ak; g; ((BagiDone(c1)>?);σ1 ∪
. . . ∪ (BagiDone(ct)>?);σt), where c1, . . . , ct ∈ Cg.

The proof procedure is a natural evolution of the work in [2], and is described
in [1]; it is goal-directed and based on negation as failure (NAF). NAF is used
to deal with the persistency problem to verify that the complement of a mental



fluent is not true in the state resulting from an action execution; while in the
modal theory we adopted an abductive characterization [13]. The proof proce-
dure allows agents to find linear and conditional plans for achieving a goal from
an incompletely specified initial state. The soundness can be proved under the
assumption of e-consistency, i.e. for any action the set of its effects is consistent
[6]. Moreover, the extracted plans always lead to a state in which the desired
condition Fs holds, for all the possible results of the sensing actions.

5 An example in the Web services scenario

Let us consider the personal assistant (pa) mentioned in the introduction, its aim
is to search a cinema booking service that satisfies the user’s requests. Suppose
that two services are available, click ticket and all cinema, that they follow two
different interaction protocols (get ticket 1 and get ticket 2), see Fig. 1, and that
such protocols are part of the web service descriptions. The difference between
them is that the former permits both to book a ticket to be paid later by cash
and to buy it by credit card, while the latter allows only ticket purchase by
credit card. Let us consider the DyLOG specifications of the two protocols, that
describe the interaction of pa with the web services from the customer perspec-

tive: get ticket 1C and get ticket 2C . We will suppose that pa knows the credit
card number (cc number) of the user but that it is requested not to use it. Let
us see how pa reasons on the way in which conversations will be carried on.

(a) 〈get ticket 1C(Self,WebS, F ilm)〉ϕ ⊂
〈yes no queryQ(Self,WebS, available(Film));
BSelfavailable(Film)? ; get info(Self,WebS, cinema(C));
yes no queryI(Self,WebS, pay by(credit card));
BSelfpay by(credit card)? ; inform(Self,WebS, cc number);
get info(Self,WebS, booked(Film))〉ϕ

(b) 〈get ticket 1C(Self,WebS, F ilm)〉ϕ ⊂
〈yes no queryQ(Self,WebS, available(Film));
BSelfavailable(Film)? ; get info(Self,WebS, cinema(C));
yes no queryI(Self,WebS, pay by(credit card));
¬BSelfpay by(credit card)? ; get info(Self,WebS, pay by(cash));
get info(Self,WebS, booked(Film))〉ϕ

(c) 〈get ticket 1C(Self,WebS, F ilm)〉ϕ ⊂
〈yes no queryQ(Self,WebS, available(Film));¬BSelfavailable(Film)?〉ϕ

(d) [get info(Self,WebS, F luent)]ϕ ⊂ [inform(WebS, Self, F luent)]ϕ

Protocol get ticket 1C works in the following way: the personal assistant (Self) is
supposed to begin the interaction. After checking if the requested movie is avail-
able in some cinema by the yes no queryQ protocol, it waits for an information
(get info) from the provider (WebS) about which cinema shows it. Then the form
of payment is defined: (a) encodes the interaction occuring when the tickets are
paid by credit card (see Fig. 1); (b) is selected when ¬BSelfpay by(credit card)
is contained in pa mental state (our case), leading to book a ticket to be paid



Customer Service Provider

yes_no_query(available(Film)

inform(cinema(C))

yes_no_query(pay_by(c_card))

inform(cc_number)

inform(booked(Film))

Customer Service Provider

yes_no_query(available(Film)

inform(cinema(C))

yes_no_query(pay_by(c_card))

inform(pay_by(cash))

inform(booked(Film))

Customer Service Provider

yes_no_query(available(Film)

inform(cinema(C))

inform(cc_number)

inform(booked(Film))

(i) (ii) (iii)

Fig. 1. The three AUML graphs [12] represent the communicative interactions occur-
ring between the customer (pa) and the provider.

cash. In both cases a confirmation of the ticket booking is returned to pa. Clause
(c) tackles the case in which the movie is not available; (d) describes get info,
which is a get message action. Let us now consider the query:

〈get ticket 1C(pa, click ticket, akira)〉Bpa¬Bclick ticketcc number

that amounts to determine if there is a conversation between pa and click ticket
about the movie akira, that is an instance of protocol get ticket 1C , after which
the service does not know the credit card number of the user. Agent pa works on
the behalf of a user, thus it knows his credit card number (Bpacc number) and
his desire not to use it in the current transaction (¬Bpapay by(credit card)).
It also believes to be an authority about the form of payment and about the
user’s credit card number and that click ticket is an authority about cinema
and tickets. This is represented by the beliefs: Bpaauthority(pa, cc number) and
Bpaauthority(click ticket, booked(akira)). The initial mental state will also con-
tain the fact that pa believes that no ticket for akira has been booked yet,
Bpa¬booked(akira), and some hypothesis on click ticket mental state, e.g. the
belief fluent Bpa¬Bclick ticketcc number, meaning that the web service does not
already know the credit card number. Suppose, now, that the ticket is avail-
able; since pa mental state contains the belief ¬Bpapay by(credit card), when it
reasons about the protocol execution, the test on Bpapay by(credit card)? fails.
Then clause (b) is to be followed, leading pa to be informed that it booked
a ticket, Bpabooked(akira), which is supposed to be paid cash. No communi-
cation involves the belief Bpa¬Bclick ticketcc number, which persists from the
initial state. Even when the ticket is not available or the movie is not known
by the provider, the interaction ends without consequences on such a fluent.
After the briefly described reasoning process, the agent finds an execution trace
of get ticket 1C , which corresponds to a personalized conditional dialogue plan
between itself and the provider click ticket, always leading to satisfy the user
goal of not giving the credit card number:

queryIf(pa, click ticket, akira);
((BpaDone(inform(click ticket, pa, akira))>?);

get info(pa, click ticket, cinema(C));
(BpaDone(inform(click ticket, pa, cinema(C)))>?);
get info(pa, click ticket, pay by(credit card)));



(BpaDone(queryIf(click ticket, pa, pay by(credit card)))>?);
inform(pa, click ticket,¬pay by(credit card));
get info(pa, click ticket, pay by(cash));
(BpaDone(inform(click ticket, pa, pay by cash))>?);
get info(pa, click cinema, booked(akira));
(BpaDone(inform(click ticket, pa, booked(akira)))>?) ∪

(BpaDone(inform(click ticket, pa,¬akira))>?) ∪
(BpaDone(refuseInform(click ticket, pa, akira))>?))

Let us now considering get ticket 2C , the protocol followed by all cinema:

(e) 〈get ticket 2C(Self,WebS, F ilm)〉ϕ ⊂
〈yes no queryQ(Self,WebS, available(Film));
BSelfavailable(Film)? ; get info(Self,WebS, cinema(C));
inform(Self,WebS, cc number);
get info(Self,WebS, booked(cinema ticket, F ilm))〉ϕ

(f) 〈get ticket 2C(Self,WebS, F ilm)〉ϕ ⊂
〈yes no queryQ(Self,WebS, available(Film));¬BSelfavailable(Film)?〉ϕ

We can easily see that in this case, the query 〈get ticket 2C(pa, all cinema,
akira)〉 Bpa¬Ball cinemacc number fails because, the protocol allows only one
interaction sequence, containing the action inform(pa, all cinema, cc number)
that causes the mental state of pa to contain BpaBall cinema cc number.

6 Conclusions

We have presented an approach to reasoning about conversation protocols within
the framework of a logic-based agent language. We have studied how to embed
a theory of communicative actions in the DyLOG logical framework [2] so to
allow the modelling of software agents that, when situated in a multi-agent
environment, can interact with one another by a speech act based communication
mechanism. In the extended language agents have their own local beliefs on the
world and on the other agents mental state. The semantics of communicative acts
is described in terms of their effects on the mental state of both the sender and
the recipient. In the line of [11], we used conversation protocols to provide our
agents decision procedures for suitably responding to communications. We took
a subjective representation of conversation protocols, by making hypothetical
assumptions on the other’s answers. As a consequence protocols have been easily
integrated with other policies defining the agent behavior, being both represented
as procedures specified in DyLOG. Notice that, since we are only interested in
reasoning about the local mental state dynamics, our approach differs from other
logic-based approaches to communication in multi-agent systems, as the ones
taken in [15, 9], where communicative acts affect the global state of a multi-agent
system and the target is to verify global properties of the overall multi-agent
system execution. Instead, our focus on the internal specification of interaction
protocols for planning dialogue moves is closer to the one taken in [14], where
negotiation protocols, expressed by sets of dialogue constraints, are included in



the agent program and used for triggering dialogues that achieve goals. However
such an approach leads to different results and, being somehow focused on goal
achievement in a multi-agent environment with limited resources, is not aimed
at implementing the reasoning about conversations we focused on.

References

1. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about self and others:
communicating agents in a modal action logic. In R. Gorrieri, C. Blundo, and
C. Laneve, editors, Proc. of ICTCS’2003, LNCS, Bologna, Italy, 2003. Springer.
To appear.

2. M. Baldoni, L. Giordano, A. Martelli, and V. Patti. Reasoning about Complex
Actions with Incomplete Knowledge: A Modal Approach. In Proc. of ICTCS’2001,
volume 2202 of LNCS, pages 405–425. Springer, 2001.

3. J. Bryson, D. Martin, S. McIlraith, and L. A. Stein. Agent-based composite services
in DAML-S: The behavior-oriented design of an intelligent semantic web, 2002.

4. R. Chinnici, M. Gudgin, J. J. Moreau, and S. Weerawarana. Web Services De-
scription Language (WSDL) version 1.2, 2003. Working Draft.

5. The DAML-S coalition. DAML-S: Web service description for the semantic web.
In the 1st Int. Semantic Web Conference (ISWC), Sardinia, Italy, 2002.

6. M. Denecker and D. De Schreye. Representing Incomplete Knowledge in Abduction
Logic Programming. In Proc. of ILPS ’93, Vancouver, 1993. The MIT Press.

7. F. Dignum and M. Greaves. Issues in agent communication. In Issues in Agent
Communication, volume 1916 of LNCS, pages 1–16. Springer, 2000.

8. FIPA. Fipa 2000, fipa Query Interaction Protocol Specification. Technical report,
FIPA (Foundation for Intelligent Physical Agents), November 2000.

9. L. Giordano, A. Martelli, and C. Schwind. Specifying and Verifying Systems of
Communicating Agents in a Temporal Action Logic. In Proc. of the 8th Conf. of
AI*IA, LNAI. Springer, 2003.

10. H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG: A
Logic Programming Language for Dynamic Domains. J. of Logic Programming,
31:59–83, 1997.

11. A. Mamdani and J. Pitt. Communication protocols in multi-agent systems: A de-
velopment method and reference architecture. In Issues in Agent Communication,
volume 1916 of LNCS, pages 160–177. Springer, 2000.

12. James H. Odell, H. Van Dyke Parunak, and Bernhard Bauer. Representing agent
interaction protocols in UML. In Agent-Oriented Software Engineering, pages 121–
140. Springer, 2001. http://www.fipa.org/docs/input/f-in-00077/.

13. V. Patti. Programming Rational Agents: a Modal Approach in a Logic Program-
ming Setting. PhD thesis, Dipartimento di Informatica, Università degli Studi di
Torino, Italy, 2002. Available at http://www.di.unito.it/~patti/.

14. F. Sadri, F. Toni, and P. Torroni. Dialogues for Negotiation: Agent Varieties and
Dialogue Sequences. In Proc. of ATAL’01, Seattle, WA, 2001.

15. S. Shapiro, Y. Lespéance, and H. J. Levesque. Specifying communicative multi-
agent systems. In Agents and Multi-Agent Systems - Formalisms, Methodologies,
and Applications, volume 1441 of LNAI, pages 1–14. Springer-Verlag, 1998.


