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Abstract. In this paper we present a theory for reasoning about ac-
tions which is based on the Product Version of Dynamic Linear Time
Temporal Logic (denoted DLTL⊗) and allows to describe the behaviour
of a network of sequential agents which coordinate their activities by
performing common actions together. DLTL⊗ extends LTL, the propo-
sitional linear time temporal logic, by strengthening the until operator
by indexing it with the regular programs of dynamic logic. Moreover,
it allows the formulas of the logic to be decorated with the names of
sequential agents, taken from a finite set.
The action theory we propose is an extension of the theory presented
in [8], which is based on the logic DLTL, and allows reasoning with
incomplete initial states and dealing with postdiction, ramifications as
well as with nondeterministic actions. Here we extend this theory to cope
with multiple agents synchronizing on common actions.

1 Introduction

An approach to reasoning about actions that recently gained renewed attention is
the one based on the use of dynamic logic and of temporal logic. The suitability of
modal logic for reasoning about actions has been pointed out by several authors
in the last years [3,7]. On the one hand, Dynamic Logic [11] adopts essentially the
same ontology as McCarthy’s situation calculus, by taking the state of the world
as primary, and encoding actions as transformations on states: actions can be
represented in a natural way by modalities, and states as sequences of modalities.
On the other hand, the adoption of a temporal logic for action theories allows
general goals, like achievement and maintenance goals to be specified through
temporal modalities.

The need of temporally extended goals has been motivated by Bacchus and
Kabanza [1] and by Kabanza et al. [14], who proposed an approach to planning
based on a linear time temporal logic. The formalization of properties of planning
domains as temporal formulas in CTL has also been proposed in [10], where the
idea of planning as model checking in a temporal logic has been explored. Other
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authors have made use of the µ-calculus for reasoning about actions [21,4,5]. The
µ-calculus allows complex goals to be formalized in a planning context, including
achievement and maintenance goals [21].

In [8] the modal action theory developed in [7] has been enhanced by mov-
ing to the setting of temporal logics. More precisely, an action theory has been
proposed based on the linear time temporal logic, DLTL (Dynamic Linear Time
Temporal Logic [13]), which is, essentially, a dynamic logic equipped with a
linear time semantics. It provides a simple way of constraining the (possibly infi-
nite) evolutions of the system by making use of regular programs. The temporal
projection problem and the planning problem can be modelled as satisfiability
problems in DLTL.

In this paper we want to further exploit the expressiveness of temporal logic to
extend our action theory for modelling a collection of interacting agents. To this
purpose, we will make use of the Product Version of DLTL (DLTL⊗) to reason
about a fixed number of finite state sequential agents, that coordinate their
activities by performing their actions together. In [12] DLTL⊗ has been shown
to be expressively equivalent to the regular product languages and to admit an
exponential time decision procedure. In particular, the satisfiability and model
checking problems for DLTL⊗ can be solved by product Büchi automata. A nice
property of DLTL⊗ is that every formula of DLTL⊗ is trace consistent, so that
properties defined by DLTL⊗ formulas can be verified efficiently by making use
of partial order based reduction techniques.

DLTL⊗ does not allow to describe global properties of a system of agents,
since the truth of a formula is evaluated at a local state (that is, a state local to
an agent) and the temporal modalities define causal relationships among local
states. However, it allows the specification of the dynamic of the system to be
given through the separate specification of the different agents in the domain
description.

Our action theory allows reasoning with incomplete initial states, and dealing
with postdiction, ramifications and nondeterministic actions, which are captured
by possibly alternative extensions (temporal models). Moreover, it provides a
formalization of complex actions through the regular programs of dynamic logic
and, in particular, it allows modelling the behaviour of different agents, which
interact by executing common actions.

2 The Logic

We first shortly recall the definition of the logic DLTL and, then, the definition
of its product version.

2.1 DLTL

In this section we shortly define the syntax and semantics of DLTL as introduced
in [13]. In such a linear time temporal logic the next state modality is indexed
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by actions. Moreover, (and this is the extension to LTL) the until operator is
indexed by programs in Propositional Dynamic Logic (PDL) [11].

Let Σ be a finite non-empty alphabet. The members of Σ are actions. Let
Σ∗ and Σω be the set of finite and infinite words on Σ, where ω = {0, 1, 2, . . .}.
Let Σ∞ =Σ∗∪Σω. We denote by σ, σ′ the words over Σω and by τ, τ ′ the words
over Σ∗. Moreover, we denote by ≤ the usual prefix ordering over Σ∗ and, for
u ∈ Σ∞, we denote by prf(u) the set of finite prefixes of u.

We define the set of programs (regular expressions) Prg(Σ) generated by Σ
as follows:

Prg(Σ) ::= a | π1 + π2 | π1;π2 | π∗

where a ∈ Σ and π1, π2, π range over Prg(Σ). A set of finite words is associated
with each program by the mapping [[]] : Prg(Σ) → 2Σ∗

, which is defined in the
standard way, as follows:

- [[a]] = {a};
- [[π1 + π2]] = [[π1]] ∪ [[π2]];
- [[π1;π2]] = {τ1τ2 | τ1 ∈ [[π1]] and τ2 ∈ [[π2]]};
- [[π∗]] =

⋃
[[πi]], where

•[[π0]] = {ε}
•[[πi+1]] = {τ1τ2 | τ1 ∈ [[π]] and τ2 ∈ [[πi]]}, for every i ∈ ω.

Let P = {p1, p2, . . .} be a countable set of atomic propositions. The set of
formulas of DLTL(Σ) si defined as follows:

DLTL(Σ) ::= p | ¬α | α ∨ β | αUπβ

where p ∈ P and α, β range over DLTL(Σ).
A model of DLTL(Σ) is a pair M = (σ, V ) where σ ∈ Σω and V : prf(σ) →

2P is a valuation function. Given a model M = (σ, V ), a finite word τ ∈ prf(σ)
and a formula α, the satisfiability of a formula α at τ in M , written M, τ |= α,
is defined as follows:

– M, τ |= p iff p ∈ V (τ);
– M, τ |= ¬α iff M, τ 
|= α;
– M, τ |= α ∨ β iff M, τ |= α or M, τ |= β;
– M, τ |= αUπβ iff there exists τ ′ ∈ [[π]] such that ττ ′ ∈ prf(σ) and M, ττ ′ |=
β. Moreover, for every τ ′′ such that ε ≤ τ ′′ < τ ′1, M, ττ ′′ |= α.

A formula α is satisfiable iff there is a model M = (σ, V ) and a finite word
τ ∈ prf(σ) such that M, τ |= α.

The formula αUπβ is true at τ if “α until β” is true on a finite stretch of
behaviour which is in the linear time behaviour of the program π.

The derived modalities 〈π〉 and [π] can be defined as follows: 〈π〉α ≡ �Uπα
and [π]α ≡ ¬〈π〉¬α. It is easy to see that M, τ |= 〈π〉α iff there exists τ ′ ∈ [[π]]

1 We define τ ≤ τ ′ iff ∃τ ′′ such that ττ ′′ = τ ′. Moreover, τ < τ ′ iff τ ≤ τ ′ and τ �= τ ′.
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such that ττ ′ ∈ prf(σ) and M, ττ ′ |= α. Also, M, τ |= [π]α iff for all τ ′ ∈ [[π]]
such that ττ ′ ∈ prf(σ) it holds that M, ττ ′ |= α.

Furthermore, if we let Σ = {a1, . . . , an}, the U , O (next), 3 and 2 of LTL
can be defined as follows: Oα ≡ ∨

a∈Σ〈a〉α, αUβ ≡ αUΣ∗
β, 3α ≡ �Uα,

2 ≡ ¬3¬α, where, in UΣ∗
, Σ is taken to be a shorthand for the program

a1 + . . . + an. Hence both LTL(Σ) and PDL are fragments of DLTL(Σ). As
shown in [13], DLTL(Σ) is strictly more expressive than LTL(Σ).

2.2 A Product Version of DLTL

We shortly recall the definition of DLTL⊗ from [12]. Let Loc = {1, . . . ,K} be
a set of locations, the names of the agents synchronizing on common actions. A
distributed alphabet Σ̃ = {Σi}K

i=1 is a family of (possibly non-disjoint) alphabets,
with each Σi a non-empty, finite set of actions (Σi is the set of actions which
require the participation of agent i). Let Σ =

⋃K
i=1 Σi. For σ ∈ Σ∞, we denote by

σ ↑ i the projection of σ down to Σi. Moreover, we define Loc(a) = {i | a ∈ Σi},
the set of agents which participate in each occurrence of action a.

Atomic propositions are introduced in a local fashion, by introducing a non-
empty set of atomic propositions P . For each proposition p ∈ P and agent
i ∈ Loc, pi represents the “local” view of the proposition p at i, and is evaluated
in the local state of agent i.

Let us define the set of formulas of DLTL⊗(Σ̃) and their locations:

- � is a formula and loc(�)=∅;
- if p ∈ P and i ∈ Loc, pi is a formula and loc(pi) = {i};
- if α and β are formulas, then ¬α and α∨β are formulas and loc(¬α) =
loc(α) and loc(α ∨ β) = loc(α) ∪ loc(β);
- if α and β are formulas and loc(α), loc(β) ⊆ {i} and π ∈ Prg(Σi), then
αUπ

i β is a formula and loc(αUπ
i β) = {i}.

Notice that no nesting of modalities Ui and Uj (for i 
= j) is allowed, and
the formulas in DLTL⊗(Σ̃) are boolean combinations of formulas from the set⋃

i DLTL
⊗
i (Σ̃), where

DLTL⊗
i (Σ̃) = {α | α ∈ DLTL⊗(Σ̃) and loc(α) ⊆ {i} }.

A model of DLTL⊗(Σ̃) is a pair M = (σ, V ), Where σ ∈ Σ∞ and V =
{Vi}K

i=1 is a family of functions Vi, where Vi : prf(σ ↑ i) → 2P is the valuation
function for agent i.

The satisfiability of formulas in a model is defined as above, except that
propositions are evaluated locally. In particular, for all τ ∈ prf(σ):

– M, τ |= pi iff p ∈ Vi(τ ↑ i);
– M, τ |= αUπ

i β iff there exists a τ ′ such that τ ′ ↑ i ∈ [[π]], ττ ′ ∈ prf(σ) and
M, ττ ′ |= β. Moreover, for all τ ′′ such that ε ≤ τ ′′ < τ ′, M, ττ ′′ |= α.

Satisfiability in DLTL⊗ is defined as above. In [12] DLTL⊗ has been shown
to be expressively equivalent to the regular product languages and to admit an
exponential time decision procedure.
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3 Action Theories

In this section we extend to a multiagent setting the action theory developed
in [8]. In the following the behaviour of the global system will emerge as the
product of the behaviours of the single agents which interact by synchronizing
on common actions. The behaviour of each agent i is specified by a domain
description Di, which describes the atomic actions the agent may perform by
means of a set of action laws, causal rules, precondition laws and a set of general
constraints. Such constraints also provide a description of the complex behaviour
of the agent, given by means of regular programs of dynamic logic. The agents
interact by performing common actions together, where each agent participating
in the action execution has its own local description of the action determining
the action effects on its local state.

In our action theories we call fluent names the atomic propositions in P
indexed by an agent name i. Namely, for each p ∈ P and i ∈ Loc, pi is a fluent
name local to i. A fluent literal l is a fluent name f or its negation ¬f . Given a
fluent literal l, such that l = f or l = ¬f , we define |l| = f . We will denote by
Liti the set of all fluent literals local to i.

A (distributed) domain description D is a family of domain descriptions Di,
one for each agent i. A domain description Di for agent i is defined as a tuple
(Πi, F ramei, Ci), where Πi is a set of action laws and causal laws; Ci is a set
of constraints; Framei provides a classification of fluents as frame fluents and
nonframe fluents as we will define below.

Action laws in Πi have the form: 2i(α → [a]iβ), with a ∈ Σi and α, β ∈
DLTL⊗

i , meaning that executing action a in a local i state where precondition
α holds causes the effect β to hold.

Causal laws in Πi have the form: 2i(
∧

a∈Σ([a]iα → [a]iβ)), with a ∈ Σi

and α, β ∈ DLTL⊗
i , meaning that, for all actions a, if α holds (in the local i

state) after the execution of a, then β also holds after its execution. Such laws
are intended to expresses “causal” dependencies among fluents (see [18,17,22,7]),
and, intuitively, their directionality makes them similar to inference rules: if we
are able to derive α then we can conclude β.

Constraints in Ci are arbitrary formulas of DLTL⊗. Constraints not only put
conditions on the value of fluents at the different states, but they also determine
which are the possible behaviours of the agent in a state. We do not put any re-
strictions on the kind of constraints that we allow in Ci, which include both safety
and liveness constraints. Let us only mention some constraints that are usually
discussed in reasoning about actions literature. Domain constraints of the form
always α, as introduced in [15], which enforce the condition α to hold on all
possible states, are safety constraints which can be formalized by the formula
2iα. Precondition laws, which put conditions on the executability of actions in a
state, can be formalized, in a linear time temporal logic, by formulas of the form
2i(α → [a]i⊥), meaning that action a cannot be executed in all reachable states
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in which α holds2. Observations about the value of fluents in different states
can be formalized as state constraints of the form [a1; . . . ; aj ]iα, meaning that
α ∈ DLTL⊗ holds in the state obtained after executing the action sequence
a1, . . . , aj (and, in particular, in the initial state when the action sequence is
empty).

Constraints in Ci can be used to describe the sequences of actions which are
possible for the agent. For instance, the liveness constraint 〈π〉i� constrains all
the executions of agent i in the system to start with a finite sequence of actions
which is a possible behaviour of the program π.

We assume that for each causal law 2i(
∧

a∈Σ([a]iα → [a]iβ) in Π , there is
a corresponding constraint formula α → β in the set Ci, which assures that also
in the initial state if α holds, β holds too.

Framei is a set of pairs (pi, a), where pi is a fluent for agent i, and a ∈ Σi is
an action to which agent i participates. (pi, a) ∈ Framei means that, for agent i,
pi is a frame fluent for action a, that is, pi is a fluent to which persistency applies
when action a is executed. Those fluents which are not frame with respect to a
do not persist and may change value in a nondeterministic way, when executing
a. Note that it may occur that (pi, a) ∈ Framei while (pj , a) 
∈ Framej for
i 
= j.

As DLTL⊗ does not include test actions, we introduce them in the language
as atomic actions in the same way as done in [8]. Test actions allow the choice
among different behaviours to be controlled. To allow agent i to test the value
of a proposition φ in its local state, we introduce the modality [φ?]i (regarded
as an atomic action in Σi), ruled by the following laws:

2i(¬φ → [φ?]i⊥)
2i(< φ? >i � → (L ↔ [φ?]iL)), for all fluent literals L ∈ Liti.

The first law is a precondition law, saying that action φ? is only executable in
a state in which φ holds. The second law describes the effects of the action on
the state: the execution of the action φ? leaves the state unchanged3. In the
following we will assume that, for all test actions occurring in the examples, the
corresponding action laws are implicitly added (as constraints) to the domain
description.

We remark that the global state of the system can be regarded as a set of
local states, one for each agent i. The action laws and causal rules in Di describe
how the local i state changes when an action a ∈ Σi is executed. An action a
which is common to agents i and j is executed synchronously by the two agents,
which update their local states separately, according to their action specification
given in Di and Dj . Moreover, the behaviour of each agent i, a subsequence σi

of the system behaviour σ, must satisfy the constraints in Ci. In particular, the
action must be executable for both the agents i and j.
2 In a branching time logic, precondition laws are usually formalized by laws of the
form 2i (α → 〈a〉i�). However, this formalization is not well suited for a linear time
logic, in which only a single action can be executed at each state.

3 Note that, as a difference with PDL, the execution of test actions causes the state
to change, though the value of propositions in the state is kept unaltered.
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Though action laws and causal laws can themselves be regarded as special
kinds of constraints, we have distinguished them from all other constraints as
they are given a special treatment when dealing with the frame problem. As in
[8], to deal with the frame problem we make use of a completion construction
which, given a domain description, introduces frame axioms for all the frame
fluents in the style of the successor state axioms introduced by Reiter [20] in the
context of the situation calculus. The completion construction is applied only to
the action laws and causal laws and not to the constraints. In fact, we assume
that frame fluents only change values according to the immediate and indirect
effects of actions described by the action laws and causal laws. For lack of space
we refer to [8] for the details on the completion construction. We just mention
that, in this multiagent setting, the action laws and causal rules in the Πi’s have
to be considered separately for each i, by introducing different frame axioms for
the different agents. Given a domain description D, we call Comp(D) be the
set of formulas including all frame axioms as well as the constraints Ci for all
agents i. The extensions of the domain description D are defined as the models
of Comp(D).

The temporal projection problem and the planning problem can be modelled
as satisfiability problems in DLTL⊗, as it has been done in [8] in the single
agent context. In particular, the planning problem “is there a sequence of actions
leading to a state where a given formula αi holds for agent i ?” can be solved
by checking if the query 3iαi has a solution in D, that is, if there is a model
M = (σ, V ) satisfying the query and the completion of the domain description
Comp(D). The plan which makes αi true can be extracted from the model M4.
It is a “concurrent plan” and it contains the actions which have to be performed
by the different agents to reach the goal. Some of the actions are common to
different agents and must be executed by the different agents together. Other
actions are local to a single agent. Though the plan which is extracted from a
model is a linear plan, it represents a class of equivalent plans which can be
obtained by permutations of adjacent independent actions (where two actions a
and b are independent when there is no agent participating in both of them, i.e.
Loc(a) ∩ Loc(b) = ∅)5. Thus a linear plan can be regarded as a plan in which
the actions of the different agents are partially ordered.

Example 1. Let us first consider an example of two robots which must move
a set of blocks from a room to another using a table [2]. The robots can put
individually the blocks on the table, but they must lift and move the table
simultaneously, otherwise the blocks will fall off.

4 In general, one may want to find a plan in which the different agents achieve different
goals. Hence, the query to be satisfied may have the form 3iαi ∧ . . .∧3KαK , where
αi is the goal of agent i.

5 In [12] it has been shown that the behaviours described by the temporal
logic DLTL⊗ (i.e. regular product languages) lie within the domain of regular
Mazurkiewics trace languages. Thus DLTL⊗ provides a flexible and powerful means
for specifying trace consistent properties of distributed programs, which can be ver-
ified efficiently by making use of partial order based reduction techniques.
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Each robot has a private state consisting of a set of fluents, which specify
what the robot knows about the world. In a simplified formulation we assume
that there are only two blocks Block1 and Block2, and each robot knows the
position of one of them, besides knowing its own position and that of the table.
In the following, p, q, r will range in the set {Room1, Room2}, while b will range
in the set {Block1, Block2}.

The set of fluents of the i-th robot is6: Pi = {ati(Blocki, p), ati(Roboti, p),
ati(Table, p), table upi, on tablei(Blocki)} for all values of p. Each one of the
two robots has the following alphabet of actions: Σi= {put on tablei(Blocki),
lift table,move table(p)}, for all p and i = 1, 2, where put on tablei(Blocki),
the action of putting block Blocki on the table, is private of each robot, whereas
the two other actions of lifting the table and moving it to a position p are shared
by them and must be executed simultaneously.

We introduce the following precondition and action laws (for all p, q, r, b):

2i((ati(Table, p)∧ ati(Roboti, q) ∧ ati(b, r)) ∨ on tablei(b)) →
[put on tablei(b)]i⊥) with p 
= q or p 
= r.
2i([put on tablei(b)]ion tablei(b))
2i((ati(Table, p)∧ ati(Roboti, q)) → [lift table]i⊥) with p 
= q.
2i([lift table]itable upi)
2i((ati(Table, p)∨ ¬table upi) → [move table(p)]i⊥
2i([move table(r)]iati(Table, r))

As we have pointed out before, precondition laws specify when actions cannot
be executed. Note that when executing a shared action each robot will update
its state separately according to its action law. Furthermore we need some con-
straints. For all possible values of x and for p 
= q, 2i(¬(ati(x, p) ∧ ati(x, q))
Finally, the fact that a box on the table moves with it can be described by the
causal law: 2i([a]iati(Table, p) ∧ on tablei(b)) → [a]iati(b, p)), for each action
a ∈ Σi.

We assume that all fluents are frame fluents. Let us now add formulas de-
scribing the initial state of Robot1 and Robot2:

at1(Robot1, Room1)∧at1(Block1, Room1)∧at1(Table, Room1)∧¬table up1∧
¬on table1(Block1)
at2(Robot2, Room1)∧at2(Block2, Room1)∧at2(Table, Room1)∧¬table up2∧
¬on table2(Block2)

Assume now that we want the robots to move both boxes to the other room.
This can be expressed as a satisfiability problem: Given the query:

31at1(Block1, Room2) ∧32at2(Block2, Room2)

find a model (of the domain description Comp(D)) satisfying it. For instance
the model beginning with

put on table1(Block1), put on table2(Block2), lift table,move table(Room2)

6 Identifiers beginning with a capital letter denote constants.
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is a possible solution. From this solution we can extract the two plans for the
two robots, by projecting the solution on the two alphabets. Note that, as we
have pointed out before, the relative order among private actions of different
agents (as, for instance, put on table1(Block1) and put on table2(Block2)), is
not important so that they can also be executed in a different order and the
above plan can be regarded as only specifying a partial ordering of actions.

In this example each robot can only reason about the effects of its own actions
and cannot know what the other robot is doing. In a more realistic setting the
actions of the robots might interfere and thus a robot should be able to acquire
knowledge about the effects of the actions of other robots. This can be modeled
by introducing an environment which keeps track of the changes caused by all
robots, and by providing the robots with sensing actions allowing the value of
a fluent to be asked to the environment. In the next example, reasoning about
actions allows properties of a system of agents to be verified.

Example 2. Two robots have to lift a table [6] and their actions must be synchro-
nized so that the table does not tip so much that objects on it fall off. Differently
from the previous example there are no shared actions between the two robots,
and they can lift the table separately.

We model the two robots, robot1 and robot2 and their interaction with the
environment E. Here we have three locations {1, 2, E} and a distributed alpha-
bet Ẽ = {Σ1, Σ2, ΣE} where Σ1 = { grab left, vmove left, sense vpos right}
contains the actions which robot1 executes to lift the left part of the table; Σ2

={grab right, vmove right, sense vpos left} contains the actions which robot2
executes to lift the right part of the table; ΣE ={vmove right, vmove left,
sense vpos right, sense vpos left} contains the actions which the environment
executes, to record the modifications produced by the robot actions. The two
actions sense vpos right and sense vpos left are informative actions (usually
called “sensing actions”) which allow the robots to acquire up to date knowledge
about the part of the environment which is not under their control. For instance,
we can expect that robot1 has to do a sensing action to know the vertical position
of the right end of the table which is under the control of robot2.

The set of atomic propositions P is the following{holding right,holding left,
vpos right(d), vpos right(d), up right, up left}, for all the possible (finite and
discrete) values d of the vertical position. In the following we will assume that
there are 10 different vertical positions possible for the right end of the table
vpos right(1), . . . , vpos right(10), and the same for the left one.

The set Π contains the following action laws for robot1 (for all d ∈ {1 . . .10}
and d′ successors of d):

21([grab left]1holding left1)
21(vpos left(d)1 → [vmove left]1vpos left(d′)1)
21([sense vpos right(d)]1vpos right(d)1).

The grab left action has the effect of robot1 holding the left end of the ta-
ble. The vmove left action increases the vertical position of the left end. The
sense vpos right(d) action provides the position d of the right end.
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The set C contains the following precondition laws and constraints:

21(holding left1 → [grab left]1⊥)
21(¬holding left1 → [vmove left]1⊥)
21(¬[sense vpos right(d)]1⊥)
21(up left1 ↔ vpos left(10)1)
21(safetolift1 ↔ vpos left(d)1 ∧ vpos right(f)1 ∧ d ≤ f + Tot)

The grab left action is possible only if robot1 is not holding the left end of the
table. The vmove left action is possible only if robot1 is holding the left end of
the table. As far as robot1 is concerned the sense vpos right(d) action is always
executable. The left end of the table is up if its vertical position is 10. It is safe
for robot1 to lift the table if the difference between the vertical positions of the
left and the right ends of the table is less then a certain value.

The following program π1 describes the possible behaviours of robot1:

π1 = grab left; (¬up left1?; (sense vpos right(1) +. . .+ sense vpos right(10));
((safetolift?; vmove left) + ¬safetolift?))∗; up left1?

Analogous action laws and constraints are provided for the robot 2 (just
exchange left and right and replace 1 with 2). Concerning the environment, we
have the following actions laws Π (for all d ∈ {1 . . . 10} and d′ successors of d):

2E(vpos right(d)E → [vmove right]Evpos right(d′)E)
2E(vpos left(d)E → [vmove left]Evpos left(d′)E)

and constraints C:
2E(¬[vmove right]E⊥)
2E(¬[vmove left]E⊥)
2E(¬vpos right(d)E → [sense vpos right(d)]E⊥)
2E(¬vpos left(d)E → [sense vpos left(d)]E⊥)
2E(up rightE ↔ vpos right(10)E)
2E(up leftE ↔ vpos left(10)E)

The sense vpos right(d) action is executable if d is the vertical position of the
right end of the table. It has no effect on the environment, but it is how the
environment provides information to robot1 about the value of vpos right. The
vmove right action is always executable by the environment. When it is executed
by robot2, it has the effect of changing the value of vpos right in the environment.

By adding the constraints < π1 >1 � and < π2 >2 � we specify that
we will accept only sequences of actions where the programs of both robots
terminate.

Assuming that in the initial state both ends of the table are down, we can
formalize the fact that in any execution of the system the ends of the table are
always at the same height to within a threshold Tot until both ends are up,
by the following formula: Level UE(up leftE ∧ up rightE), where Level ≡def

vpos right(d)E ∧ vpos left(f)E∧ | d − f |≤ Tot. The formula has to be true
in all models of Comp(D). While in the previous example we wanted to find a



Reasoning about Actions in a Multiagent Domain 247

plan and the problem was formalized as a satisfiability problem, here we want
to verify some property α of the system of agents, which can be formalized as
the problem of verifying the validity of a formula (namely, Comp(D) → α).

4 Conclusions

In this paper we have proposed a temporal logic approach for reasoning about ac-
tions and change in a multiagent context. Our action theory extends the one pre-
sented in [8], which is based on Dynamic Linear Time Temporal Logic (DLTL),
by moving to the Product Version of DLTL: the behaviours of the system are
generated by a network of sequential agents that coordinate their activities by
performing common actions together. In our action theory the frame and the
ramification problem are both addressed by lifting to the multiagent case the
solution developed in [8]. More precisely, (modal) successor state axioms are in-
troduced which are obtained by a completion construction and which are similar
to those introduced by Sheila McIlraith in [19] for dealing with ramifications in
the situation calculus. A similar kind of transformation has also been used by
Enrico Giunchiglia in [9] to translate action theories to first order logic theory
to model planning as satisfiability in first order logic. As a difference with these
proposals, our action theory deals with the multiagent case and it allows con-
straints (which are arbitrary temporal formulas) and queries to include program
expressions. Under this respect, the language is related to the language Con-
Golog [6], an extended version of the language Golog [16] that incorporates a
rich account of concurrency, in which complex actions (plans) can be formalized
as Algol-like programs in the situation calculus. A substantial difference with
ConGolog, apart from the different logical foundation, is that here we model
agents with their own local states, while in Congolog the agents share a common
global environment and all the properties are referred to a global state.

In [2] Boutilier and Brafman address the problem of planning with concur-
rent interacting actions. They show that, the STRIPS action representation can
be augmented to handle concurrent interacting actions and they develop an ex-
tension of the UCPOP algorithm to solve a multiagent planning problem. Also
in this case, differently from our approach, all action affect the same global state.
Though the presence of a global environment is very natural in a robotic context
(and, in fact, in our second example we had to explicitly introduce a model of
the environment), this is not always the case. For instance, when modelling the
interaction between software agents, it is reasonable to assume that each of them
has its own local state on which actions have effect.
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