
Reasoning about self and others:

communicating agents in a modal action logic

Matteo Baldoni, Cristina Baroglio, Alberto Martelli, and Viviana Patti

Dipartimento di Informatica — Università degli Studi di Torino
C.so Svizzera 185, I-10149 Torino (Italy)

E-mail: {baldoni,baroglio,mrt,patti}@di.unito.it

Abstract. We propose an approach to reasoning about conversation
protocols within the framework of a logic-based agent language. We show
how to embed a theory of communicative actions in the framework of
a modal logic of action and beliefs, to specify software agents that, sit-
uated in a multi-agent environment, can interact with one another by
a speech act based communication mechanism. Agents have their own
local beliefs on the world and on the other agents mental state. Complex
communicative behaviors can be specified as conversation protocols, and
agents can reason on the belief dynamics caused by communications,
before committing to a given interaction.

1 Introduction and motivations

In the last few years, great attention has been devoted to the issue of communica-
tion and dialogue among agents, in the context of a formal approach to the theory
of agency [13]. In particular, the diffusion of open multi-agent systems has led
the agent community to focus on the creation of standardized communication

languages (ACL), that, having an explicit, general and well-defined semantic,
could be used by heterogeneous agent programs and give an answer to the inter-
operability issue [15, 17]. In this framework, while a lot of work has been done in
defining the semantics of the agent speech acts, those semantics aspects of com-
munication that are related to the conversational context, in which a speech act
occurs, started being investigated only recently [20, 22]. Moreover, although for-
mal models of speech acts take into account the mental state of other agents, the
approaches to communication taken in the practical setting of agent languages
[24, 12] do not account for this aspect and do not permit to model individual
agents that subjectively reason about effects of communication on the mental
state of their interlocutors.

The capability of reasoning about conversations is useful in many application
areas. Let us consider, as an example, a user personal assistant, i.e. a software
agent that searches the web to find web services, according to a user’s specifica-
tion. The currently available languages for describing web services (e.g. DAML-S
[9], WSDL [8]) base descriptions on the lists of inputs/outputs required/returned
by the service. The agent matches the user’s request (“book two tickets at a cin-
ema where they show Akira but do not give my credit card number”) to the



descriptions of the available services and selects one that satisfies all the condi-
tions. Some of these conditions (“do not give my credit card number”), actually
concern the way in which the interaction between the service provider and the
personal assistant should be carried on. Standard description languages do not
allow the representation of behavioral information [7] but if a formal specifica-
tion of the interaction protocol was available, the personal assistant could reason

about the change caused by a conversation to its own belief state and make ratio-
nal assumptions on the change caused to the provider beliefs. In the application
framework, the agent could, then, either verify if the interaction may be person-

alized by following an execution path that satisfies all the user’s requirements,
or, when this is not possible, decide to search for another provider.

In this work, we face the problem of describing and reasoning about conver-
sation protocols in an agent logic programming setting, by extending the logical
framework of the agent language DyLOG [5] so to deal also with communicative

behaviors. DyLOG is a logic programming language for specifying and reason-
ing about the behavior of rational agents, based on a modal logic for reasoning
about actions and beliefs, that has successfully been used in the development of
adaptive web applications [4]. It permits to define complex actions and sensing
actions. Agents programmed in DyLOG choose a course of actions, conditioned
by their beliefs about the world, and use sensors for acquiring knowledge. We
present an extension of the language, in which a communication kit, including
both primitive speech acts and conversation protocols, has been integrated. Such
an extension is based on an agent theory, in which agents have local beliefs about
the world and about the mental state of the other agents, and where commu-
nications are modelled as actions that transform the interlocutor mental state.
Our account of communication aims at coping with two main aspects: the state
change caused by a communicative act on an agent local beliefs, and the decision
strategy used by the agent for sending suitable answers to a received communica-
tion. To these aims, the semantics of primitive speech acts is described in terms
of effects on the mental state both in case the agent is the sender and in case it
is the recipient. Moreover, in the line of [20], we use conversation protocols as
decision procedures that allow agents to suitably respond to communications.
Conversation protocols are built upon speech acts, and specify communication
patterns for agent conversations. We took a subjective representation of such
protocols, by making hypothetical assumptions on the other ’s answers. They
have been easily integrated with the other policies that specify the agent behav-
ior, being both represented as complex actions by DyLOG procedure axioms. We
provide a goal-directed proof procedure in order to support agent’s reasoning
and planning in presence of communication. This procedure allows an agent to
reason about the interaction that it is going to enact with another agent, with
the aim of proving if there is a possible execution of the communication protocol,
after which a set of beliefs of interest (goal) will be true in its mental state.

The article is orgnized as follows: Section 2 introduces DyLOG with a partic-
ular attention to the tools that it offers for dealing with communication; Section
3 briefly shows the solution to the persistency problem that we adopted; in



Section 4 we describe the techniques applied for reasoning in presence of com-
munication; an example application follows, and the article is concluded by a
contextualization of the work in the literature and a few considerations.

2 The agent language

The agent language accounts both for atomic and complex actions, or procedures.
Atomic actions are either world actions, affecting the world, or mental actions,
i.e. sensing or communicative actions which only affect the agent beliefs. The
set of atomic actions consists of the set A of the world actions, the set C of
communicative acts, and the set S of sensing actions. For each atomic action a

and agent agi we introduce the modalities [aagi ] and 〈aagi〉. [aagi ]α means that
α holds after every execution of action a by agent agi; 〈a

agi〉α means that there
is a possible execution of a (by agi) after which α holds.For each atomic action
a in A∪C and agent agi we also introduce a modality Done(aagi) for expressing
that a has been executed. Done(aagi)α is read “a has been executed by agi;
before its execution, α was true”1. The modality 2 denotes formulas that hold
in all the possible agent mental states. Our formalization of complex actions
draws considerably from dynamic logic for the definition of action operators like
sequence, test and non-deterministic choice. However, differently than [19], we
refer to a Prolog-like paradigm: procedures are defined by means of (possibly
recursive) Prolog-like clauses. For each procedure p, the language contains also
the universal and existential modalities [p] and 〈p〉. The mental state of an agent
is described in terms of a consistent set of belief formulas. We enriched the belief
state of a DyLOG agent by allowing also nested beliefs, for representing what
other agents believe and reasoning on how they can be affected by communicative
actions. We use the modal operator Bagi to model the beliefs of agent agi. The
modality Magi is defined as the dual of Bagi (Magiϕ ≡ ¬Bagi¬ϕ). Intuitively
Magiϕ means that agi consider ϕ possible.

All the modalities of the language are normal; 2 is reflexive and transi-
tive, its interaction with action modalities is ruled by 2ϕ ⊃ [aagi ]ϕ. The epis-
temic modality Bagi is serial, transitive and euclidean. The interaction of the
Done(aagi) modality with other modalities is ruled by: ϕ ⊃ [aagi ]Done(aagi)ϕ
and Done(aagj )ϕ ⊃ BagiDone(aagj )ϕ (awareness), with agi = agj when aagi 6∈
C.

2.1 The agent theory

In the line of [5] the behavior of an agent agi can be specified by a domain
description, which includes, besides a specification of the agent belief state: (1)
action and precondition laws for describing the atomic world actions in terms
of their preconditions and effects on the executor’s mental state; (2) sensing
axioms for describing atomic sensing actions; (3) procedure axioms for describing
complex behaviors.

1 Done(aagi)> is read “the action a has been executed by agent agi”.



Belief state Agents are individuals, each having a mental state: its subjective

point of view on a dynamic domain. Then, we do not model the real world but
only the internal dynamics of each agent in relation to the changes caused by
actions. A mental state is a set of belief formulas (belief state), intuitively it
contains what agi (dis)believes about the world and about the other agents.
A belief state is a complete and consistent set of rank 1 and 2 belief fluents,
where a belief fluent F is a belief formula BagiL or its negation. L denotes a
belief argument, i.e. a fluent literal (f or ¬f), a done fluent (Done(aagi)> or
its negation), or a belief fluent of rank 1 (Bl or ¬Bl). We use l for denoting
attitude-free fluents: a fluent literal or a done fluent. Consistency is guaranteed
by the seriality of the Bagi modalities2. In essence a belief state provides, for
each agent agi, a three-valued interpretation of all the possible belief arguments
L: each L is either true, false, or undefined when both ¬BagiL and ¬Bagi¬L

hold. In the following we use UagiL for expressing the ignorance of agi about L.
World actions are described by their preconditions and effects on the actor ’s
mental state; they trigger a revision process on the actor’s beliefs. Formally,
action laws describe the conditional effects on agi’s belief state of an atomic
action a ∈ A, executed by agi itself. They have the form:

2(BagiL1 ∧ . . . ∧ BagiLn ⊃ [aagi ]BagiL0) (1)

2(MagiL1 ∧ . . . ∧MagiLn ⊃ [aagi ]MagiL0) (2)

Law (1) states that if agi believes the preconditions to an action a in a certain
epistemic state, after a execution, agi will also believe the action’s effects. (2)
states that when the preconditions of a are unknown to agi, after the execution
of a, agi will consider unknown also its effects3. Precondition laws specify mental
conditions that make an action in A∪ C executable in a state. They have form:

2(BagiL1 ∧ . . . ∧ BagiLn ⊃ 〈aagi〉>) (3)

agi can execute a when the precondition fluents of a are in agi’s belief state.
Sensing Actions produce knowledge about fluents; they are defined as non-
deterministic actions, with unpredictable outcome, formally modelled by a set
of sensing axioms. If we associate to each sensing action s a set dom(s) of literals
(domain), when agi executes s, it will know which of such literals is true:

[s]ϕ ≡ [
⋃

l∈dom(s)

sB
agi l]ϕ (4)

∪ is the choice operator of dynamic logic and sB
agi l, for each l ∈ dom(s), is an

ad hoc primitive action, that probes one of the possible outcomes of the sensing.

2 A belief state is not consistent when it contains: a belief Bagi l and its negation, or
the belief formulas BagjBagi l and BagjBagi¬l, or the belief formulas BagjBagi l and
Bagj¬Bagi l.

3 Laws of form (2) allow actions with non-deterministic effects, that may cause a loss
of knowledge, to be specified.



Complex actions We specify agent complex behaviors by means of procedure

definitions, built upon other actions. Formally, a complex action is defined by
means of a collection of inclusion axiom schema of our modal logic, of form:

〈p0〉ϕ ⊂ 〈p1; p2; . . . ; pm〉ϕ (5)

p0 is a procedure name and the pi’s (i = 1, . . . ,m) are either procedure names,
atomic actions, or test actions; the operator “;” is the sequencing operator of
dynamic logic. Procedure definitions may be recursive and procedure clauses can
be executed in a goal directed way, similarly to standard logic programs.

2.2 Communication

The integration of a communication theory in the general agent theory is ob-
tained by adding further axioms and laws to agi’s domain description. In this
section we will introduce a communication kit that allows the specification of
communicative behaviors.
Speech Acts Communication primitives are atomic actions, described in terms
of preconditions and effects on the agent mental state. They have the form
speech act(sender, receiver, l), where sender and receiver are agents and l is
either a fluent literal or a done fluent. Such actions can be seen as special mental
actions, affecting both the sender’s and the receiver’s mental state. In our model
we focused on the internal representation, that agents have of each speech act,
by specifying agi’s belief changes both when it is the sender and when it is the
receiver. They are modelled by generalizing the action and precondition laws of
form (1), (2), and (3), so to allow the representation of the effects of commu-
nications performed by other agents on agi mental state. Such a representation
provides the capability of reasoning about conversation effects.

Speech act specification is, then, twofold: one definition holds when the agent
is the sender, the other when it is the receiver. In the first case, the precondition
laws contain some sincerity condition that must hold in the agent mental state.
When agi is the receiver, the action is always executable. Let us consider some
primitive speech acts from the standard agent communication language FIPA-
ACL, and let us define them and their semantics within our framework:

inform(sender, receiver, l)
a) 2(Bagi l ∧ BagiUagj l ⊃ 〈inform(agi, agj , l)〉>)
b) 2([inform(agi, agj , l)]M

agiBagj l)
c) 2(BagiBagj authority(agi, l) ⊃ [inform(agi, agj , l)]B

agiBagj l)
d) 2(> ⊃ 〈inform(agj , agi, l)〉>)
e) 2([inform(agj , agi, l)]B

agiBagj l)
f) 2(Bagiauthority(agj , l) ⊃ [inform(agj , agi, l)]B

agi l)
g) 2(Magiauthority(agj , l) ⊃ [inform(agj , agi, l)]M

agi l)

Clause (a) states that an inform act can be executed when the sender believes l

and believes that the receiver does not know l. When agi is the sender it thinks



possible that the receiver will adopt its belief, although it cannot be certain -
autonomy assumption (b)-. If it believes that agj considers it a trusted authority

about l, it is confident that the receiver will adopt its belief (c). When agi is the
receiver, it believes that l is believed by the sender agj (e), but it adopts l as an
own belief only if it thinks agj is a trusted authority (f)-(g).

queryIf(sender, receiver, l)
a) 2(Uagi l ∧ ¬BagiUagj l ⊃ 〈queryIf(agi, agj , l)〉>)
b) 2(> ⊃ 〈queryIf(agj , agi, l)〉>)
c) 2([queryIf(agj , agi, l)]B

agiUagj l)

By queryIf agi asks agj if it believes that l is true. To perform a queryIf act, agi

must ignore l and it must believe that the receiver does not ignore l (a). After a
queryIf act, the receiver will believe that the sender ignores l.

refuseInform(sender, receiver, l)
a) 2(Uagi l ∧ BagiDone(queryIf(agj , agi, l))> ⊃ 〈refuseInform(agi, agj , l)〉>)
b) 2(> ⊃ 〈refuseInform(agj , agi, l)〉>)
c) 2([refuseInform(agj , agi, l)]B

agiUagj l)

By refuseInform an agent refuses to give an information it was asked for. The
refusal can be executed only if: the sender ignores l and it believes that the
receiver previously queried it about l. After a refusal the receiver believes that
the sender ignores l.
Get Message Actions are used for receiving messages from other agents. We
model them as a special kind of sensing actions, because from the agent per-
spective they correspond to queries for an external input, whose outcome is
unpredictable. The main difference w.r.t. normal sensing actions is that they are
defined by means of speech acts performed by the interlocutor. Formally, we use
get message actions defined by an axiom schema of the form:

[get message(agi, agj , l)]ϕ ≡ [
⋃

speech act∈Cget message

speech act(agj , agi, l)]ϕ (6)

Intuitively, Cget message is a finite set of speech acts, which are all the possible
communications that agi expects from agj in the context of a given conversation.
We do not associate to a get message action a domain of mental fluents, but we
calculate the information obtained by looking at the effects of the speech acts in
Cget message on agi’s mental state.
Conversation protocols We suppose individual speech acts to take place in
the context of predefined conversation protocols [20] that specify communica-
tion patterns. Each agent has a subjective perception of the communication
with other agents, for this reason each protocol has as many procedural repre-
sentations as the possible roles in the conversation. Let us consider, for instance
the yes no query protocol reported in Fig. 1, a simplified version of the FIPA
Query Interaction Protocol [16]. The protocol has two complementary views,
one to be followed for making a query (yes no queryQ) and one for responding
(yes no queryI). In the following get answer and get start definitions are instances
of the get message axiom.



Querier Informer

queryIf(Fluent)

X

inform(Fluent)

inform(~Fluent)

RefuseInform(Fluent)

Fig. 1. The AUML graph [21] represents the communicative interactions occurring
between the querier and the informer in the yes no query protocol.

〈yes no queryQ(Self,Other, F luent)〉ϕ ⊂
〈queryIf(Self,Other, F luent); get answer(Self,Other, F luent)〉ϕ

[get answer(Self,Other, F luent)]ϕ ≡
[inform(Other, Self, F luent) ∪ inform(Other, Self,¬Fluent) ∪
refuseInform(Other, Self, F luent)]ϕ

Intuitively, the right hand side of get answer represents all the possible answers
expected by agent Self from agent Other about Fluent, in the context of a
conversation ruled by the yes no queryQ protocol.

〈yes no queryI(Self,Other, F luent)〉ϕ ⊂
〈get start(Self,Other, F luent);
BSelfFluent?; inform(Self,Other, F luent)〉ϕ

〈yes no queryI(Self,Other, F luent)〉ϕ ⊂
〈get start(Self,Other, F luent);
BSelf¬Fluent?; inform(Self,Other,¬Fluent)〉ϕ

〈yes no queryI(Self,Other, F luent)〉ϕ ⊂
〈get start(Self,Other, F luent);
USelfFluent?; refuseInform(Self,Other, F luent)〉ϕ

The yes no queryI protocol specifies the behavior of the agent Self , that waits
a query from Other; afterwards, it replies according to its beliefs on the query
subject. get start is a get message action ruled by the following axiom:

[get start(Self,Other, F luent)]ϕ ≡ [queryIf(Other, Self, F luent)]ϕ

We can define the communication kit of an agent agi, CKitagi , as the triple
(ΠC , ΠCP , ΠSget), where ΠC is the set of simple action laws defining agi’s prim-
itive speech acts, ΠSget is a set of axioms for agi’s get message actions and ΠCP

is the set of procedure axioms specifying the agi’s conversation protocols. In this
extension of the DyLOG language, we define as Domain Description for agent
agi, a triple (Π,CKitagi , S0), where CKitagi is agi communication kit, S0 is the



initial set of agi’s belief fluents, and Π is a tuple (ΠA, ΠS , ΠP), where ΠA is the
set of agi’s world action and precondition laws, ΠS is a set of axioms for agi’s
sensing actions, ΠP a set of axioms that define complex actions.

3 Dealing with persistency

We adopt a non-monotonic solution to the persistency problem, by proposing
an abductive semantics for our modal language, in which abductive assumptions
are used to model persistency of beliefs fluents, from a state to the following
one, when an action is performed. The solution is a generalization of the one
in [5], so to deal with nested beliefs and communicative actions, and consists in
maximizing persistency assumptions about epistemic fluents after the execution
of action sequences. In particular we assume that any belief fluent F which holds
in a given state persists through an action, unless it is inconsistent to assume
so, i.e. unless ¬F holds after the action execution.

Note that belief states are inconsistent when they contain either a belief
Bagi l and its negation, or the belief formulas BagjBagi l and BagjBagi¬l, or the
belief formulas BagjBagi l and Bagj¬Bagi l. However, from the seriality of the Bagi

operators, the general formula schema for the rank 2 beliefs

BagiBagj¬ϕ ⊃ ¬BagiBagj ϕ (7)

holds in our logic for any two agents agi and agj
4. This property guaran-

tees that when an inconsistency arises “locally” in the beliefs ascribed from
agi to some other agent, the beliefs of agi itself will be inconsistent. There-
fore, in case of a nested epistemic fluent BagiBagj l, the persistency is correctly

blocked when a locally inconsistent fluent BagiBagj¬l becomes true after an
action execution, because ¬BagiBagj l can be derived from (7). Given these
considerations, we can adopt the same approach to the definition of an ab-
ductive semantics, that we followed in [5]. In particular, we adopt the same
style used by Eshghi and Kowalski in the definition of the abductive seman-
tics for negation as failure [14]. We define as abducibles a new set of atomic
propositions of the form M[a1] . . . [am]F .5 Their meaning is that the fluent
expression F can be assumed to hold in the state obtained by the execution
of the primitive actions a1, . . . , am. Each abducible can be assumed to hold,
if it is consistent with the domain description (Π,CKitagi , S0) and with the
other assumed abducibles. Then we add to the axiom system, that character-
izes the logic defined by the domain description, the persistency axiom schema:
[a1] . . . [am−1]F∧M[a1] . . . [am−1][am]F ⊃ [a1] . . . [am−1][am]F , where a1, . . . , am

are primitive actions and F is a belief fluent. It means that if F holds after
a1, . . . , am−1, and it can be assumed to persist after action am (i.e., it is con-
sistent to assume M[a1] . . . [am]F ), then we can conclude that F holds after the

4 Actually, the general schema for any rank of nesting holds.
5 Notice that M is not a modality. Mα denotes a new atomic proposition. Mα means

“α is consistent”, analogously to default logic.



sequence of actions a1, . . . , am. The definition of abductive solution is given on
the line of [5] and is here omitted.

4 Reasoning in presence of communication

Given a domain description, we can reason about it and formalize the temporal

projection problem and the planning problem by existential queries of form:

〈p1〉〈p2〉 . . . 〈pm〉Fs (8)

Each pk, k = 1, . . . ,m in (8) may either be an (atomic or complex) action
executed by agi or an external speech act, that belongs to CKitagi (by the word
external we denote a speech act in which the agent plays the role of the receiver).
By checking if a query of form (8) succeeds we can cope with the planning
problem. In fact this corresponds to answering the question “is there an execution
trace of p1, . . . , pn leading to a state where the conjunction of belief fluents
Fs holds for agi?”. Such an execution trace is a plan to bring about Fs. The
procedure definition constrains the search space. Notice that when all the pk

in the query are atomic actions that belong to A ∪ C, by checking if the query
succeeds, we cope also with the temporal projection problem: “does Fs hold for
agi, after the execution of the action sequence a1, . . . , am?”.

In presence of communication, the planning and the temporal projection
problems turn respectively into the problem of reasoning about conversation

protocols and reasoning about simple conversations, where a conversation is a
sequence of speech acts. This allows, for instance, an agent to investigate the
possible changes to its mental state, produced by a specific conversation, or if a
conversation is an instance of some predefined protocol [13]. In the case of tem-
poral projection, the action sequence will contain both actions in which the agent
is the sender and actions in which it is the receiver. In the case of conversation
protocols, since they represent conversation schemas that guide the communica-
tive behavior of the agent, by answering to the query (8) we find a conversation,
which is an instance of the protocol, after which the desired condition Fs holds.
In this process we treat get message actions as sensing actions, whose outcome
cannot be known at planning time. Since agents cannot read each other’s mind,
they cannot know in advance the answers that they will receive. For this reason
all of the possible alternatives are to be taken into account; we can foresee them
because of the existence of the protocol. Therefore, the extracted plan will be
conditional, in the sense that for each get message and for each sensing action
it will contain as many branches as possible action outcomes. Each path in the
resulting tree is a linear plan that brings about the desired condition Fs. More
formally, a conditional plan σ is either:

– an action sequence a1; . . . ; am, with m ≥ 0;
– if a1; . . . ; am (m ≥ 0) is an action sequence, s ∈ S is a sensing action,

and σ1, . . . , σt are conditional plans then a1; . . . ; am; s; ((Bagi l1?);σ1 ∪ . . . ∪
(Bagi lt?);σt), where l1, . . . , lt ∈ dom(s);



– if a1; . . . ; am (m ≥ 0) is an action sequence, g ∈ S is a get message action, and
σ1, . . . , σt are conditional plans then a1; . . . ; ak; g; ((BagiDone(c1)>?);σ1 ∪
. . . ∪ (BagiDone(ct)>?);σt), where c1, . . . , ct ∈ Cg.

The proof procedure is a natural evolution of the work in [5], it is goal-
directed, and based on negation as failure (NAF). NAF is used to deal with
the persistency problem to verify that the complement of a mental fluent is not
true after an action execution. The proof procedure allows agents to find linear

and conditional plans for achieving a goal from an incompletely specified initial
state. The soundness w.r.t. the abductive semantics can be proved by imposing
domain descriptions to be e-consistent, i.e. for any action the set of their effects
must be consistent. Moreover, the extracted plans have the following property:
they always lead to a state in which the desired condition Fs holds, for all the
possible results of the sensing actions.

Figure 2 shows the proof procedure that constructs linear plans, by making
assumptions on sensing actions and on external communicative actions. Figure 3
introduces a variant for finding conditional plans. In general, we will need to
establish if a goal holds at a given state. Hence, we will write:

a1, . . . , am ` 〈p1; p2; . . . ; pn〉Fs with answer (w.a.) σ

to mean that the query 〈p1; p2; . . . ; pn〉Fs can be proved from the domain de-
scription at the state a1, . . . , am with answer σ. σ is an action sequence which
represents the state resulting by the execution of p1, . . . , pn in the current state.
We denote by ε the empty action sequence that represents the initial mental
state. Rules (1–6) in Fig. 2 deal with the execution of complex, sensing, primi-
tive and test actions. The complex actions in the query are reduced to a sequence
of primitive and test actions; the proof procedure verifies if the primitive actions
can be executed and if the tests are successful. To do this, it reasons about the
execution of the primitive actions and computes the values of fluents at different
states. The value of fluents at a state is not explicitly recorded but it is computed
when needed in the computation. Rules (7–14), allow the values of mental fluents
to be determined and, in particular, to determine if Fs is true after a1, . . . , am.
An epistemic fluent F holds in the current state if: either F is an immediate
effect of action am, whose preconditions hold in the previous state (8a); or am is
an ad hoc primitive action, used in the definition of a sensing action (8b); or F

persists from the previous state (8c); or we are in the initial state and F holds
(8d). Rule (8c) deals with the frame problem: F persists from a state to the next
one unless am makes ¬F true; not represents NAF. Rules (10-12) deal with
the seriality (10), transitivity (11 and 11’), and euclideanity (12 and 12’) of the
beliefs. Rules (13) and (14) deal with the simmetry and awareness of action’s
execution. Fig. 3 reports the two rules that substitute (4) and (5) in Fig. 2 to
build conditional plans. The new rules deal with the execution of sensing and get
message actions, respectively. As a difference with the previous proof procedure,
when a sensing action is executed, the procedure considers all the possible out-

comes, thus producing many branches. If all branches lead to success, the main



1)

a1···m ` 〈p′
1; . . . ; p

′
n′ ; p2···n〉Fs w. a. σ

a1···m ` 〈p; p
2···n〉Fs w. a. σ

where p ∈ P and
〈p〉ϕ ⊂ 〈p′

1; . . . ; p
′
n′〉ϕ ∈ ΠP ∪ ΠCP

2)

a1···m ` Fs′ a1···m ` 〈p
2···n〉Fs w. a. σ

a1···m ` 〈(Fs′)?; p
2···n〉Fs w. a. σ

3)

a1···m ` Fs′ a1···m, a ` 〈p
2···n〉Fs w. a. σ

a1···m ` 〈a; p
2···n〉Fs w. a. σ

where a ∈ A ∪ C, and
2(Fs′ ⊃ 〈a〉>) ∈ ΠA ∪ ΠC

4)

a1···m ` 〈sB
agi l; p

2···n〉Fs w. a. σ

a1···m ` 〈s; p
2···n〉Fs w. a. σ

where s ∈ S and
l ∈ dom(s)

5)

a1···m ` 〈c; p
2···n〉Fs w. a. σ

a1···m ` 〈g; p
2···n〉Fs w. a. σ

where g ∈ Sget and
[g]ϕ ≡ [

⋃
c∈Cg

c]ϕ

6)

a1···m ` Fs

a1···m ` 〈ε〉Fs w. a. σ where σ = a1; . . . ; am

7) a1···m ` >

8a)

a1···m−1 ` Fs′

a1···m ` F
where m > 0 and

2(Fs′ ⊃ [am]F ) ∈ ΠA

8b) a1···m ` F if am = sF

8c)

not a1···m ` ¬F a1···m−1 ` F

a1···m ` F where m > 0

8d) ε ` F if F ∈ S0

9)

a1···m ` Fs′ a1···m ` Fs′′

a1···m ` Fs′ ∧ Fs′′

10)

a1···m ` BagiL

a1···m ` MagiL

11)

a1···m ` Bagi l

a1···m ` BagiBagi l 11’)

a1···m ` MagiMagi l

a1···m ` Magi l

12)

a1···m ` Magi l

a1···m ` BagiMagi l 12’)

a1···m ` MagiBagi l

a1···m ` Bagi l

13)

a1···m ` Done(a)>

a1···m ` BagiDone(a)> 14) a1···m ` Done(am)>

Fig. 2. A goal directed proof procedure for DyLOG. Legend: a1···m ≡ a1, . . . , am and
p
2···n ≡ p2, . . . , pn. l denotes a fluent literal or a done fluent while L denotes l or a

belief fluent of rank 1.



4-bis)

∀lk ∈ F , a1···m ` 〈sB
agi l; p

2···n〉Fs w. a. a1; . . . ; am; sB
agi l; σ′

k

a1···m ` 〈s; p
2···n〉Fs w. a. a1; . . . ; am; s; (

⋃
k=1...t

(Bagi lk?); σ′
k)

5-bis)

∀ck ∈ Cg, a1···m ` 〈ck; p
2···n〉Fsi w. a. a1; . . . ; am; ck; σ′

k

a1···m ` 〈g; p
2···n〉Fsi w. a. a1; . . . ; am; g; (

⋃
k=1...t

(BagiDone(ck)>?); σ′
k)

Fig. 3. A variant of the proof procedure for extracting conditional plans. In (4-bis)
s ∈ S and F = {l1, . . . , lt} = dom(s); in (5-bis) g ∈ S and {c1, . . . , ct}= Cg.

query succeeds. In such a case, the conditional plan will contain the branches as
alternative sub-plans. The same holds for the execution of get message actions.

Example 1. Let us consider the protocol get ticket 1C , describing from the cus-
tomer perspective the interaction with a cinema booking service:

(a) 〈get ticket 1C(Self, WebS, F ilm)〉ϕ ⊂

〈yes no queryQ(Self, WebS, available(Film)) ; BSelfavailable(Film)? ;
get info(Self, WebS, cinema(C)) ; yes no queryI(Self, WebS, pay by(credit card)) ;

BSelfpay by(credit card)? ; inform(Self, WebS, cc number);
get info(Self, WebS, booked(Film))〉ϕ

(b) 〈get ticket 1C(Self, WebS, F ilm)〉ϕ ⊂

〈yes no queryQ(Self, WebS, available(Film)) ; BSelfavailable(Film)? ;
get info(Self, WebS, cinema(C)) ; yes no queryI(Self, WebS, pay by(credit card));

¬BSelfpay by(credit card)? ; get info(Self, WebS, pay by(cash));
get info(Self, WebS, booked(Film))〉ϕ

(c) 〈get ticket 1C(Self, WebS, F ilm)〉ϕ ⊂

〈yes no queryQ(Self, WebS, available(Film));¬BSelfavailable(Film)?〉ϕ
(d) [get info(Self, WebS, F luent)]ϕ ≡ [inform(WebS, Self, F luent)]ϕ

get ticket 1C permits both to book a ticket to be paid later by cash and to buy
it by credit card; suppose it is followed by the web service click ticket. Given the
query 〈get ticket 1C(pa, click ticket, akira)〉Bpa¬Bclick ticketcc number, a personal

assistant pa could reason on it to determine if there is a conversation between
pa and click ticket about the movie akira, after which the service does not

know the credit card number of the user. Since such a conversation exists, the
agent pa finds an execution trace of get ticket 1C , which corresponds to a per-

sonalized conditional dialogue plan between itself and the provider click ticket,
always leading to satisfy the user goal of not giving the credit card number. For
a deeper discussion about personalization of web service fruition see [3].

5 Conclusion and related work

Communication among agents has extensively been studied by the AI commu-
nity. One of the most popular approaches, derived from the work of philosophers
and linguists carried on in the sixties [2, 23], considers rationality as a key con-
cept. In other words, communicative acts are interpreted as rational actions with



preconditions and effects on the agent mental state, that can be planned and
reasoned about [11, 1, 10]; this approach lead to the definition of well-known
ACLs like FIPA [17]. The semantics of communication can be given at different
levels of detail. In many formal approaches [11, 10, 6, 18] the focus is posed at the
level of the single speech acts and the task of reasoning about communication
and planning is achieved based on their preconditions and desired effects, with-
out considering them in the context of a conversation protocol. Indeed many
of these approaches [6, 18] have been born for the developement of intelligent
human-machine dialogue systems, then they are focussed on techniques where
recognizing intentions in communications is fundamental for producing a suit-
able reply. On the line of [20], we argue that the use of conversation protocols
makes the design of software components that must interact easier: the interop-
erability of the various components (often separately developed) is improved and
the verification of compliance to the desired standards is simplified. By working
at the level of protocols, agents can more easily be seen as individuals, devel-
oped independently, on different platforms and with different approaches, a very
attractive view in the applicative field of web applications and web services. For
all these reasons we focus on a semantics of communication that supports the
specification and reasoning about single speech acts, as well as the specification
and reasoning about speech acts in the context of a conversation protocol. In
our framework, protocols are intended as tractable decision procedures, that the
agent can use for selecting and producing communicative acts, suitable to the
agent goals. Since they limit the domain of possible interactions, an advantage
is that they reduce the search space.

More specifically, we have presented an approach to reason about conver-
sation protocols within the framework of an agent language based on a modal
logic of action and beliefs. The approach extends with communication the pro-
posal to model rational agents in [5]. We used conversation protocols to provide
our agents decision procedures for suitably responding to communications. We
took a subjective representation of conversation protocols, by making hypothet-
ical assumptions on the other’s answers. As a consequence protocols have been
easily integrated with other policies defining the agent’s behavior, being both
represented as procedures specified in DyLOG. Notice that, since we are only
interested in reasoning about the local mental state’s dynamics, our approach
differs from other logic-based approaches to communication in multi-agent sys-
tems, as the one taken in [24], where communicative actions affect the global
state of a multi-agent system and the target is to prove global properties of
the overall multi-agent system’s execution. Instead our focus on the internal
specification of interaction protocols for planning dialogue’s moves is closer to
the one taken in [22], where negotiation protocols, expressed by sets of dialogue
constraints, are included in the agent program and used for triggering dialogues
that achieve goals. However such an approach is not aimed at implementing the
kind of reasoning about conversations we focused on: it does not support plan
extraction and it cannot exploit the information about the others, that instead
we can supply by nested beliefs.



References

1. J. F. Allen. Recognizing intentions from natural language utterances. In M. Brady
and R.C. Åqvist, editors, Computational models of discourse. MIT Press, Cam-
bridge, MA, 1983.

2. J.A Austin. How to do things with words. Harvard University Press, 1962.
3. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about interaction

for personalizing web service fruition. In Proc. of WOA 2003: dagli Oggetti agli
Agenti, Cagliari, Italy, september 2003. to appear.

4. M. Baldoni, C. Baroglio, V. Patti, and L. Torasso. Using a rational agent in
an adaptive web-based tutoring system. In Proc. of the Workshop on Adaptive
Systems for Web-Based Education, AH2002, Malaga, Spain, 2002.

5. M. Baldoni, L. Giordano, A. Martelli, and V. Patti. Reasoning about Complex
Actions with Incomplete Knowledge: A Modal Approach. In Proc. of ICTCS’2001,
volume 2202 of LNCS, pages 405–425. Springer, 2001.

6. P. Bretier and D. Sadek. A rational agent as the kernel of a cooperative spoken
dialogue system: implementing a logical theory of interaction. In Intelligent Agents
III, proc. of ECAI-96 Workshop on Agent Theories, Architectures, and Languages
(ATAL-96), LNAI 1193. Springer-Verlag, 1997.

7. J. Bryson, D. Martin, S. McIlraith, and L. A. Stein. Agent-based composite services
in DAML-S: The behavior-oriented design of an intelligent semantic web, 2002.

8. R. Chinnici, M. Gudgin, J. J. Moreau, and S. Weerawarana. Web Services Pre-
scription Language (WSDL) version 1.2, 2003. Working Draft.

9. The DAML-S coalition. DAML-S: Web service description for the semantic web.
In the 1st Int. Semantic Web Conference (ISWC), Sardinia, Italy, 2002.

10. P.R. Cohen and H. Levesque. Rational interaction as the basis for communication.
In P.R Cohen, M.E. Pollack, and J. Morgan, editors, Intentions in Communication,
pages 221–256, 1990.

11. P.R. Cohen and C.R. Perrault. Elements of a plan-based theory of speech acts.
Cognitive Science, 3(3):177–212, 1979.

12. M. Dastani, J. van der Ham, and F. Dignum. Communication for goal directed
agents. In Proc. of Workshop on Agent Communication Languages and Conversa-
tion Policies, AAMAS’02, Bologna, Italy, 2002.

13. F. Dignum and M. Greaves. Issues in agent communication. In Issues in Agent
Communication, volume 1916 of LNCS, pages 1–16. Springer, 2000.

14. K. Eshghi and R. Kowalski. Abduction compared with Negation by Failure. In
Proc. of ICLP ’89, Lisbon, 1989. The MIT Press.

15. T. Finin, Y. Labrou, and J. Mayfield. KQML as an Agent Communication Lan-
guage. In J. Bradshaw, editor, Software Agents. MIT Press, 1995.

16. FIPA. FIPA 2000. Technical report, FIPA (Foundation for Intelligent Physical
Agents), November 2000.

17. FIPA. FIPA 2002. Technical report, FIPA (Foundation for Intelligent Physical
Agents), 2002.

18. A. Herzig and D. Longin. Beliefs dynamics in cooperative dialogues. In Proc. of
AMSTELOGUE 99, 1999.

19. H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG: A
Logic Programming Language for Dynamic Domains. J. of Logic Programming,
31:59–83, 1997.

20. A. Mamdani and J. Pitt. Communication protocols in multi-agent systems: A de-
velopment method and reference architecture. In Issues in Agent Communication,
volume 1916 of LNCS, pages 160–177. Springer, 2000.



21. J. H. Odell, H. Van Dyke Parunak, and B. Bauer. Representing agent interac-
tion protocols in UML. In Agent-Oriented Software Engineering, pages 121–140.
Springer, 2001.

22. F. Sadri, F. Toni, and P. Torroni. Dialogues for Negotiation: Agent Varieties and
Dialogue Sequences. In Proc. of ATAL’01, Seattle, WA, 2001.

23. J.R. Searle. Speech Acts. Cambridge University Press, New York, 1969.
24. S. Shapiro, Y. Lespérance, and H. J. Levesque. Specifying communicative multi-

agent systems. In Agents and Multi-Agent Systems - Formalisms, Methodologies,
and Applications, volume 1441 of LNAI, pages 1–14. Springer-Verlag, 1998.


