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Abstract. In this article we interpret the Semantic Web and Web Ser-
vice issues in the framework of multi-agent interoperating systems. We
will advocate the application of results achieved in the research area of
reasoning about actions and change by showing scenarios and techniques
that could be applied.

1 Introduction

The fast diffusion of Internet and the World Wide Web has inspired new paradigms
for the development of applications distributed over the network, leading to the
concept of “web service”. We can consider a web service as a program (software)
or a device (hardware) accessible through a network, that can be invoked in
an automatic way by programs or other web services. This perspective brings
along many interesting issues: how to describe the function executed by a web
service in a machine-interpretable way? How to advertise web services? How to
choose among the providers of apparently identical services? All these questions
and many others demand for the definition of tools and languages for handling
semantic information, not only ontologies but also information about the func-
tioning of services.

The standardization organizations developed a series of languages for rep-
resenting the semantic contents of a resource accessible on the web, from the
Resource Description Framework (RDF), to OWL and DAML+OIL for ontology
description, to WSDL [6] and DAML-S [7] for web service semantic description.
DAML-S inherited from the experience of the research community that studies
agent systems and their logic formalizations and draws considerably from the
action metaphor: a service can be viewed as an action (atomic or complex) with
preconditions and effects, that can modify the state of the world and the state
of agents that work in the world. Such a semantic characterization of the service
as an action is described in the so called DAML-S process model and can be
used for accomplishing tasks like automatic identification of a service of interest,
automatic invocation, automatic composition of services, and so forth.

In this line, one promising direction of research, that we mean to investigate,
consists in exploiting results achieved by the community that studies logic for AI



and, in particular, reasoning about actions and change. Indeed, the availability of
semantic information about web resources enables the application of reasoning
techniques, such as constraint reasoning, non-monotonic reasoning, and temporal
reasoning. The main purpose of adopting reasoning techniques is to allow the
design of flexible systems, that can adapt to different users and that are open to
interact with one another in ways that cannot be fully foreseen at design time
and, thus, require such systems to reason for taking autonomous decisions.

Some work in this direction has already been carried on in [19], where, within
the context of the DAML-S project [5], the reasoning techniques supported by
GOLOG, an agent language based on the situation calculus, are applied to pro-
duce composite and customized services. Actually, when a service is described in
terms of the function that it executes, with its preconditions and effects, the use
of agents that can reason about the consequences of its invocation is a natural
choice: a rational agent is by definition characterized by a high-level of auton-
omy, it has an own internal state containing information about the world and
about its goals, it can reason about how to behave for fulfilling them, it can
react to alterations of the environment. Agents have also social capabilities that
enable them to interact both with other agents or devices as well as with hu-
man beings. This leads us to claim that there is another fundamental behavior
level, currently not addressed by the proposers of DAML-S, that should instead
be seriously considered and explicitly incorporated in the high-level service de-
scription: the interaction level, concerning the communicative behavior of a web
service, and more specifically the interaction protocol that it adopts for com-
municating with its clients or partners. Our proposal is set in a framework in
which the web service is an agent that communicates with other agents in a
FIPA-like Agent Communication Language (ACL) using predefined protocols.
In this context, the communicative behavior of a service can be expressed as a
conversation protocol in a logic language, at high (not at network) level. Having
a logic specification of the protocol, it is possible to reason about the effects of
engaging specific conversations, and to verify properties of the protocol.

In this paper we introduce two related approaches to reasoning about com-
municative actions by using as a running example a simple scenario of a web
service. Both approaches are based on an action theory where communicative
actions are formalized with a set of action and precondition laws. In Section 4
we show how the logic language DyLOG can reason about the changes caused by
a communicative action to the beliefs of the involved agents, and how this can
be exploited for realizing new forms of personalization in web service fruition.
In Section 5 we present a more general action theory which allows to specify
systems of communicating agents and to verify properties of such systems con-
taining temporal constraints.

2 Communication between agents

Communication and dialogue have intensively been studied in the context of
formal theories of agency [8]. In particular, a great deal of attention has been



devoted to the definition of standard agent communication languages (ACL),
such as FIPA and KQML. The crucial issue was to achieve interoperability in
open agent systems, characterized by the interaction of heterogeneous agents,
where it is fundamental to have a universally shared semantic.

Agent communication languages are complex structures because a commu-
nicative act must specify many kinds of information, such as its content and the
kind of performative. The definition of formal semantics for individual commu-
nicative acts has been one of the major topics of research in this field. Most of
the proposals are ultimately based on the philosophical theory of speech acts
developed by Austin and Searle in the sixties. Following the basic insight of the
speech act theory, communications are not just considered as transmitting infor-
mation but as actions that, instead of modifying the external world, affect the
mental states of the involved agents. As a consequence, individual speech act
semantic has been given in terms of preconditions and effects on mental atti-
tudes, as it is commonly done with action semantic, and standard techniques for
reasoning about change have been exploited for proving conversation properties,
planning communication with other agents and answer selection. In this line,
many approaches in the literature are based on variant of modal logic, in which
mental attitudes, such as beliefs, goals and intentions, as well as communicative
acts are represented by modalities [4, 18, 9].

Only recently the attention has been moved to formalize those aspects of
communication that are related to the conversational context in which commu-
nicative acts occur [21]. The formalization of conversation policies adds a higher
semantic level, which improves the interoperability of the various components
(often separately developed) and simplifies the verification of compliance to the
desired standards. In the area of agent languages based on logic, some exam-
ples of definition of protocols for guiding the agent communicative behavior can
be found in [26, 1]. By working at the level of protocols, agents can more eas-
ily be seen as individuals, developed independently, on different platforms and
with different approaches, a very attractive view in the applicative field of web
applications and web services. For all these reasons we focus on a semantics of
communication that supports the specification and reasoning about single speech
acts, as well as the specification and reasoning about speech acts in the context
of a conversation protocol.

Instead of referring to a mentalistic approach as described above, some au-
thors have proposed a social approach to agent communication [27, 14]. The
mental approach is not well suited for the verification of an “open” multi-agent
system, where the history of communications is observable, but the internal
states of the single agents may not be observable. In contrast, in the social
approach communicative actions affect the “social state” of the system, rather
than the internal states of the agents. The social state records the social facts,
like the permissions and the commitments of the agents, which are created and
modified in the interactions among them. The dynamics of the system emerges
from the interactions of the agents, which must respect these permissions and
the commitments (if they are compliant with the protocol). The social approach



provides a high level specification of the protocol, and does not require the rigid
specification of all the allowed action sequences by means of finite state diagrams.

3 A simple scenario

In this section we will define a simple scenario aimed at showing the advantage
of expressing and reasoning about the interaction protocol followed by a web
service. Let us consider a software agent (we will refer to it as pa) whose task is
to crawl the internet for executing specific requests of a given user; indeed, pa is a
user personal assistant. Let us suppose that pa current task is to book a ticket at a
cinema where a given movie is shown. In a web service context, it will have to look
for a provider of a cinema booking service by consulting a registry, and interact
with it accordingly, supplying the requested information. As a further condition,
let us imagine that the user requested the personal assistant not to use his
credit card number in the upcoming transaction. Suppose also that two cinema
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Fig. 1. The three AUML graphs [23] represent the communicative interactions oc-
curring between the customer (pa) and the provider; (a) and (b) are followed by
click ticket, (c) is followed by all cinema. Formulas among square brackets represent
conditions on the execution of the speech act.

booking services are available, called click ticket and all cinema respectively,
that apply two different interaction protocols, one permitting both to book a
ticket to be paid later by cash (Fig. 1 (a)) and to buy it by credit card (Fig. 1
(b)), the other allowing only ticket purchase by credit card (Fig. 1 (c)). These
descriptions would induce a human assistant to choose click ticket, selecting the
option to pay cash; this choice can be done because we can reason about the
consequences of communicative acts and procedures.

4 Interaction protocols in DyLOG

In the Web service scenario, we are interested in formal languages that sup-
port reasoning techniques for proving existential properties of the kind “given



a protocol and a set of desiderata, is there a specific conversation, respecting
the protocol, that also satisfies the desiderata?”. In different words, the scenario
demands for some technique that allows the personalization of the interaction.
We will show how reasoning methods supported by the agent language DyLOG
can be exploited in order to obtain this kind of personalization.

DyLOG is a high-level logic programming language for modelling and pro-
gramming rational agents [3, 24, 1]. It is based on a modal theory of actions and
mental attitudes where modalities are used for representing actions as well as
beliefs for modelling the agent’s mental state. It accounts both for atomic and
complex actions, or procedures. Atomic actions are either world actions, affect-
ing the world, or mental actions, i.e. sensing and communicative actions which
only affect the agent beliefs. Complex actions are defined through (possibly re-
cursive) definitions, given by means of Prolog-like clauses and by making use
of action operators like sequence, test and non-deterministic choice. The action
theory allows to cope with the problem of reasoning about complex actions with
incomplete knowledge and in particular to address the temporal projection and
planning problem. Intuitively DyLOG allows to specify the behavior of a rational
agent that reasons about its own behavior, chooses a course of actions condi-
tioned on its mental state and can use sensors and communication for obtaining
fresh knowledge. In this spirit it has already been used with success for agent
programming, in implementing a web application where a virtual tutor helps
students to build personalized study curricula [2], based on the description of
courses viewed as actions (an application that bears many analogies with web
service process model description and usage).

Let us recall how to specify and reason about communicative behaviors in
DyLOG, by focussing on the web service application scenario depicted above.
For a detailed description of the overall agent theory see [3, 1].

4.1 Specifying communicative behaviours in DyLOG

Let us start with FIPA-like speech acts. Following the mentalistic approach, in
DyLOG they are considered atomic actions, described in terms of preconditions
and effects on the agent mental state, having form speech act(agi, agj , l), where
agi (sender) and agj (receiver) are agents and l (a fluent) is the object of the
communication. Since speech acts can be seen as mental actions, affecting both
the sender’s and the receiver’s mental state, we have modelled them by general-
izing non-communicative action definitions, so to allow also the representation
of the effects of an action executed by some other agent on the current agent
mental state, described by a consistent set of belief fluents. In fact in our for-
malization each agent has a twofold, personal representation of the speech act:
one is to be used when it is the sender, the other when it is the receiver. Such
a representation provides the capability of reasoning about conversation effects
from the subjective point of view of the agent holding the representation. In the
speech act specification that holds when the agent is the sender, the precondi-
tions contain some sincerity condition that must hold in its mental state. When
it is the receiver, instead, the action is always executable. Let us consider, as



an example, a primitive speech act from the standard agent communication lan-
guage FIPA-ACL, and let us define its semantics within the DyLOG framework:
the inform speech act (more examples can be found in [24]).

a) 2(BSelf l ∧ BSelfUOtherl ⊃ 〈inform(Self,Other, l)〉>)
b) 2([inform(Self,Other, l)]MSelfBOtherl)
c) 2(BSelfBOtherauthority(Self, l) ⊃ [inform(Self,Other, l)]BSelfBOtherl)
d) 2(> ⊃ 〈inform(Other, Self, l)〉>)
e) 2([inform(Other, Self, l)]BSelfBOtherl)
f) 2(BSelfauthority(Other, l) ⊃ [inform(Other, Self, l)]BSelf l)

Clause (a) states that Self will execute an inform act only if it believes l (we use
the modal operator Bagi to model the beliefs of agent agi) and it believes that
the receiver (Other) does not know l. It also considers possible that the receiver
will adopt its belief (the modal operator Magi is defined as the dual of Bagi ,
intuitively Magiϕ means the agi considers ϕ possible), clause (b), although it
cannot be certain about it -autonomy assumption-. If agent Self believes to be
considered a trusted authority about l by the receiver, it is also confident that
Other will adopt its belief, clause (c). Instead, when Self is the receiver, the
effect of an inform act is that Self will believe that l is believed by the sender
(Other), clause (e), but Self will adopt l as an own belief only if it thinks that
Other is a trusted authority, clauses (f).

DyLOG agents can be provided with a set of conversation protocols, that
build on individual speech acts and specify communication patterns guiding the
agent communicative behavior during a protocol-oriented dialogue. Reception
of a messages is modelled as a special kind of sensing action, what we call get
message actions. Indeed from the agent perspective receiving a message corre-
sponds to query for an external input, whose outcome is unpredictable. The main
difference w.r.t. normal sensing actions is that get message actions are defined
by means of speech acts performed by the interlocutor. Protocols are expressed
by means of a collection of procedure axioms of the action logic, having form
〈p0〉ϕ ⊂ 〈p1〉〈p2〉 . . . 〈pn〉ϕ, where p0 is the procedure name the pi’s can be i’s
communicative acts or special sensing actions for the reception of message. Each
agent has a subjective perception of the communication with other agents, for
this reason each protocol has as many procedural representations as the possi-
ble roles in the conversation. Let us consider for instance the personal assistant
introduced in Section 3, its aim is to look for a cinema booking service that
satisfies the user’s requests. The web service, click ticket follow the interaction
protocol get ticket 1, that permits both to book a ticket to be paid later by cash
and to buy it by credit card. Let us suppose that such protocol is a part of the
DAML-S descriptions of click ticket. Since the protocol is meant to allow the
interaction of two agents, it has two complementary views: the view of the web
service and the view of the client, i.e. pa. Intuitively, if one of the two agents
plays the part of the sender of a piece of information, the other should play the
part of the receiver. In the following we will report the view –written in DyLOG–
that pa has of the protocol get ticket 1. We refer to it as get ticket 1C . Notice
that it builds on primitive speech acts as well as on procedures for making a



query (yes no queryQ) or replying to a query (yes no queryI) according to the
FIPA Query Interaction protocol [9].

(a) 〈get ticket 1C(Self,WebS, F ilm)〉ϕ ⊂
〈yes no queryQ(Self,WebS, available(Film));
BSelfavailable(Film)? ; get info(Self,WebS, cinema(C));
yes no queryI(Self,WebS, pay by(credit card));
BSelfpay by(credit card)? ; inform(Self,WebS, cc number);
get info(Self,WebS, booked(Film))〉ϕ

(b) 〈get ticket 1C(Self,WebS, F ilm)〉ϕ ⊂
〈yes no queryQ(Self,WebS, available(Film));
BSelfavailable(Film)? ; get info(Self,WebS, cinema(C));
yes no queryI(Self,WebS, pay by(credit card));
¬BSelfpay by(credit card)? ; get info(Self,WebS, pay by(cash));
get info(Self,WebS, booked(Film))〉ϕ

(c) 〈get ticket 1C(Self,WebS, F ilm)〉ϕ ⊂
〈yes no queryQ(Self,WebS, available(Film));¬BSelfavailable(Film)?〉ϕ

(d) [get info(Self,WebS, F luent)]ϕ ⊂ [inform(WebS, Self, F luent)]ϕ

Protocol get ticket 1C works in the following way: the personal assistant (Self)
is supposed to begin the interaction. After checking if the requested movie is
available in some cinema by the yes no queryQ protocol, it should wait for an
information (get info) from the provider (WebS) about which cinema shows it.
Then the form of payment is defined: (a) defines the interaction that occurs
when the tickets are paid by credit card (see Fig. 1(i)); (b) is selected when
¬BSelfpay by(credit card) is contained in pa mental state, leading to book a
ticket to be paid by cash (see Fig. 1(ii)). In both cases a confirmation of the ticket
booking is returned to the pa. Clause (c) tackles the case in which the movie is
not available. Clause (d) describes get info, which is a get message action.

Given a set ΠC of simple action laws defining an agent agi’s primitive speech
acts, a set ΠSget of axioms for the reception of messages, and a set ΠCP ,
of procedure axioms specifying a collection of conversation protocols, we de-
note by CKitagi (the communication kit of a DyLOG agent agi), the triple
(ΠC , ΠCP , ΠSget). CKitagi is a part of Πagi

, i.e. the domain description of the
agent agi, including also S0, i.e the initial set of agi’s belief fluents, and eventu-
ally laws and axioms for specifying the agent non communicative behaviors.

4.2 Reasoning about the interaction with a Web service

Given a DyLOG domain description Πagi
containing a CKitagi with the specifi-

cations of the interaction protocols and of the relevant speech acts, a planning
activity can be triggered by existential queries of form 〈p1〉〈p2〉 . . . 〈pm〉Fs, where
each pk (k = 1, . . . ,m) may be an atomic or complex action (a primitive speech
act or an interaction protocol), executed by our agent, or an external3 speech act,

3 By the word external we denote a speech act in which our agent plays the role of
the receiver



that belongs to CKitagi . Checking if the query succeeds corresponds to answering
to the question “is there an execution of p1, . . . , pn leading to a state where the
conjunction of belief fluents Fs holds for agent agi?”. Such an execution is a plan
to bring about Fs. The procedure definition constrains the search space. During
the planning process get message actions are treated as sensing actions, whose
outcome cannot be predicted before the actual execution: since agents cannot
read each other’s mind, they cannot know in advance the answers that they
will receive. All of the possible alternatives are to be taken into account and,
indeed, we can foresee them because of the existence of the protocol. Therefore,
the extracted plan will be conditional, in the sense that for each get message

and for each sensing action it will contain as many branches as possible action
outcomes. Each path in the resulting tree is a linear plan that brings about Fs.

The problem that the personal assistant pa has in the Web service scenario
outlined above can be naturally turned into a planning problem in presence of
communication, as the one treated by DyLOG. In fact the question pa tries to
answer is: “is there some possible conversation, that is an instance of the proto-
col followed by the Web service provider and satisfies all the conditions posed by
the user (e.g. at the and of the interaction the service mustn’t know the user’s
credit card number)?”. In a way, pa wonders if it is possible to personalize the
interaction with its interlocutor so to achieve certain goals. Let us take a Dy-
LOG domain description containing the description of the get ticket 1C protocol
reported above, suppose that pa knows the credit card number (cc number) of
the user but it is requested not to use it, and consider the query:

〈get ticket 1C(pa, click ticket, akira)〉Bpa¬Bclick ticketcc number

that amounts to determine if there is a conversation between pa and click ticket

about the movie akira, that is an instance of the conversation protocol get ticket 1C ,
after which the service does not know the credit card number of the user.
Agent pa works on the behalf of a user, thus it knows the user’s credit card
number (Bpacc number) and his desire not to use it in the current transac-
tion (¬Bpapay by(credit card)). It also believes to be an authority about the
form of payment and about the user’s credit card number and that click ticket

is an authority about cinema and tickets. This is represented by the beliefs:
Bpaauthority(pa, cc number) and Bpaauthority(click ticket, booked(akira)). The
initial mental state will also contain the fact that pa believes that no ticket
for akira has been booked yet, Bpa¬booked(akira), and some hypothesis on
the interlocutor’s mental state, e.g. the belief fluent Bpa¬Bclick ticketcc number,
meaning that the web service does not already know the credit card number.
Suppose, now, that the ticket is available; since pa mental state contains the be-
lief ¬Bpapay by(credit card), when it reasons about the protocol execution, the
test on Bpapay by(credit card)? fails. Then clause (b) is to be followed, leading
pa to be informed that it booked a ticket, Bpabooked(akira), which is supposed to
be paid cash. No communication involves the belief Bpa¬Bclick ticketcc number,
which persists from the initial state. Even when the ticket is not available or the
movie is not known by the provider, the interaction ends without consequences



on the fluent Bpa¬Bclick ticketcc number. The briefly described reasoning pro-
cess lead to find an execution trace of get ticket 1C , which corresponds to a
personalized conditional dialogue plan between pa and the provider click ticket,
always leading to satisfy the user goal of not giving the credit card number.

5 Specifying and verifying systems of communicating

agents

DyLOG is a sequential language which can describe the behavior of a single
agent and prove existential properties, such as finding a sequence of actions
achieving some goal. A more general problem is that of modelling systems of
communicating agents, so as to be able to prove properties of the whole system.
In this section we present a theory for reasoning about actions which allows to
describe the behavior of a network of sequential agents which coordinate their
activities by performing common actions together[12, 13]. This theory is based on
the Product Version of Dynamic Linear Time Temporal Logic (denoted DLTL⊗)
[16], a logic which extends LTL, the propositional linear time temporal logic,
by strengthening the until operator by indexing it with the regular programs
of dynamic logic. Regular programs are well suited to model both the agent
behaviors and the communication protocols. Moreover, the formulas of the logic
are decorated with the names of sequential agents, thus allowing to describe the
behavior of a network of sequential agents which coordinate their activities by
performing common actions together. Let us first give a quick overview of the
logic.

5.1 The logic DLTL and its product version

First we recall the syntax and semantics of DLTL as introduced in [17]. DLTL

is an extension of LTL in which the next state modality is labelled by actions
and the until operator is indexed by programs in Propositional Dynamic Logic
(PDL) [15].

Let Σ be a finite non-empty alphabet whose members are interpreted as
actions. Let Prg(Σ) be the set of programs on Σ, defined as regular expressions.
A set of finite words, representing computation sequences, is associated with
each program by the mapping [[]] : Prg(Σ) → 2Σ∗

.
Let P = {p1, p2, . . .} be a countable set of atomic propositions. The set of

formulas of DLTL(Σ) is defined as follows:

DLTL(Σ) ::= p | ¬α | α ∨ β | αUπβ

where p ∈ P and α, β range over DLTL(Σ), and π ranges over Prg(Σ).
A model of DLTL(Σ) is a pair M = (σ, V ) where σ is an infinite sequence of

actions and V is a valuation function. Given a model M = (σ, V ), a finite word
τ ∈ prf(σ) (a finite prefix of σ), and a formula α, the satisfiability of a formula
α at τ in M , written M, τ |= α, is defined as usual for the classical connectives.
Moreover:



– M, τ |= αUπβ iff there exists τ ′ ∈ [[π]] such that ττ ′ ∈ prf(σ) and M, ττ ′ |=
β. Moreover, for every τ ′′ such that ε ≤ τ ′′ < τ ′ , M, ττ ′′ |= α.

The formula αUπβ is true at τ if “α until β” is true on a finite stretch of
behaviour which is a computation sequence of the program π.

The derived modalities 〈π〉 and [π] can be defined as follows: 〈π〉α ≡ >Uπα

and [π]α ≡ ¬〈π〉¬α. Furthermore © (next), 3 and 2 of LTL can be defined as
follows: ©α ≡

∨
a∈Σ 〈a〉α, 3α ≡ >UΣ∗

α, 2 ≡ ¬3¬α.

Let us now recall the definition of DLTL⊗ from [16]. Let Loc = {1, . . . ,K}
be a set of locations, the names of the agents. A distributed alphabet Σ̃ = {Σi}

K
i=1

is a family of (possibly non-disjoint) alphabets, where Σi is the set of actions
which require the participation of agent i. If an action a belongs to Σi and to
Σj , the two agents i and j will synchronize on this action. Let Σ =

⋃K

i=1
Σi.

Atomic propositions are introduced in a local fashion, by introducing a non-
empty set of atomic propositions P. For each proposition p ∈ P and agent
i ∈ Loc, pi represents the “local” view of the proposition p at i, and is evaluated
in the local state of agent i.

The formulas in DLTL⊗(Σ̃) are boolean combinations of formulas with the
main constraint that no nesting of modalities Ui and Uj (for i 6= j) is allowed.

A model of DLTL⊗(Σ̃) is a pair M = (σ, V ), where σ ∈ Σ∞ and V = {Vi}
K
i=1

is a family of functions Vi, where each Vi is the valuation function for agent
i. The satisfiability of formulas in a model is defined as in DLTL, except that
propositions are evaluated locally and the sequence of actions σ is projected on
the alphabet of local actions of each agent.

5.2 Action theories and protocols

Given a set of communicating agents, each agent participating in an action ex-
ecution has its own local description of the action determining the effects on
its local state. The global state of the system can be regarded as a set of local
states, one for each agent i. The action laws and causal laws of agent i describe
how the local state of i changes when an action a ∈ Σi is executed. The underly-
ing model of communication is the synchronous one: the communication action
comm act(i, j,m) (message m is sent by agent i to agent j) is shared by agent
i (the sender) and agent j (the receiver) and executed synchronously by them.
Their local states are updated separately, according to their action specifica-
tion. Though, for simplicity, we adopt the synchronous model, an asynchronous
model can be easily obtained by explicitly modelling the communication channels
among the agents as distinct locations.

A protocol defines the meaning of communicative actions involved in the con-
versation. In particular, by adopting a social approach, the protocol describes
the effects of each action on the social state of the system. These effects, includ-
ing the creation of new commitments, can be expressed by means of action laws.
Moreover, the protocol establishes a set of preconditions on the executability of
actions (permissions), which can be expressed by means of precondition laws.



Each agent has a local view of the social state and the execution of a commu-
nicative action can in general affect both the state of the sender and the state
of the receiver. In particular, all agents can see the effects on the social state of
the actions to which they participate.

For instance, in the example of Section 3 there are two agents, the personal
assistant pa and the web service ws providing ticket booking. The conversation
protocol for the two agents will be given through a set of action laws and con-
straints in the form of permissions or commitments. Since our theory does not
allow to express a global states, the protocol will be projected on the local states
of the participating agents. Observe that, since the two agents participate in all
communicative actions, they have the same local view of the social state, and of
the action laws and constraints of the protocol.

Let us assume that pa is the sender of the following actions4 queryIf(pa, ws,
available(Film)), askBooking(pa, ws, Cinema), give cc(N), whereas the actions
whose sender is ws are inform(ws, pa, at(Film, Cinema)), inform(ws, pa, ¬
available(Film)), makeBooking(ws, pa, Cinema), sendTicket(ws,pa). The effects
of actions will be described by action laws such as (where k = pa,ws):

2k([queryIf(pa,ws, available(Film))]kasked(Film)
2k([makeBooking(ws, pa, Cinema)]kbooked(Cinema)

where asked(Film) and booked(Cinema) are fluents of the social state.
Commitments can be effects of actions and will be represented by special flu-

ents. They can be base-level commitments, of the form C(ag1, ag2, action) (agent
ag1 is committed to agent ag2 to execute the action), or they can be conditional
commitments of the form CC(ag1, ag2, p, action) (agent ag1 is committed to
agent ag2 to execute action, if the condition p is brought about).

For instance, when the web service finds a cinema, it commits to make the
booking, if the customer asks it. Furthermore it commits to send a ticket if the
customer gives its credit card number.

2k([inform(ws, pa, at(Film,Cinema))]k
CC(ws, pa, askedBooking(Cinema),makeBooking(ws, pa, Cinema))
∧CC(ws, pa, cc given, sendT icket(ws, pa))

Some reasoning rules have to be defined for cancelling commitments when
they have been fulfilled and for dealing with conditional commitments. For in-
stance we can have the law (where k = i, j):

2k((CC(i, j, p, a) ∧©kp) → ©k(C(i, j, a) ∧ ¬CC(i, j, p, a)))

saying that a conditional commitment CC(i, j, p, a) becomes a base-level com-
mitment C(i, j, a) when the condition p has been brought about. This law is a
causal law.

The protocol can specify constraints (permissions) on the execution of actions
by giving precondition to the actions. For instance ws will not send the ticket
before the credit card number has been given:

4 This formulation does not correspond exactly to the diagram in Fig. 1.



2k(¬cc given → [sendT icket(ws, pa)]k⊥)

meaning that sendT icket(ws, pa) cannot be executed in those states in which
¬cc given holds, i.e. cc given is a precondition of the action.

An agent i satisfies its commitments when, for all commitments C(i, j, a) in
which agent i is the debtor, the formula:

2i(C(i, j, a) → 3i〈a〉i>)

holds. Such a formula says that, when an agent is committed to execute action
a, then it must eventually execute a5.

Note that a protocol specified in this way is less rigid that the one given in
Fig. 1, and can have different executions satisfying the action laws, preconditions
and commitments. For instance the customer can leave the conversation before
asking booking (the web service will have no base-level commitments to fulfill), or
after asking booking and receiving confirmation, but before giving the credit card
number (in this case the web service will only be committed to make booking,
but not to send the ticket).

5.3 Reasoning about protocols

Given a protocol, we denote with Di the domain description of agent i, i.e. its
action laws and causal laws6, with Permi the set of precondition laws of the
actions whose sender is i, and with Comi the set of all temporal formulas, as
the one above, describing the satisfaction of the commitments of agent i.

If we do not know the behavior of any agent, we can only reason on the
protocol by proving some properties of it, by assuming that all agents respect
their permissions and commitments. This can be formalized as a validity check
of the formula: ∧

j

(Di ∧ Permj ∧ Comj) → p

where j ranges over all agents.
Following [29] we might also extract from the protocol a plan, that is an

execution of the protocol, satisfying some given properties. Planning can be for-
mulated in our theory as a satisfiability problem., i.e. as the problem of finding
a model having the plan as a finite prefix. Assume instead that we know the
behavior of some agents. For instance we are given a program (regular expres-
sion) π which describes the behavior of the web service. In this case we would
like to verify that ws always satisfies its social fact, i.e. its permissions and com-
mitments. Since we don’t know anything about the behavior of pa, we can only
assume that it respects its social facts.

5 Here we assume that an agent cannot change its mind about commitments. However
the language allows to define actions for manipulating commitments, for instance
for cancelling them, as in [29]

6 Actually Di must also model the frame problem. To deal with it we make use [12]
of a completion construction which, given a domain description, introduces frame
axioms for all the fluents in the style of the successor state axioms introduced by
Reiter [25] in the context of the situation calculus.



If Progws is the domain description of the behavior of ws, the following
formula:

(Dws ∧ Progws ∧ Dpa ∧ Permpa ∧ Compa) → (Permws ∧ Comps)

is valid if in all the executions of the system, in which agent ws respects its
specification Progws, and pa (whose internal program is unknown) respects the
protocol specification (including its permissions and commitments), the permis-
sions and commitment of agent ws are also satisfied. In general it is possible to
prove that an agent is compliant (respects its “social facts”) under the assump-
tion that all other agents in the protocol are compliant.

The above verification and satisfiability problems can be solved by extend-
ing the standard approach for verification and model-checking of Linear Time
Temporal Logic, based on the use of Büchi automata. As described in [17], the
satisfiability problem for DLTL can be solved in deterministic exponential time,
as for LTL, by constructing for each formula α ∈ DLTL(Σ) a Büchi automaton
Bα such that the language of ω-words accepted by Bα is non-empty if and only
if α is satisfiable. This result has been extended in [16] to DLTL⊗. The veri-
fication of a formula α → β can be carried out by constructing the two Büchi
automata for α and the negation of β. If the two automata have a common
execution sequence, this sequence provides a counterexample for α → β. Thus
α → β is valid if the language accepted by the product of the two automata is
empty. The similarities between the verification approach for LTL and that for
DLTL⊗ suggest the possibility of using techniques and tools which have been
developed for LTL. For instance, it is possible to extend to DLTL⊗ the efficient
tableau-based algorithm of [10] for constructing the automaton on the fly.

6 Conclusions

In this paper we have presented various approaches to reasoning about conver-
sation protocols within the framework of logic-based agent languages. We have
shown that a theory of communicative actions can be formulated in the Dy-
LOG logical framework, so as to allow the modelling of software agents that
can interact with one another by a speech act based communication mecha-
nism. This framework allows an agent to reason about conversation protocols
with other agents. We have also presented an action theory based on the logic
DLTL⊗ which provides a unified framework for specifying and verifying systems
of communicating agents: Programs are expressed as regular expressions, (com-
municative) actions can be specified by means of action and precondition laws,
properties of social facts can be specified by means of causal laws and constraints,
and temporal properties can be expressed by means of the until operator.

A related approach is that of ConGolog [11], an extended version of the lan-
guage Golog, that incorporates a rich account of concurrency, in which complex
actions (plans) can be formalized as Algol-like programs in the situation cal-
culus. A substantial difference with ConGolog, apart from the different logical
foundation, is that here we model agents with their own local states, while in



Congolog the agents share a common global environment and all the properties
are referred to a global state.

Other related proposals for the specification and verification of systems of
communicating agents, based on a mentalistic approach, are presented [20] and
[28]. The goal of [20] is to extend model checking to make it applicable to multi-
agent systems, where agents have BDI attitudes. This is achieved by using a new
logic which is the composition of two logics, one formalizing temporal evolution
and the other formalizing BDI attitudes. In [28] agents are written in MABLE,
an imperative programming language, and have a mental state. MABLE sys-
tems may be augmented by the addition of formal claims about the system,
expressed using a quantified, linear time temporal BDI logic. [29] presents a so-
cial approach based on event calculus to protocol specification and execution. A
different approach to specification and verification of web services is presented
in [22], which shows how to encode in a Petri Net formalism a service description
given in DAML-S, providing decision procedures for web service simulation, ver-
ification and composition. Guerin’s thesis [14] defines an agent communication
framework which gives agent communication a grounded declarative semantics,
and defines different languages for agent programming, for specifying agent com-
munication and social facts, and for expressing temporal properties.
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