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Abstract. In this paper we develop a logical framework for specifying
and verifying systems of communicating agents. The framework is based
on a Dynamic Linear Time Temporal Logic (DLTL). It provides a simple
formalization of the communicative actions in terms of their effects and
preconditions and the specification of an interaction protocol by means
of temporal constraints. We adopt a social approach to agent communi-
cation (as proposed by Singh): communication can be described in terms
of changes in the social relations between participants, and protocols in
terms of creation, manipulation and satisfaction of commitments among
agents. The description of the interaction protocol and of communicative
actions is given in a temporal action theory, and agent programs, when
known, can be specified as complex actions (regular programs in DLTL).
The paper addresses several kinds of verification problems (including the
problem of compliance of agents to the protocol), which can be formal-
ized either as validity or as satisfiability problems in the temporal logic
and can be solved by model checking techniques.

1 Introduction

In this paper we develop a logical framework for specifying and verifying systems
of communicating agents. The framework relies on the theory for reasoning about
action developed in [8] which is based on Dynamic Linear Time Temporal Logic
(DLTL). It allows a simple formalization of the communicative actions in terms
of their effect and preconditions as well as the specification of an interaction
protocol to constrain the behaviours of autonomous agents.

The paper adopts a social approach to agent communication [17, 11]. This
approach can be contrasted with the mentalistic approach, which describes the
semantics of communication on the base of mental attitudes of the communicat-
ing agents, namely, their beliefs, desires and intentions [4] which are represented
by modal operators1. The mental approach is not well suited for the verifica-
tion of an “open” multiagent system, where the history of communications is
1 A closely related approach was proposed by Labrou and Finin [15] to define a se-
mantics for KQML.
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observable, but the internal states of the single agents may not be observable. In
contrast, in the social approach communicative actions affect the ”social state”
of the system, rather than the internal states of the agents. The social state
records the social facts, like the permissions and the commitments of the agents,
which are created and modified in the interactions among them. The dynamics
of the system emerges from the interactions of the agents, which must respect
these permissions and the commitments (if they are compliant with the proto-
col). The social approach provides a high level specification of the protocol, and
does not require the rigid specification of all the allowed action sequences by
means of finite state diagrams, as in a behavioral approach.

Dynamic and temporal logics have recently gained renewed attention in the
areas of reasoning about actions and planning [1, 10, 8, 3], fertilizing them with
the well known results and techniques developed for such logics. In particular,
linear time temporal logic has become a well established tool for specifying the
behaviour of distributed systems, for which a rich theory has been developed
and the verification task can be automated. In this paper we present a the-
ory for reasoning about communicative actions in a multiagent system which is
based on the Product Version of Dynamic Linear Time Temporal Logic (denoted
DLTL⊗) [13], an extension of LTL (the propositional linear time temporal logic).
It allows to describe the behaviour of a network of sequential agents which coor-
dinate their activities by performing common actions together. DLTL⊗ extends
LTL by strengthening the until operator by indexing it with the regular programs
of dynamic logic. It is, essentially, a dynamic logic equipped with a linear time
semantics. It allows the formulas of the logic to be decorated with the names
of sequential agents, and it provides a simple way of constraining the (possibly
infinite) behaviours of the agents by making use of regular programs. As we will
see, regular programs are well suited to model both the agent behaviours and
the protocol.

In [13] DLTL⊗ has been shown to be expressively equivalent to the regular
product languages and to admit an exponential time decision procedure. In par-
ticular, the satisfiability and model checking problems for DLTL⊗ can be solved
by product Büchi automata.

The action theory we introduce to model agent communication is an exten-
sion of the theory presented in [8], which is based on the logic DLTL, and allows
reasoning with incomplete initial states and dealing with postdiction, ramifica-
tions as well as with nondeterministic actions. This theory, when extended to
the multiagent case [9], allows reasoning about a fixed number of finite state
sequential agents, that coordinate their activities by performing their actions
together2.
2 DLTL⊗ does not allow to describe global properties of a system of agents, since
the truth of a formula is evaluated at a state local to an agent and the temporal
modalities define causal relationships among local states. The specification of the
dynamic of the system is given through the separate specification of the different
agents.
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In this paper we adapt the theory to the specification and verification of
systems of communicating agents, whose behaviour is ruled by an interaction
protocol. Following [17, 11] a protocol is defined by describing the effects of
communicative actions on the social state, and by specifying the permissions
and the commitments that arise as a result of the current conversation state.
In our action theory the effects of communicative actions will be modeled by
action laws which describe the immediate effects produced by an action on the
social facts. Permissions, which determine when an action can be taken by an
agent, can be modeled by precondition laws. Commitment policies, which rule
the dynamic of commitments, can be described by causal laws which establish
the causal dependencies among fluents. The specification of a protocol can be
further constrained through the addition of suitable temporal formulas, and also
the agents’ programs can be modeled, by making use of complex actions (regular
programs).

The verification that an agent respects commitments and permissions and
is compliant with respect to a given protocol, can be formalized as a validity
problem in the temporal logic and can be solved by means of temporal model
checking. Similarly, the problem of proving protocol properties can be formalized
as a validity problem. On the other hand, the problem of determining if an agent
is not respecting its social facts at runtime can be modeled as a satisfaction
problem (and it can be regarded as an instance of the well known ”temporal
projection problem”).

2 The Logic DLTL and Its Product Version

In this section first we recall the syntax and semantics of DLTL as introduced
in [14], and then recall its product version. DLTL is an extension of LTL in
which the next state modality is labelled by actions and the until operator is
indexed by programs in Propositional Dynamic Logic (PDL) [12].

Let Σ be a finite non-empty alphabet. The members of Σ are actions. Let
Σ∗ and Σω be the set of finite and infinite words on Σ. Let Σ∞ =Σ∗ ∪Σω. We
denote by ≤ the usual prefix ordering over Σ∗ and, for u ∈ Σ∞, by prf(u) the
set of finite prefixes of u.

We define the set of programs (regular expressions) Prg(Σ) generated by
Σ as follows: Prg(Σ) ::= a | π1 + π2 | π1;π2 | π∗, where a ∈ Σ and π1, π2, π
range over Prg(Σ). A set of finite words is associated with each program by the
mapping [[]] : Prg(Σ)→ 2Σ∗

, which is defined in the standard way.
Let P = {p1, p2, . . .} be a countable set of atomic propositions. The set of

formulas of DLTL(Σ) is defined as follows:

DLTL(Σ) ::= p | ¬α | α ∨ β | αUπβ

where p ∈ P and α, β range over DLTL(Σ) and π ranges over Prg(Σ).
A model of DLTL(Σ) is a pair M = (σ, V ) where σ ∈ Σω and V : prf(σ)→

2P is a valuation function. Given a model M = (σ, V ), a finite word τ ∈ prf(σ)
and a formula α, the satisfiability of a formula α at τ in M , written M, τ |= α,
is defined as usual for the classical connectives. Moreover:
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– M, τ |= p iff p ∈ V (τ);
– M, τ |= αUπβ iff there exists τ ′ ∈ [[π]] such that ττ ′ ∈ prf(σ) and M, ττ ′ |=

β. Moreover, for every τ ′′ such that ε ≤ τ ′′ < τ ′, M, ττ ′′ |= α.

The formula αUπβ is true at τ if “α until β” is true on a finite stretch of
behaviour which is in the linear time behaviour of the program π. A formula α
is satisfiable iff there is a model M = (σ, V ) and a word τ ∈ prf(σ) such that
M, τ |= α.

The derived modalities 〈π〉 and [π] can be defined as follows: 〈π〉α ≡ �Uπα
and [π]α ≡ ¬〈π〉¬α. Furthermore, if we let Σ = {a1, . . . , an}, then © (next), ✸

and ✷ of LTL can be defined as follows:©α ≡ ∨
a∈Σ〈a 〉α, ✸α ≡ �UΣ∗

α, ✷ ≡
¬✸¬α.

Let us now recall the definition of DLTL⊗ from [13]. Let Loc = {1, . . . ,K}
be a set of locations, the names of the agents synchronizing on common actions.
A distributed alphabet Σ̃ = {Σi}K

i=1 is a family of (possibly non-disjoint) alpha-
bets, with each Σi a non-empty, finite set of actions (Σi is the set of actions
which require the participation of agent i). Let Σ =

⋃K
i=1 Σi. For σ ∈ Σ∞, we

denote by σ ↑ i the projection of σ down to Σi.
Atomic propositions are introduced in a local fashion, by introducing a non-

empty set of atomic propositions P . For each proposition p ∈ P and agent
i ∈ Loc, pi represents the “local” view of the proposition p at i, and is evaluated
in the local state of agent i.

Let us define the set of formulas of DLTL⊗(Σ̃) and their locations (if α
is a formula, then loc(α), which is a subset of Loc, denotes its location): (a)
� is a formula and loc(�)=∅; (b) if p ∈ P and i ∈ Loc, pi is a formula and
loc(pi) = {i}; (c) if α and β are formulas, then ¬α and α ∨ β are formulas
and loc(¬α) = loc(α) and loc(α ∨ β) = loc(α) ∪ loc(β); (d) if α and β are
formulas and loc(α), loc(β) ⊆ {i} and π ∈ Prg(Σi), then αUπ

i β is a formula and
loc(αUπ

i β) = {i}. Notice that no nesting of modalities Ui and Uj (for i �= j) is
allowed, and the formulas in DLTL⊗(Σ̃) are boolean combinations of formulas
from the set

⋃
i DLTL⊗

i (Σ̃), where

DLTL⊗
i (Σ̃) = {α | α ∈ DLTL⊗(Σ̃) and loc(α) ⊆ {i} }.

A model of DLTL⊗(Σ̃) is a pair M = (σ, V ), Where σ ∈ Σ∞ and V =
{Vi}K

i=1 is a family of functions Vi, where Vi : prf(σ ↑ i) → 2P is the valuation
function for location i.

The satisfiability of formulas in a model is defined as above, except that
propositions are evaluated locally. In particular, for all τ ∈ prf(σ):

– M, τ |= pi iff p ∈ Vi(τ ↑ i);
– M, τ |= αUπ

i β iff there exists a τ ′ such that τ ′ ↑ i ∈ [[π]], ττ ′ ∈ prf(σ) and
M, ττ ′ |= β. Moreover, for all τ ′′ ∈ prf(τ ′), if ε ≤ τ ′′ ↑ i < τ ′ ↑ i, then
M, ττ ′′ |= α.
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Satisfiability in DLTL⊗ is defined as above. Moreover, the derived modalities
〈π〉i, [π]i, ©i, ✸i and ✷i are defined as above, but only considering the actions
in Σi.

3 Action Theories and Systems
of Communicating Agents

In this section we introduce the main features of the action theory developed
in [8] and (for the multiagent case) in [9]. The behavior of the global system will
emerge as the product of the behaviors of the single agents which interact by
synchronizing on communicative actions. Each agent participating in the action
execution has its own local description of the action determining the action
effects on its local state.

The global state of the system can be regarded as a set of local states, one
for each agent i. The action laws and causal laws of agent i describe how the
local state of i changes when an action a ∈ Σi is executed. The underlying model
of communication is the synchronous one: the communication action sendi,j(m)
(message m is sent by agent i to agent j) is shared by agent i (the sender)
and agent j (the receiver) and executed synchronously by them. Their local
states are updated separately, according to their action specification. Though,
for simplicity, we adopt the synchronous model, an asynchronous model can be
easily obtained by explicitly modelling the communication channels among the
agents as distinct locations.

The meaning of communicative actions is fixed by the protocol which de-
scribes the effects of each action on the social state of the system. These effects,
including the creation of new commitments, can be expressed by means of action
laws. Moreover, the protocol establishes a set of preconditions on the executabil-
ity of actions, which can be expressed by means of precondition laws. Each agent
has a local view of the social state and the execution of a communicative action
can in general affect both the state of the sender and the state of the receiver.
In particular, all agents can see the effects on the social state of the actions to
which they participate3. We assume that the executability of actions is only de-
termined by preconditions on the state of the sender and that a communicative
action is always executable for the receiver. Causal and precondition laws are as
in [8, 9]4.

As a running example we will use the NetBill protocol, developed for buying
and selling goods on the Internet [20].

3 Observe that, while in the case of a two agents system the history of all communi-
cations is known to both agents (as they participate in all communicative actions)
and they have the same local view of the social state, this is not true for more than
two participants.

4 Given an action a with precondition α, a precondition law has the form ¬α → [a]⊥,
which expresses that the execution of an action a is not possible (i.e. there is no
resulting state following the execution of a) if α does not hold.
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Example 1. The protocol begins with a customer requesting a quote for some
desired goods, followed by the merchant sending the quote. If the customer ac-
cepts the quote, then the merchant delivers the goods and waits for an electronic
payment order. After receiving the payment, the merchant forwards the receipt
to the customer, who can then successfully decrypt and use the goods. The
agents have the freedom to start an exchange at any point in this sequence. For
instance, the merchant may begin by sending the quote without waiting for a re-
quest; the customer may send an ’accept’ message without prior conversation on
the price of the goods.

To model this example, we introduce two locations, corresponding to the two
agents mr, the merchant, and ct, the customer, that is Loc = {mr, ct}. We call
fluents the atomic propositions in P indexed by an agent name i. Namely, for
each p ∈ P and i ∈ Loc, pi is a fluent local to i. However, we will omit the
index i in pi when it is clear from the context, for instance, when pi is in the
scope of a modality labeled with i (and we will write [a]ip for [a]ipi).

The (domain specific) fluents for this protocol are the following ones: goods,
request, receipt, paid, accept. There are also special fluents to represent com-
mitments. They can be base-level commitments, of the form C(ag1, ag2, action)
(agent ag1 is committed to agent ag2 to execute the action), or they can be
conditional commitments of the form CC(ag1, ag2, p, action) (agent ag1 is com-
mitted to agent ag2 to execute action, if the condition p is brought out)5.
In this example, we will use the following fluents to represent commitments:
C(mr, ct, sendGoods), C(mr, ct, sendReceipt), CC(mr, ct, accept, sendGoods)
and CC(mr, ct, paid, sendReceipt).

In this example, the two agents share exactly the same communicative ac-
tions, which are the following ones: sendQuote, sendGoods, sendReceipt for
which the sender is the merchant and the receiver is the customer; sendRequest,
sendAccept and sendPayment, for which the sender is the customer and the re-
ceiver is the merchant. These actions are executed synchronously by the sending
and receiving agents.

Let us consider the protocol from the point of view of the merchant. The
effects of actions on the merchant’s view of the social state are described by the
following action laws:

Actions of the merchant:
(1) ✷mr([sendQuote]mr(CC(mr, ct, accept, sendGoods)∧

CC(mr, ct, paid, sendReceipt)))
(2) ✷mr(request → [sendQuote]mr¬request)
(3) ✷mr([sendGoods]mr(goods ∧ CC(mr, ct, paid, sendReceipt)))
(4) ✷mr([sendReceipt]mrreceipt)

5 The two kinds of base-level and conditional commitments we allow are essentially
those introduced in [20]. For simplicity, we do not consider the more general higher
level commitments in [17]. Moreover, as in [11] and differently from [20], agents are
committed to execute an action rather than to achieve a condition.
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Actions of the customer:
(5) ✷mr([sendRequest]mrrequest)
(6) ✷mr([sendAccept]mraccept)
(7) ✷mr([sendPayment]mrpaid)

For instance, the first law says that, when the merchant sends the quote for the
good then he commits to send the goods if the customer accepts the request, and
he also commits to send the receipt if the customer pays the agreed amount. It
is an example of action, whose effect is to create new commitments. The second
law says that when the merchant sends the quote for the good when there is
a request, then the request is cancelled.

The preconditions on the executability of actions are social facts. We assume
they are preconditions on the state of the sender6, while we assume that it is
always possible for an agent to receive a message. The only precondition law for
the merchant is the following one:

(8) ✷mr(¬paid → [sendReceipt]mr⊥)
meaning that when the payment has not been done by the customer, the action
sendReceipt cannot be executed. All other actions are always executable by the
merchant. We will denote by Permi the set of precondition laws of agent i.

The action laws describing the effects of communicative actions on the state of
the customer are exactly the same as for the merchant (as the two agents share
all their communicative actions), apart from the fact that all modalities and
propositions are indexed with ct. We number them (1’)–(7’). The only condition
on the executability of actions for the customer is the following precondition law:

(9) ✷ct(¬goods → [sendPayment]ct⊥)
meaning that the customer may send a payment for the goods only if he has
received the goods (all other actions are always executable for the customer).

Let us now define the rules for reasoning about the commitments. In the
general case, the actions in the protocol can be regarded as operations on com-
mitments, not only creation operations, but also cancellation, fulfilling and ma-
nipulation operations [17]. While it is clear that in this logical formalization it
would be simple to define operations to manipulate commitments, in this paper
we will assume that all (base-level) commitments of an agent have to be fulfilled
for the agent to be compliant with the protocol. Some reasoning rules have to
be defined, for cancelling commitments when they have been fulfilled and for
dealing with conditional commitments. We introduce the following laws (where
k = i, j):

(10) ✷k([a]k¬C(i, j, a))
(11) ✷k([a]k¬CC(i, j, p, a))
(12) ✷k((CC(i, j, p, a) ∧©kp)→ ©k(C(i, j, a) ∧ ¬CC(i, j, p, a)))

6 These precondition laws provide a formalization of what are called the PERMIT
constraints in [11]. Such permissions do not force the agent to do anything, but
determine which actions are executable in a state.
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where we assume that the action a is shared by the agents i (debtor) and j
(creditor) (if not an explicit discharge action should be introduced to make the
creditor aware that the commitment has been fulfilled by the debtor). A com-
mitment (or a conditional commitment) to execute an action a is cancelled when
the action a has been executed by the debtor (action laws (10) and (11)). A con-
ditional commitment CC(i, j, p, a) becomes a base-level commitment C(i, j, a)
when the condition p has been brought out (law (12)). This last law is a causal
law. Causal laws describe the causal dependencies among fluents and are needed
to model the ramification effects of actions [8].

The specification of a system of communicating agents is hence given by
defining the protocol for each agent i through a domain description Di. Di is
a tuple (Πi, Ci, P ermi) where: Πi is a set of action laws and causal laws; Ci is
a set of constraints and Permi is a set of precondition laws. The set of constraints
Ci contains all the temporal formulas which might be needed to constrain the
behaviour of agent i. It includes the observations about the value of fluents in
different i-states, which have the form [a1; . . . ; aj]iα, meaning that α holds in
the i-state obtained after executing the action sequence a1, . . . , aj

7. Though also
the precondition laws in Permi are constraints, we have kept them separate
from Ci, as they have a special role in the verification of the agent system.
A (distributed) domain description D is a family of domain descriptions Di, one
for each agent i.

Observe that action laws and causal laws only describe the changes to the
state. All other fluents which are not changed by the actions are assumed to
persist unaltered to the next state. They are called frame fluents. To cope with
the frame problem, the laws in Πi, describing the (immediate and ramification)
effects of actions, have to be distinguished from the constraints in Ci and given a
special treatment. In [8], to deal with the frame problem, a completion construc-
tion is defined which, given a domain description, introduces frame axioms for
all the frame fluents in the style of the successor state axioms introduced by Re-
iter [16] in the context of the situation calculus. The completion construction is
applied only to the action laws and causal laws in Πi and not to the constraints.
In the following we call Comp(Πi) the completion of a set of laws Πi (the action
laws and causal rules of each agent i have to be completed separately) and we
refer to [8] for the details on the completion construction.

Given a distributed domain descriptionD, let the completed domain descrip-
tion Comp(D) be the set of formulas

∧
j(Comp(Πj)∧Cj ∧Permj). The runs of

the system according the protocol are the linear models of Comp(D): in a model
(σ, V ), the behaviour of each agent i is a subsequence σi of the system behaviour
σ. Observe that these protocol runs may still contain pending commitments, that
is commitments which have not been fulfilled.

In the next section we will address, among others, the problem of verifying the
compliance of an agent with respect to a protocol. In our formalism the program
7 For instance, in the example above we can assume that all fluents are false in the
initial state, i.e. Ci = {¬fk, for all fluents fk}
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of an agent can be specified by making use of complex actions. Consider the
following program πmr for the merchant:

[¬done?; ((sendRequest; sendQuote) + (sendAccept; sendGoods)+
(sendPayment; sendReceipt; exit))]∗; done?

The program above describes the behaviour of a reactive agent which sends the
quote when receiving a request, sends the goods when receiving the ”accept”,
sends a receipt after receiving the payment and terminates after sending the re-
ceipt. We assume that the fluent done is initially false and that the action exit has
the only effect of making it true (i.e. ✷mr[exit]mrdone). In general, the program
of an agent i is specified by a domain description Progi = (Πp

i , Cp
i ). In the ex-

ample above, we have: Πp
mr ={✷mr[exit]mrdone} and Cp

mr = {〈πmr〉i�,¬done}.
Observe that Πp

mr contains the specification of those actions which are local to
the agent mr (in this case only the action exit). The constraints in Cp

mr say that
in the initial state the program πmr for the merchant is executable and the fluent
done is is false.

The action done? is a test action, in the style of dynamic logic. Test actions
allow the choice among different behaviours to be controlled. As DLTL⊗ does
not include test actions, we introduce them in the language as atomic actions in
the same way as done in [8]. To allow agent i to test the value of a proposition φ
in its local state, we introduce the modality [φ?]i (regarded as an atomic action
in Σi). We assume that, for all test actions occurring in a domain description,
the corresponding action laws are implicitly added.

4 Verification of Communicating Agents

In this section we consider some different types of verification problems that can
be solved in this framework. As in [11] we consider the following four types of
verification for an open system:

1. Verify that an agent will always satisfy its social facts;
2. Verify the outcome of a system, assuming unknown agents are compliant;
3. Prove a property of a protocol;
4. Determine if an agent is not respecting the social facts at runtime.

While the fourth property is a run-time property, the first three can be verified
at design time.

For the first verification problem, we assume that we have access to agent i
program code, Progi. Then at design time we can verify that this agent respects
its permissions and its commitments. We say that an agent i satisfies its permis-
sions if, in all runs of the system, when a communicative action a is executed,
then its execution is possible according to the precondition laws in Permi, that
is, all precondition laws ✷(α → [a]⊥) ∈ Permi are satisfied. An agent i sat-
isfies its commitments when, in all the runs of the system, for all the possible
commitments C(i, j, a) in which agent i is the debtor, the formula

✷i(C(i, j, a)→ ✸i〈a 〉i�)
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holds. Such a formula says that, when an agent is committed to execute action a,
then it must eventually execute a. We denote with Comi the set of all the
formulas, as the one above, describing the satisfaction of the commitments of
agent i.

To formalize the first verification problem assume that the specification of
the program of agent i is given by the domain description Progi = (Π

p
i , Cp

i ), and
the protocol is given by the distributed domain description D, where the domain
description for each agent j in Loc is Dj = (Πj , Cj, P ermj). The verification
problem 1 can be formalized as a validity check. The formula (

∧
j(Comp(Πj) ∧

Cj)∧
∧

j �=i(Permj∧Comj)∧Comp(Πp
i )∧Cp

i )→ (Permi∧Comi) (where j ranges
on all agents) is valid if in all the behaviours of the system, in which agent i
respects its specification Progi and all other agents j (whose internal program
is unknown) respect the protocol specification (including their permissions and
commitments), the permissions and commitment of agent i are also satisfied.
This means that agent i is compliant (respects its “social facts”) under the
assumption that all other agents in the protocol are compliant8.

The verification problem 2 can be formalized similarly. Again we only have
information about the behaviour of agent i and we want to show that the out-
come α of the system will eventually be achieved. The kind of properties that
can be captured in this framework have to refer to the local states of the different
agents separately (there is no global state). For instance, we can require that
agents h and i will eventually reach the states αh and αi. To check this, we can
check the validity of the formula: (

∧
j(Comp(Πj)∧Cj)∧

∧
j �=i(Permj ∧Comj)∧

Comp(Πp
i ) ∧ Cp

i ) → (✸hαh ∧ ✸iαi). Observe that here we have not made any
assumption that agent i is compliant, we just assume that it behaves according
to its program. The other agents, instead, are assumed to be compliant.

In the verification problem 3, the internals of all agents are not accessible.
We only know that the agents are compliant with the protocol and we want to
prove some property p of the protocol. Again we can formalize it as a validity
check of the formula: (

∧
j(Comp(Πj) ∧ Cj) ∧

∧
j(Permj ∧ Comj))→ p.

The verification problem 4 is performed at run-time. Nothing is known about
the internals of the agents. An external observer observes the history of the com-
munications among the agents up to one state (that is the sequence of commu-
nicative actions that have been executed). Given such a history we want to check
if there is evidence that some agent is not compliant. In essence, we want to ver-
ify if the history is a possible (prefix of) an allowed behaviour of the system,
that is a behaviour in which all agents are compliant with the protocol (if not,
the history gives evidence that some agent violates the protocol). This can be
formalized as a satisfiability problem. Let τ = a1, . . . , an be the observed actions
sequence. Let τ ↑ 1, . . . , τ ↑ K be the projections of the action sequence τ on
the actions of the agents {1, . . . ,K}, and let τ ↑ i = ai

1, . . . , a
i
ni
. The formula:

8 Observe that while the behaviours of agent i are constrained both by the protocol
and by its own specification, other agents may perform any action sequence which
is compatible with the constraints posed by the protocol on their behaviour and the
fact that they have to fulfill their commitments.
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∧
j(Comp(Πj)∧Cj)∧

∧
j(Permj∧Comj)∧(〈a1

1; . . . ; a
1
n1
〉�∧. . .∧〈aK

1 ; . . . ; a
K
nK

〉�)
will be satisfied if there is a behaviour σ of the system (a model (σ, V )) in which,
for each i = 1 . . .N , the behaviour of agent i starts with the action sequence
τ ↑ i = ai

1, . . . , a
i
ni
.

Example 2. We provide an example of the verification problem 1 to verify that
the program of the merchant, specified by the domain description Progmr =
(Πp

mr, Cp
mr) above, satisfies the social facts. Let

Πmr = {(1), . . . , (7), (10), (11), (12)}, Cmr = {¬fmr : ∀fluents fmr},
Permmr = {(8)}
Πct = {(1′), . . . , (7′), (10), (11), (12)}, Cct = {¬fct : ∀fluents fct},
Permct = {(9)}

Commr contains the formulas

✷mr(C(mr, ct, sendGoods)→ ✸mr〈sendGoods〉mr�)
✷mr(C(mr, ct, sendReceipt)→ ✸mr〈sendReceipt〉mr�)

and Comct = ∅. The formula:
Comp(Πmr) ∧ Cmr ∧ Comp(Πct) ∧ Cct ∧ Permct ∧ Comct∧

∧Comp(Πp
mr) ∧ Cp

mr → (Permmr ∧ Commr)

is valid if in all the behaviours of the system in which the merchant respects
its specification Progmr and the customer (whose internal program is unknown)
respects its permissions and commitments, the permissions and commitments of
the merchant are also satisfied.

The above verification and satisfiability problems can be solved by extend-
ing the standard approach for verification and model-checking of Linear Time
Temporal Logic, based on the use of Büchi automata. As described in [14], the
satisfiability problem for DLTL can be solved in deterministic exponential time,
as for LTL, by constructing for each formula α ∈ DLTL(Σ) a Büchi automa-
ton Bα such that the language of ω-words accepted by Bα is non-empty if and
only if α is satisfiable. This result has been extended in [13] to DLTL⊗. The
verification of a formula α → β can be carried out by first constructing the two
Büchi automata for α and the negation of β. If the two automata have a common
execution sequence, this sequence provides a counterexample for α → β. Thus
α → β is valid if the language accepted by the product of the two automata is
empty.

The similarities between the verification approach for LTL and that for
DLTL⊗ suggest the possibility of using techniques and tools which have been
developed for LTL. For instance, it is possible to extend to DLTL⊗ the efficient
tableau-based algorithm of [6] for constructing the automaton on the fly.
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5 Conclusions

We have shown that DLTL⊗ is a suitable formalism for specifying and verifying
a system of communicating agents. The issue of developing semantics for agent
communication languages has been examined in [18], by considering in particular
the problem of giving a verifiable semantics, i.e. a semantics grounded on the
computational models.

Guerin’s thesis [11] defines an agent communication framework which gives
agent communication a grounded declarative semantics. In particular it has dif-
ferent languages for agent programming, for specifying agent communication
and social facts, and for expressing temporal properties. Our approach provides
a unified framework for describing different aspects of multi-agent systems us-
ing DLTL⊗. Programs are expressed as regular expressions, (communicative)
actions can be specified by means of action and precondition laws, properties
of social facts can be specified by means of causal laws and constraints, and
temporal properties can be expressed by means of the until operator.

While in this paper we follow a social approach to the specification and verifi-
cation systems of communicating agents, [2] and [19] have adopted a mentalistic
approach. The goal of [2] is to extend model checking to make it applicable to
multi-agent systems, where agents have BDI attitudes. This is achieved by using
a new logic which is the composition of two logics, one formalizing temporal
evolution and the other formalizing BDI attitudes. In [19] agents are written
in MABLE, an imperative programming language, and have a mental state.
MABLE systems may be augmented by the addition of formal claims about the
system, expressed using a quantified, linear time temporal BDI logic. MABLE
makes use of the SPIN model checker to automatically verify the claims. The
paper does not deal with the problem of proving properties of protocols. The
same can be said for the paper by Yolum and Singh [20], which presents a social
approach based on event calculus to protocol specification and execution.

A related approach is that of ConGolog [5], an extended version of the lan-
guage Golog, that incorporates a rich account of concurrency, in which complex
actions (plans) can be formalized as Algol-like programs in the situation cal-
culus. A substantial difference with ConGolog, apart from the different logical
foundation, is that here we model agents with their own local states, while in
Congolog the agents share a common global environment and all the properties
are referred to a global state.
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