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Abstract. Nested sequent calculi are a useful generalization of ardisequent
calculi, where sequents are allowed to occur within seguéested sequent cal-
culi have been profitably employed in the area of (multi)-adddgic to obtain
analytic and modular proof systems for these logics. Inwhuigk, we extend the
realm of nested sequents by providing nested sequent icidcuhe basic con-
ditional logic CK and some of its significant extensions. Thkuli are internal
(a sequent can be directly translated into a formula), @é-&nd analytic. More-
over, they can be used to design (sometimes optimal) deqisacedures for the
respective logics, and to obtain complexity upper bounds. calculi are an ar-
gument in favour of nested sequent calculi for modal logind alike, showing
their versatility and power.

1 Introduction

The recent history of the conditional logics starts withwwek by Lewis [16,17], who
proposed them in order to formalize a kind of hypotheticalsmning (if A were the
case therB), that cannot be captured by classical logic with matennglication. One
original motivation was to formalizeounterfactual sentenceise. conditionals of the
form “if A were the case theB® would be the case”, wherd is false. Conditional
logics have found an interest in several fields of artifiaeéiligence and knowledge
representation. They have been used to reason about gictdtproperties [10] and
to model belief change [14, 12]. Moreover, conditional gytan provide an axiomatic
foundation of nonmonotonic reasoning [5, 15], here a camuil A = B is read as “in
normal circumstances i thenB”. Recently, a kind of (multi)-conditional logics [3, 4]
have been used to formalize epistemic change in a multitaging.

Semantically, all conditional logics enjoy a possible wissemantics, with the in-
tuition that a conditionall = B is true in a worldz, if B is true in the set of worlds
whereA is true and that are most similar/closest/“as normalas3ince there are dif-
ferent ways of formalizing “the set of worlds similar/clese..” to a given world, there
are expectedly rather different semantics for conditidogics, from the most general
selection function semantics to the stronger sphere sérsant

From the point of view of proof-theory and automated dedurtconditional logics
do not have however a state of the art comparable with, sayorie of modal logics,
where there are well-established alternative calculi, sehproof-theoretical and com-
putational properties are well-understood. This is plytidue to the mentioned lack
of a unifying semantics; as a matter of fact the most genemakbsitics, theselection
functionone, is of little help for proof-theory, and the prefereliighere semantics
only captures a subset of (actually rather strong) syst8imslarly to modal logics and
other extensions/alternative to classical logics two $ypkcalculi have been studied:
externalcalculi which make use of labels and relations on them to irthe semantics



into the syntax, andhternal calculi which stay within the language, so that a “con-
figuration” (sequent, tableaux node...) can be directlgripteted as a formula of the
language. Just to mention some work, to first stream bel®@jgaposing a calculus
for (unnested) cumulative logi€ (see below). More recently, [18] presents modular
labeled calculi (of optimal complexity) for CK and some of éxtensions, basing on
the selection function semantics, and [13] presents modateled calculi for prefer-
ential logic PCL and its extensions. The latter calculi tallgantage of a sort of hybrid
modal translation. To the second stream belong the calguidént [9] and by de Swart
[21] for Lewis’ logic VC and neighbours. These calculi mangte set of formulas and
provide a decision procedure, although they comprise anitefset of rules. \ery re-
cently, some internal calculi for CK and some extensionghany combination of MP,
ID, CEM) have been proposed by Pattinson and SchroderTh@]calculi are obtained
by a general method for closing a set of rules (corresponitdjlbert axioms) with
respect to the cut rule. These calculi have optimal complerbtice that some of the
rules do not have a fixed number of premises. These calcugi hesn extended to pref-
erential conditional logics [20], i.e. including cumulaty (CM) and or-axiom (CA),
although the resulting systems are fairly complicated.

In this paper we begin to investigatested sequentslculi for conditional logics.
Nested sequents are a natural generalization of ordinguesgs where sequents are al-
lowed to occur within sequents. However a nested sequeatalaorresponds to a for-
mula of the language, so that we can think of the rules as tipgranside a formula”,
combining subformulas rather than just combining outeuo@nces of formulas as in
ordinary sequentsLimiting to modal logics, nested calculi have been prodicdenong
others, for modal logics by Briinnler [7, 6] and by Fitting.[8

In this paper we treat the basic normal conditional logic @K 1ole is the same
as K in modal logic) and its extensions with ID and CEM. We aitsasider theflat
fragment (i.e., without nested conditionals) of CK+CSO;+tbinciding with the logic
of cumulativity C introduced in [15]. The calculi are rather natural, all suleave a
fixed number of premises. The completeness is establishedtbglimination, whose
peculiarity is that it must take into account the substituf equivalent antecedents of
conditionals (a condition corresponding to normality)eTdalculi can be used to obtain
a decision procedure for the respective logics by imposamgesrestrictions preventing
redundant applications of rules. In all cases, we get aARS upper bound, a bound
that for CK+ID and CK+CSO+ID is optimal (but not for CK+CEMahis known to
be coNP). For flat CK+CSO+ID = cumulative logiC we also get a PS\CE bound,
we are not aware of better upper bound for this logic (altiowg may suspect that it
is not optimal). We can see the present work as a further aggtin favor of nested
sequents as a useful tool to provide natural, yet compuialtipadequate, calculi for
modal extensions of classical logics.

Technical details and proofs can be found in the accompamgiport [1].

2 Conditional Logics
A propositional conditional languagé contains: - a set of propositional variables
ATM; - the symbol offalse L; - a set of connectives, A, V, -, —, =. We define

% In this sense, they are a special kind of “deep inferencetutiahy Guglielmi and colleagues.



formulas of £ as follows: - | and the propositional variables dfT’M areatomic for-
mulas - if A and B are formulas, themA and A ® B arecomplex formulaswhere
® € {A,V,—,=}. We adopt theselection function semanticthat we briefly recall
here. We consider a non-empty set of possible worlddntuitively, the selection func-
tion f selects, for a worldv and a formula4, the set of worlds o¥V which arecloser
to w given the informatiom. A conditional formulad = B holds in a worldw if the
formula B holds inall the worlds selected by for w and A.
Definition 1 (Selection function semantics)A model is a tripleM = (W, f,[ ])
where: -WV is a non empty set aforlds - f is theselection functiory : W x 2V —
2W; - [ ] is theevaluation functionwhich assigns to an ato? € ATM the set of
worlds whereP is true, and is extended to boolean formulas as usual, wiseiea
conditional formulagA = B] = {w e W | f(w,[4]) C [B]}.
We have defined taking [A] rather thanA (i.e. f(w, [A]) rather thanf(w, A)) as an
argument; this is equivalent to defirfeon formulas, i.e f(w, A) but imposing that if
[A] = [A] in the model, therf (w, A) = f(w, A"). This condition is callechormality.
The semantics above characterizedtasic conditional systensalled CK [17]. An

axiomatization of CK is given byH denotes provability in the axiom system):

— any axiomatization of the classical propositional calsulu

— If - Aand+- A — B, then- B (Modus Ponens)

—If+ A~ Bthenk (A= C) < (B=C) (RCEA)

—IfF(AiN---NA,) — Bthenk (C= A1 A---NC = A,) - (C= B) (RCK)

Other conditional systems are obtained by assuming fupttogrerties on the selec-

tion function; we consider the following standard extensiof the basic system CK:

System |Axiom Model condition

ID A=A f(w, [4]) C [4]

CEM |(A= B)V (A= -B) | fw,[A]) €1

cso (A= B)AB = 4) — |fw[A]) C [B)andf(w,[B]) C [4]
(A=C)—> (B=C)) implies f(w, [4]) = f(w,[B])

The above axiomatization is complete with respect to theaseics [17].

3 Nested Sequent CalculiV'S for Conditional Logics

In this section we present nested sequent caleii whereS is an abbreviation for
CK+X, and X={CEM, ID, CEM+ID}. As usual, completeness is an easy consequence
of the admissibility of cut. We are also able to tukAS into a terminating calculus,
which gives us a decision procedure for the respective tiondi logics.

Definition 2. A nested sequelit is defined inductively as follows: - A finite multiset of
formulas is a nested sequent. Afis a formula andl” is a nested sequent, théa : I']
is a nested sequent. - A finite multiset of nested sequentseistad sequent.

A nested sequent can be displayed as
Al,...,Am,[Bl ZFl],...,[BnZFn],

wheren,m > 0, Ay,..., Ay, B1,..., B, are formulas and, ..., I, are nested se-
quents. The deptti( I") of a nested sequefitis defined as follows: -if" = A; ..., A,,



thend(I') = 0; -if I’ = [A : A], thend(I") = 1+ d(A) -if I’ = I,...,1,,
thend(I") = max(l};). A nested sequent can be directly interpreted as a formula,
just replace “” byv and “” by =. More explicitly, the interpretation of a nested
sequentds, ..., A, [B1 : I1],...,[Bn : I] is inductively defined by the formula
F(I)=A1V...VA, V(B = F(I1))V...V(B, = F(I,)). For example, the
nested sequet, B,[A : C,[B : E, F]],[A : D] denotes the formulal vV BV (A =
CVv(B=(EVF))V (A= D).

The specificity of nested sequent calculi is to allow infeesithat apply within
formulas. In order to introduce the rules of the calculusneed the notion of context.
Intuitively a context denotes a “hole”,miqueempty position, within a sequent that
can be filled by a formula/sequent. We use the synibdio denote the empty context.
A context is defined inductively as follows:

Definition 3. If Ais a nested sequenfty( ) = A, () is a context with depth(I'( )) =
0; if Ais anested sequentand( ) is acontext]'( ) = A,[A : X( )] is a context with
depthd(I'()) =14+ d(X()).

Finally we define the result of filling “the hole” of a context b sequent:

Definition 4. LetI'( ) be a context and\ be a sequent, then the sequent obtained by
filling the context by, denoted by’ (A) is defined as follows: - if'( ) = A, (), then
I'(A)=A4;-ifI'()=A,[A: X()], then(A) = A, [A: X(A)].

The calculiA/S are shown in Figure 1. As usual, we say that a nested sequént
derivablein /S if it admits aderivation A derivation is a tree whose nodes are nested
sequents. A branch is a sequence of nddegs, ..., [}, ... Each nodd7 is obtained
from its immediate successdi_; by applyingbackwarda rule of 'S, havingI;_

as the conclusion anfl; as one of its premises. A branch is closed if one of its nodes
is an instance of axiomsd X') and(AX), otherwise it is open. We say that a tree is
closed if all its branches are closed. A nested seqiidmas a derivation ith'S if there

is a closed tree having as a root. As an example, Figure 2 shows a derivation of (an
instance of) the axiom ID.

T'(A) T(B) T(-A,~B)
I'(P,-P AX (T AX — (At PR
R . rans VYT
I'(4, B) v D(-A) I'(-B) ) I'(-A, B) o+ I'(A) T'(=B) -
I'(AvB) I(~(AV B)) I'(A— B) I(~(A — B))
T'(A) I'([A: B]) I(=(A=B),[A":A-B])  A-4A  A-4
() +
r(=—4) F(A;‘B)@ ) I(~(A= B),[4": A)) =)
T([A: A, -A4]) P(A:AS[B:S))  A-B  B-A
r([A:A)) (D) T([A: Al [B:x]) (CEM)

Fig. 1. The nested sequent calciliS.

The following lemma shows that axioms can be generalizedyd@amulaF"

Lemma 1. Given any formula, the sequent’(F, —F) is derivable in\/S.



(AX)

[P: P —P]
(ID)
[P:P]
(="
P=P

Fig. 2. A derivation of the axiom ID.

The easy proofis by induction on the complexity/of

In [19] the authors propose optimal sequent calculi for CH ésmiextensions by any
combination of ID, MP and CEM. It is not difficult to see thaettulesCK,,, CKID,,
CKCEM,, CKCEMID, of their calculi are derivable in our calculi.

3.1 Basic structural properties of /'S
First of all, we show that weakening and contraction are Hitgigeserving admissible

in the calculiNV'S. Furthermore, we show that all the rules of the calculi, wligh excep-
tions of (=7) and(CEM), are height-preserving invertible. As usual, we define the
height of a derivation as the height of the tree correspanttirthe derivation itself.

Lemma 2 (Admissibility of weakening).Weakening is height-preserving admissible
in N'S:if I'(A) (resp.I'([A : A))) is derivable in\'S with a derivation of height,
then alsol'(A, F) (resp.I'([A : A, F))) is derivable inA/'S with a proof of height
R’ < h, whereF is either a formula of a nested sequést: X].

The easy proof is by induction on the height of the derivatibi’(A).

Lemma 3 (Invertibility). Allthe rules of\/'S, with the exceptions ¢&~) and(CEM),

are height-preserving invertible: if has a derivation of heigtit and it is an instance of
a conclusion of a ruléR), then alsal}, i = 1, 2, are derivable in\'S with derivations

of heightsh; < h, wherel; are instances of the premises(&).

Proof. Let us first consider the rulgD). In this case, we can immediately conclude be-
cause the premisg([A : A, —A)) is obtained by weakening, which is height-preserving
admissible (Lemma 2), from'([A : A]). For the other rules, we proceed by induction
on the height of the derivation df. We only show the most interesting case(ef ™).
For the base case, conside) I'(A = B, A) where either ()P € A and—-P € A,

i.e. (%) is an instance of AX), or (i) T € A4, i.e. () is an instance of AXT); we
immediately conclude that alsB([A : B], 4) is an instance of eithefAX) in case

(i) or (AX ) in case (ii).For the inductive step, we consider each rule ending (I@pkin
forward) the derivation of (A = B). If the derivation is ended by an application of
(=1)to I'([A : B]), we are done. Otherwise, we apply the inductive hypothedise
premise(s) and then we conclude by applying the same rule. O

It can be observed that a “weak” version of invertibility@lsolds for the ruleg=")
and(CEM). Roughly speaking, if (—=(A = B),[A’ : A]), which is an instance of the
conclusion of(=~), is derivable, then also the sequéit-(A = B),[4’ : A,-B]),
namely the left-most premise in the rule-~), is derivable too. Similarly fofC EM).
Since the rules are invertible, it follows thatintractionis admissible, that is to say:



Lemma 4 (Admissibility of contraction). Contraction is height-preserving admissi-
ble inN'S:if I'(F, F') has a derivation of heighit, then alsal"'(F') has a derivation of
heighth’ < h, whereF is either a formula or a nested sequedt: .

3.2 Soundness of the calculN'S

To improve readability, we slightly abuse the notation tifgmg a sequent” with its
interpreting formulaF (I"), thus we shall writed = A, I' A A, etc. instead oA =
F(I'), F(I') N F(A). First of all we prove that nested inference in sound (siryile
Brunnler [7], Lemma 2.8).

Lemma 5. LetI'( ) be any context. If the formuld; A ... A A, — B, withn >0, is
(CK+X)-valid, then alsd’ (A1) A ... AI'(A4,) — I'(B) is (CK+X) valid.

Proof. By induction on the depth of a contekY ). Letd(I'( )) = 0, thenI’ = A, ().
SinceA; A ... AN A, — B is valid, by propositional reasoning, we have that also
(AVA)AN...(AVA,) — (AV B)isvalid, thatisI'(A1) A ... ANT'(A,) — I'(B)

is valid. Letd(I"( )) > 0,thenI’( ) = A,[C : X()]. By inductive hypothesis, we
have that¥’(A4;) A ... A X(A,) — X(B) is valid. By (RCK), we obtain that also
(C = D(A))AN...N(C = Y(A,)) — (C = Y(B)) is valid. Then, we get that
(AV(C = X(A))A...AN(AV(C = X(A4,))) — (AV (C = X(B))) is also valid,
thatisI"(A;) A ... AT'(A,) — ['(B) is valid. O

Theorem 1. If I" is derivable in\/'S, thenI is valid.

Proof. By induction on the height of the derivation &f. If I" is an axiom, that is
I' = I'(P,—P), then trivially P vV =P is valid; by Lemma 5 (case = 0), we get
I'(P,—P) is valid. Similarly forI"(T). Otherwisel” is obtained by a ruleR):

- (R) is a propositional rule, sa¥ , I'5/A, we first prove thaly AT — Alis valid. All
rules are easy, since for the empty context they are notlsedlean trivial propositional
tautologies. We can then use Lemma 5 to propagate them tocargxt. For instance,
let the rule R) be (V). Then(=A A =B) — =(A V B) and, by the previous lemma,
we getthatl(mA)AI'(—=B) — I'(=(AV B)). ThusifI" is derived by R) from I'y, I's,
we use the inductive hypothesis tHatand% are valid and the above fact to conclude.
- (R) is (=) trivial by inductive hypothesis.

-(R)is(=")thenI’ = I'(-(A = B),[A’ : 4])isderived from(i) I'(-(A = B),[A’ :
A,-B]), (11) ~A, A, (iii) —=A’, A. By inductive hypothesis we have that— A’ is
valid. We show that als¢x) [~(A = B)V (A’ = (AVv-B))] = [-(A= B)V(4' =
A)]is valid, then we apply Lemma 5 and the inductive hypothest®nclude. To prove
(*), by (RCK) we have that the following is validA’ = B) A (A" = (AV -B))] —
(A" = A). SinceA « A’ is valid, by (RCEA) we get thatd = B) — (A’ = B)is
valid, so that alsdA = B) — ((A' = (AV =B)) — (A = A)) is valid, then we
conclude by propositional reasoning.

- (R)is (ID), thenI” = I'([A : A]) is derived fromI"([A : A,—-A]). We show that
(A= (AvV-4)) — (A= A)isvalid in CK+ID, then we conclude by Lemma 5 and
by the inductive hypothesis. The mentioned formula is @dylie: by (RCK) we obtain
(A= A)— (A= (AVv-4)) — (A= A)) so that we conclude by (ID).



- (R) is (CEM), thusI" = I'([A : A],[A",X]) and it is derived from(i) I'([A :
A XA X)), (i) —A, A, (@id) A’ A. By inductive hypothesisl «— A’ is valid.
We first show thatxx) (A = (AV X)) — (A = A) Vv (4" = X)). Then we con-
clude as before by Lemma 5 and inductive hypothesis. To pfgyewe notice that
the following is derivable by (RCK)YA = (AV X)) — [(A = -A) — (A = X)].
By (CEM), the following is valid:(A = A) v (A = —A). Thus we get that4 =
(Av2E) = [(A= A)V (A= X)) isvalid. SinceA — A’ is valid, (by RCEA) we
have that alsgA = ¥) — (A’ = X)) is valid, obtaining (**). O

3.3 Completeness of the calculN'S
Completeness is an easy consequence of the admissibitte dbllowing rulecut
Ir(r) IL(-F)
—_——(cut)
(o)
whereF' is a formula. The standard proof of admissibility of cut preds by a double
induction over the complexity af and the sum of the heights of the derivations of the
two premises ofcut), in the sense that we replace one cut by one or several cuts on
formulas of smaller complexity, or on sequents derived oyt derivationsHowever,
in /'S the standard proof does not work in the following case, inchtihe cut formula
Fis a conditional formulad = B:
(1) I'([A: B],[A": A]) (2)T(~(A=B),[A": A,-B]) A,-A" A',-A
+

—— (=) , (="
(3) I'(A = B,[A": A]) I'(~(A= B),[A": A)

(cut)

(A" : A])
Indeed, even if we apply the inductive hypothesis on theliteigf the derivations of
the premises to cy®) and(3), obtaining (modulo weakening, which is admissible by
Lemma 2) a derivation d2’) I'([A : A, -B],[A’ : A]), we cannot apply the inductive
hypothesis on the complexity of the cut formulg®) and(1') I'([A : A, B],[A" : 4])
(obtained from(1) again by weakening). Such an application would be needediigro
to obtain a proof of"([A’ : A],[A’ : A]) and then to conclud&'([4’ : A]) since
contraction is admissible (Lemma 4).

In order to prove the admissibility of cut fav'S, we proceed as follows. First, we
show that if A, ~A’ and A’, - A are derivable, then if ([A : 4]) is derivable, then
I'([A" : A]), obtained by replacinfA : A] with [A’ : A], is also derivable. We prove
that cut is admissible by “splitting” the notion of cut in typoopositions:

Theorem 2. In NS, the following propositions hold(A) If I'(F) and I'(—F) are
derivable, so id (), i.e. (cut) is admissible inV'S; (B) if (I) I'([A : A]), (II) A, —A’
and (lll) A’, - A are derivable, thed ([A’ : A]) is derivable.

Proof. The proof of both is by mutual induction. To make the struetnfrthe induction
clear call: Cut(c, h) the property (A) for anyl” and any formulaF’ of complexity ¢
and such that the sum of the heights of derivation of the pesnish. Similarly call
Sub(c) the assertion that (B) holds for adyand any formulad of complexityc. Then
we show that following facts:



(i) Vh Cut(0, h)

(i) Ve Cut(c,0)

(i) V' < ¢ Sub(c) — (V' < ¢ YW Cut(c',h') AVR < h Cut(c,h') —
Cut(c, h))

(iv) Yh Cut(c, h) — Sub(c)

This will prove thatVe VhCut(c,h) andVe Sub(c), that is (A) and (B) hold. The
proof of (iv) (that is thatSub(c) holds) in itself is by induction on the heightof the
derivation of the premise (I) of (B). To save space, we ongspnt the most interesting
cases.
Inductive step fofA): we distinguish the following two cases:
e (case 1) the last step oheof the two premises is obtained by a ruk) (n which F'
is notthe principal formula. This case is standard, we can periiRjtever the cut, i.e.
we cut the premise(s) oR)) and then we applyR) to the result of cut.
e (case 2)F is the principal formula in the last step bbthderivations of the premises
of the cutinference. There are seven subcasésintroduced a) byA™) - (AT), b) by
(V) - (v*), 0 by (=) - (=F), d) by (=) - (=), €) by(=") - (ID), ) by (=)
- (CEM), g) by (CEM) - (ID). We only show the most interesting case d), where the
derivation is as follows:

(1) (~(A= B),[A": A,-B]) A,-A" A" ,-A (2) (JA: B],[A": A])

=) ="
I(~(A= B),[A": A]) (3) T'(A= B,[A": A])

- (cut)
I([A": A])

First of all, since we have proofs fot, ~A’ and forA’, -4 andep(A) < ep(A = B),
we can apply the inductive hypothesis for (B)(®), obtaining a proof of2’) I"([A" :
B],[A’ : A]). By Lemma 2, from(3) we obtain a proof of at most the same height
of (3") I'(A = B,[A" : A,—B]). We can then conclude as follows: we first apply
the inductive hypothesis on the height for (A) to ¢uy and (3’), obtaining a deriva-
tion of (4) I'([A’ : A,—B]). By Lemma 2, we have also a derivation(@f) I"([4’ :
A,-B], [A’: A]). Again by Lemma 2, fron{2’) we obtain a derivation of2”) I'([A’ :
A, B],[A" : A]). We then apply the inductive hypothesis on the complexitthefcut
formulato cut(2”) and(4’), obtaining a proof of '([4’ : A],[A” : A]), from which we
conclude since contraction is admissible (Lemma 4).
Inductive step foKB) (that is statement (iv) of the induction): we have to ddasall
possible rules ending (looking forward) the derivation/afA : A]). We only show
the most interesting case, whes-~) is applied by usingA : A] as principal formula.
The derivation ends as follows:

(1) I(~(C = D),[A: A,=D]) (2)C,=A  (3)A,~C

=)

I'(~(C = D),[A: A])

We can apply the inductive hypothesis(fo to obtain a derivation of1’) I'(—~(C =

D),[A" : A,—D)). Since weakening is admissible (Lemma 2), frohd) we obtain a
derivation of(I1") C, A,—A’, from (I11) we obtain a derivation off I1") A’,—A, =C.
Again by weakening, fronf2) and(3) we obtain derivations of2’) C,—-A,-A’" and
(3") A’ A, -C, respectively. We apply the inductive hypothesis of (A)ttisathat cut
holds for the formulad (of a given complexity) and conclude as follows:



(Ir'yc, A, A" (2") C,-A, A’ (IT1'y A',=A,-~C (3') A", A, -C
(cut) (cut)
(1) r(=(C = D),[A": A,=D]) C,-A Al =C

I'(~(C = D),[A": A))

Theorem 3 (Completeness alV'S). If I"is valid, then it is derivable ioV'S. H
Proof. We prove that the axioms are derivable and that the set ofat®#e formulas is
closed under (Modus Ponens), (RCEA), and (RCK). A derivatiban instance of ID
has been shown in Figure 2. Here is a derivation of an instahC&M:

(AX) (AX) (AX)
[A: B,~B] A, -A -A A
(CEM)

[A: B],[A:-B]
7(:>+)

[A:B],A= -B
—(:>+)

A= B,A= -B

vh

(A= B)V (A= -B)
For (Modus Ponens), the proof is standard and is omittedwe space. For (RCEA),
we have to show that il < B is derivable, then als¢A = C) < (B = C) is
derivable. As usualA — B is an abbreviation fofA — B) A (B — A). Since
A < B is derivable, and sinceA™) and(—*) are invertible (Lemma 3), we have a
derivation forA — B, then for(1) -4, B, and forB — A, then for(2) A,—B. We
derive(A = () — (B = C) (the other half is symmetric) as follows:

(AX)
~(A=C),[B:C,~C] (1)=A, B (2) A,-B

-(A=C),[B:C]
—($+)
-(A=C),B=C

="

(A= C) — (B=C)

For (RCK), suppose that we have a derivatiogMi$ of (4; A ... A A,,) — B. Since
(—7) is invertible (Lemma 3), we have also a derivatiomf-(A4; A...A A,,). Since
(A7) is also invertible, then we have a derivation/®f—A,, ..., A, and, by weaken-
ing (Lemma 2), of(1) =(C = A;),...,~(C = A,),[C : B,—~A1,—A,,...,—A4,],
from which we conclude as follows:

(1) ~(C = Ay),...,~(C = A,),[C: B,=A1,~As, ..., —A,]
=7 (AX) (AX)
=(C = A1),...,=(C = A,),[C: B,—~A;, ~As] C,-C -C,C
=) (AX) (AX)
—(C = A1),...,~(C = A,),[C: B,—A] C,~C -C,C
=7
=(C = A1),...,~(C = A,),[C: B]
(n)
—(C=A1AN...ANC = A,),[C: B]
="

-(C=A1N...NC=A,),C=B

)
(C=A1N...NC=A,)— (C=B) 0



3.4 Termination and complexity of A'S
Therules &), (CEM), and(ID) may be applied infinitely often. In order to obtain a
terminating calculus, we have to put some restrictions erafplication of these rules.
Let us first consider the systems without CEM. We put the Yalhg restrictions:
—apply&)toI'(—-(A= B),[A’: A]))onlyif =B ¢ A;
—apply(ID)to I'([A: A)) only if —A & A.
These restrictions impose that-(") is applied only once to each formutd A = B)
with a context[A’ : A] in each branch, and th&fD) is applied only once to each
context[A : Al in each branch.

Theorem 4. The calculiA'S with the termination restrictions is sound and complete
for their respective logics.

Proof. We show that it is useless to apply the rules—) and (/D) without the re-
strictions. We only present the case(ef ). Suppose it is applied twice ofi([A :
A],[B : X]) in a branch. Sincé=") is “weakly” invertible, we can assume, with-
out loss of generality, that the two applicationgef ~) are consecutive, starting from
I'(-(A= B),[A" : A,—-B,-B]). By Lemma 4 (contraction), we have a derivation of
I'([A: A, X],[B: X]), and we can conclude with a (single) applicatiorfef~). O

The above restrictions ensure a terminating proof searaghémnested sequents for CK
and CK+ID, in particular:

Theorem 5. The calculiWC K and N CK + I.D with the termination restrictions give
a PSrAcE decision procedure for their respective logics.

For the systems allowing CEM, we need a more sophisticatehimery*, that allows
us also to conclude that:

Theorem 6. The calculiNCK +CFEM and N CK +CEM +1 D with the termination
restrictions give & SPACE decision procedure for their respective logics.

It is worth noticing that our calculi match the P&E lower-bound of the logics CK
and CK+ID, and are thus optimal with respect to these lodirs.the contrary the
calculi for CK+CEM(+ID) are not optimal, since validity ihése logics is known to be
decidable incoNP. In future work we shall try to devise an optimal decisioogedure
by adopting a suitable strategy.

4 A calculus for the flat fragment of CK+CSO+ID

In this section we show another application of nested sdquemive an analytic calcu-
lus for the flat fragment, i.e. without nested conditionalsof CK+CSO+ID. This logic
is well-known and it corresponds to logi¥; the logic ofcumulativity the weakest sys-
tem in the family of KLM logics [15]. Formulas are restrictedboolean combinations
of propositional formulas and conditionals=- B whereA and B are propositionals.
A sequent has then the form:
Al,...,Am,[Bl : Al],...,[Bm : Am]
* The termination of the calculi withCEM ) can be found in [1].



where B; and A, are propositional. The logic has also an alternative seicwirt
terms ofweak preferential model§he rules ofNCK + CSO + ID are those ones
of NCK + ID (restricted to the flat fragment) where the r(#e ) is replaced by the
rule (CSO):

I, —~(C = D),[A: A, -D] I,~(C = D),[A:C] I,~(C = D),[C: A]

(CS0)
I,~(C = D),[A: 4]

A derivation of an instance of CSO is easy and left to the reddere interestingly, in

Figure 3 we give an example of derivation of the cumulativiesx((A = B) A (A =

C)— (AANB)=C.

Z,[AAB: A,-A,~B)
EEEE———NS
X, [AAB:A,~(AAB)]

(ID) 11,

~(A= B),~(A= C),[AAB:C,~C] (A= B),~(A= C),[AAB: 4] ~(A= B),~(A= C),[A: AAB]

(CS0)
~(A= B),~(A=C),[AAB:C]

=%
~(A= B),~(A= C),(AAB)=C

where 1 is the following derivation:

I, [A: A, A T,[A: A, -A]
(D) (ID)
I, [A: A, -A] $,[A:B,-B] X,[A:A] D,[A: A]
(ID) (CS0)
~(A= B),~(A=C),[A: 4] ~(A= B),~(A= C),[A: B

(n")

~(A= B),~(A=C),[A: AAB]

Fig. 3. A derivation of the cumulative axiofyA = B) A (A = C)) — (AAB) = C. We
omit the first propositional steps, and we let= ~(A = B), ~(A = C).

Definition 5. A sequenf” isreducedf it has the forml” = A, IT, [By : A4],...,[Bm :
A,], whereA is a multiset of literals andI is a multiset ofnegativeconditionals.

The following proposition is a kind afisjunctive propertyor reduced sequents.

Proposition 1. LetI" = A, I1,[By : A4],...,[Bm : 4] be reduced, if" is derivable
then for some, the sequent, 11, [B; : A;] is (height-preserving) derivable.

Proposition 2. LetI"’ = X [B; : 44],...,[Bm : 4,,] be any sequent, if is derivable
then it can be (height-preserving) derived from saeducedsequentd’; = X, [Bs :
Ayl, ..., [Bm : An). Moreover all rules applied to derive from I'; are either propo-
sitional rules or the rulg="1).

Proposition 2 can be proved by permuting (downwards) albgh@ications of proposi-
tional and(=") rules.

Proposition 3. LetI" = X, [A : A],[A : A] be derivable, thed” = X, [A : A] is
(height-preserving) derivable.

Proof. By Proposition 2,I" is height-preserving derivable from a set of reduced se-
quentsX;, [A : A],[A : A]. By Proposition 1, eacly;, [A : A] is derivable; we then
obtainX', [A : A] by applying the same sequence of rules. O



Theorem 7. Contraction is admissible W CK +CSO+1D:if I'(F, F) is derivable,
thenI'(F) is (height-preserving) derivable, wherfe is either a formula or a nested
sequenfA : X.

Proof. (Sketch) IfF' is a formula the proofis essentially the same as the one fomha
4inNS.If F=[A:X]we apply Proposition 3. O

Observe that the standard inductive proof of contractioesdaot work in the case
F = [A : A], that is why we have obtained it by Proposition 3 which in tisrbased
on Proposition 1, a kind of disjunctive property. The sanguarentdoes not extend
immediatly to the full language with nested conditionals.

As usual, we obtain completeness by cut-elimnation. As sead 'S, the proof
is by mutual induction together with a substitution propeuntd is left to the reader due
to space limitations.

Theorem 8. In NCK + CSO + ID, the following propositions hold(A) If I'(F')
andI'(—F) are derivable, then so i§; (B) if (I) I'([A : A)]), (II) I'([A : A']), and
(III) I'([A’ : A]) are derivable, then so i5'([4’ : A]).

Theorem 9. The calculusNCK + CSO + ID is sound and complete for the flat
fragment ofCK+CSO+ID,

Proof. For soundness just check the validity of {&S0) rule. For completeness, one
can derive all instances of CSO axioms. Moreover the rulels B@ RCEA are deriv-
able too (by using the ruled D) and (CS0)). For closure under modus ponens, as
usual we use the previous Theorem 8. Details are left to taere O

Termination of this calculus can be proved similarly to Tiesn 5, details will be given
in a full version of the paper.

Theorem 10. The calculus\VCK + C'SO + I D with the termination restrictions give
a PSpacE decision procedure for the flat fragment@K+CSO+I1D

We do not know whether this bound is optimal. The study of thtneal complexity for

CK+CSO+ID is still open. A N:xP tableau calculus for cumulative loge has been
proposed in [11]. In [20] the authors provide calculi forffile. with nested condition-
als) CK+ID+CM and CK+ID+CM+CA: these logics are related t8@, but they do
not concide with it, even for the flat fragment as CSO = CM+RSB{icted transitivity).
Their calculi are internal, but rather complex as the malkeafdngenious but highly
combinatorial rules. They obtain a P&E bound in all cases.

5 Conclusions and Future Works

In this work we have provided nested sequent calculi for gs&dnormal conditional
logic and a few extensions of it. The calculi are analytic #meir completeness is
established via cut-elimination. The calculi can be useabtain a decision procedure,
in some cases of optimal complexity. We have also providegiséed sequent calculus
for the flat fragment of CK+CSO+ID, corresponding to the clative logic C of the



KLM framework. Even if for some of the logics considered irstpaper there exist
other proof systems, we think that nested calculi are padity natural internal calculi.
Obviously, it is our goal to extent them to a wider spectruntaditional logics, in

particular preferential conditional logics, which stéldk “natural” and internal calculi.
We also intend to study improvements of the calculi towarffisiency, based on a
better control of duplication. Finally, we wish to take adtage of the calculi to study
logical properties of the corresponding systems (disjongiroperty, interpolation) in
a constructive way.
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