
Verifying Business Process Compliance
by Reasoning about Actions ?

Davide D’Aprile1, Laura Giordano1, Valentina Gliozzi2, Alberto Martelli2,
Gian Luca Pozzato2, and Daniele Theseider Dupré1

1 Dipartimento di Informatica, Università del Piemonte Orientale
{davide.daprile,laura.giordano,dtd}@mfn.unipmn.it

2 Dipartimento di Informatica, Università di Torino
{gliozzi,mrt,pozzato}@di.unito.it

1 Introduction

Verifying the compliance of business processes with norms has become an im-
portant issue to be addressed in several domains, such as the administrative
and financial domains; consider, for instance, the need for public companies and
investment firms to comply with the Sarbanes-Oxley Act in the US, and the
MiFID directive in the EU, regulating the financial markets.

In this paper we address the problem of verifying business process compli-
ance with norms. To this end, we employ reasoning about actions in a temporal
action theory, which is defined as a combination of Answer Set Programming
and Dynamic Linear Time Temporal Logic (DLTL). The temporal action theory
allows us to formalize a business process as a temporal domain description, pos-
sibly including temporal constraints. Obligations in norms are captured by the
notion of commitment, which is borrowed from the social approach to agent com-
munication. Norms are represented using (possibly) non monotonic causal laws
which (possibly) enforce new obligations. In this context, verifying compliance
amounts to verify that no execution of the business process leaves some commit-
ment unfulfilled. Compliance verification can be performed by Bounded Model
Checking. A feature of our approach is that the same declarative formalism is
used for both the representation of processes and norms.

2 Example

As a running example we consider a fragment of the business process of an
investment firm, where the firm offers financial instruments to an investor. The
description of the business process in YAWL is given in Figure 1. We chose YAWL
(Yet Another Workflow Language) [8] as a reference specification language for
business processes, since it provides a number of advantages with respect to

? This work has been partially supported by Regione Piemonte, Project “ICT4Law -
ICT Converging on Law: Next Generation Services for Citizens, Enterprises, Public
Administration and Policymakers”.



2 D’Aprile et al.

Fig. 1. Example business process in YAWL

several available alternatives: it is an open source workflow system, and it is
a result of a deep analysis of business process modeling practice [9]; it comes
with a formal foundation, allowing for well-founded formal analysis for achieving
validation and verification goals.

Let us consider a regulation containing the following norms:

(1) the firm shall provide to the investor adequate information on its services
and policies before any contract is signed;

(2) if the investor signs an order, the firm is obliged to provide him a copy of
the contract.

The execution of each task in the process has some preconditions and effects.
Due to the presence of norms, the execution of a task in the process above may
generate obligations to be fulfilled. For instance, according to the second norm,
signing an order generates for the firm the obligation to provide copy of the
contract to the investor. Verifying the compliance of a business process to a
regulation requires to check that, in all the executions of the business process,
the obligations triggered by the norms are fulfilled.

In the following, we sketch the specification of the business process and the
related norms in an action theory; and we briefly describe how the problem of
verifying compliance of the business process to the norms is defined and solved
as a reasoning problem in the action theory.

3 Action theories in Temporal ASP

The action theory comprises a set of laws describing the effects of actions as well
as their executability preconditions. Actions may have direct effects on fluents
(propositions whose truth value describes the state of the world), that are de-
scribed by action laws, and indirect effects, that capture the causal dependencies
among fluents and are described by causal laws.

Consider the nondeterministic action order verification(T, C) in the exam-
ple: it checks whether the order of the financial product T by customer C is



Verifying Business Process Compliance by Reasoning about Actions 3

correct or not. In the first case, the order is accepted, otherwise it is not. The
action is modeled in the following action law:

2([order verification(T,C)]confirmed(T, C) or
[order verification(T,C)]¬confirmed(T, C)

where 2 is the modal temporal operator “always” and [action]effect represents
an effect of the action, i.e. that effect holds in the state right after the action.

In case of deterministic actions, there is a single disjunct in the head of the
action law. For instance, the action of informing the investor has the effect that
the investor has acquired information: 2([inform(C)]informed(C)

Causal laws are used to represent indirect effects of actions, e.g.,

2(¬order confirmed(T,C) ← order deleted(T,C))

where “confirmed” means “confirmed by the firm” and is a possible effect of
order verification, while “deleted” means “withdrawn by the customer”, models
the fact that the direct effect “deleted” of withdrawal has the indirect effect of
making the order no longer effective for the firm as well.

Precondition laws state preconditions for actions, e.g.:

2([proposal evaluation(T, C)]⊥ ← ¬selected(T, C) ∨ ¬informed(C))

states that an investor can be requested to evaluate a proposed investment only
if the proposal has been selected and the investor has been already informed
of the firm policy. Similar preconditions can either be asserted in the model, or
verified to be true. The second option is suitable for the case where the process
explicitly includes, as in figure 1, activities that make the precondition true; the
first one is suitable for the case where such activities are abstracted away.

Temporal constraints are arbitrary temporal formulas of DLTL. They are
used to restrict the space of the possible extensions. DLTL [6] extends LTL by
allowing the until operator Uπ to be indexed by a program π, as in Propositional
Dynamic Logic (PDL). For instance, ¬sent contract U signed states that the
contract is not sent to the customer until it has been signed. The program π can
be any regular expression built from atomic actions by making use of sequence
(;), non-deterministic choice (+) and finite iteration (∗).

For instance, the program
π = inform(C); select financial instrument(T, C);

((sign order(T, C); send contract) + withdraw(T,C))
is the program for a simplified version of the process in figure 1: it describes a
process in which: the investor C is informed, a financial instrument T is selected
for C, then C either signs the contract and a copy of the contract is set to him,
or C withdraws.

4 Normative Specification and Compliance Verification

According to the normative specification, the execution of each task in the busi-
ness process can, in addition to effects in terms of changes in the state of the



4 D’Aprile et al.

world, trigger some normative position (obligation, permission, prohibition). For
instance, the identification task in the business process in Figure 1, which in-
troduces a new investor C, also generates the obligation to inform the investor.
This obligation must be fulfilled during the course of execution of the business
process, for the process to be compliant with the norm stating that the firm has
the obligation to inform customers.

In order to model obligations, we rely on the notion of commitment intro-
duced in multi-agent systems [7]. As in [3], we introduce two kinds of com-
mitments: Base-level commitments having the form C(i, j, A) and meaning that
agent i is committed to agent j to bring about A (where A is an arbitrary propo-
sitional formula not containing commitment fluents); Conditional commitments
having the form CC(i, j, B, A) and meaning that agent i is committed to agent
j to bring about A, if condition B is brought about.

A commitment C(i, j, A), created at a given state of a run of the process, is
regarded to be fulfilled in the run if there is a later state of the run in which
A holds. As soon as committment is fullfilled in a run, it is considered to be
satisfied and no longer active: it can be discharged.

The norms in Section 2 can be represented by the following precondition and
causal law:

2([sign order(T, C)]⊥ ← informed(C))
2(C(firm,C, sent contract(T,C)) ← order signed(T, C))
The first one is a precondition for sign order(T, C), and it is quite obviously

true in the example process model, because informed(C) is the effect of the
action inform(C) which is always executed before sign order(T, C) is reached
(and there is no action making informed(C) false). Verifying preconditions may
be more interesting in more complex processes where the action may be reached
via several paths.

The second one, a causal law, states that when an order is signed by C, the
firm is committed to C to send her the information required. The commitment
remains active until some action is executed, which makes sent contract(T,C)
true. In the business process, the commitment is fulfilled by the execution of the
action send contract(T,C).

Causal laws are needed for modeling the interplay of commitments. In par-
ticular, for each commitment C(i, j, α), we introduce the following causal laws
in the domain description:

(i) 2(C(i, j, α)) ∧©α →©¬C(i, j, α))
(ii)2((CC(i, j, β, α) ∧©β) →©C(i, j, α))
(iii)2((CC(i, j, β, α) ∧©β) →©¬CC(i, j, β, α))

A commitment to bring about α is considered fulfilled and is discharged (i) as
soon as α holds. A conditional commitment CC(i, j, β, α) becomes a base-level
commitment C(i, j, α) when β has been brought about (ii) and, in that case, the
conditional commitment is discharged (iii).

Even though we do not deal with the issue in detail here, the nonmonotonic
nature of ASP allows for a natural representation of exceptions and priorities in
norms; it also allows to model reparation chains in [4].



Verifying Business Process Compliance by Reasoning about Actions 5

Once the specification of the business process has been given as a domain
description in an action theory, the problem of verifying its compliance with some
regulation can be modeled as the problem of verifying that all the executions of
the business process fulfil the obligations that are generated during the execution
of the process.

In our approach, this is done as follows. The notions of temporal answer set
and extension are defined, extending the notion of answer set [2].

Extensions represent the possible events and states that occur in an execution
of the modeled process. Even for a single action sequence σ, a domain descrip-
tion may have more than one extension, due to different possible initial states
(when the initial state is incompletely specified) and different possible effects of
nondeterministic actions.

To check if there is an execution which violates some obligation we model
the need to fulfil a commitment C(i, j, α) as the temporal formula:

2(C(i, j, α) → 3α)

Such formulae, together with the precondition formulae corresponding to norms,
is the set of formulae to be verified in order to check compliance. The verification
of compliance can be performed by using bounded model checking techniques,
which generalize LTL bounded model checking [5].

A feature of our approach is that it provides business process specification,
normative specification, and compliance verification in an integrated representa-
tion and reasoning framework. We refer to [1] for details as well as for comparison
with related work.

References

1. D. D’Aprile, L. Giordano, V. Gliozzi, A. Martelli, G. Pozzato, and D. Theseider
Dupré. Reasoning about Actions with Temporal Answer Sets. Technical Report,
Dipartimento di Informatica, Università del Piemonte Orientale, 2010.

2. M. Gelfond. Answer Sets. Handbook of Knowledge Representation, chapter 7, Else-
vier, 2007.

3. L. Giordano, A. Martelli, and C. Schwind. Specifying and Verifying Interaction
Protocols in a Temporal Action Logic. Journal of Applied Logic (Special issue on
Logic Based Agent Verification), 5:214–234, 2007.

4. G. Governatori and S. Sadiq. The journey to business process compliance. Handbook
of Research on BPM, IGI Global, pages 426–454, 2009.

5. K. Heljanko and I. Niemelä. Bounded LTL model checking with stable models.
Theory and Practice of Logic Programming, 3(4-5):519–550, 2003.

6. J.G. Henriksen and P.S. Thiagarajan. Dynamic Linear Time Temporal Logic. An-
nals of Pure and Applied logic, 96(1-3):187–207, 1999.

7. N.R. Jennings. Commitments and Conventions: the foundation of coordination in
multi-agent systems. The knowledge engineering review, 8(3):233–250, 1993.

8. W. van der Aalst and A. ter Hofstede. YAWL: Yet Another Workflow Language.
Information Systems, 30(4):245–275, 2005.

9. W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14:5–51, 2003.


