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Abstract. We present tableaux calculi for some logics of default reasoning, as defined
by Kraus, Lehmann and Magidor. We give a tableaux proof procedure for preferential
logic P and for loop-cumulative logic CL. Our calculi are obtained by introducing
suitable modalities to interpret conditional assertions. Moreover, they give a decision
procedure for the respective logics and can be used to establish their complexity.

1 Introduction

In the early 90’ [10] Kraus, Lehmann and Magidor (from now on KLM) proposed
a formalization of non-monotonic reasoning that was early recognized as a land-
mark. Their work stemmed from by two sources: the theory of nonmonotonic
consequence relations initiated by Gabbay [6] and the preferential semantics
proposed by Shoham [12] as a generalization of Circumscription. Their works
lead to a classification of nonmonotonic consequence relations, determining a
hierarchy of stronger and stronger systems.

According to the KLM framework, defeasible knowledge is represented by
a (finite) set of nonmonotonic conditionals or assertions of the form A |∼ B
whose reading is normally (or typically) the A’s are B’s. The operator ”|∼”
is nonmonotonic, in the sense that A |∼ B does not imply A ∧ C |∼ B. For
instance K may contain the following set of conditionals: adult |∼ work, adult |∼
taxpayer, student |∼ adult, student |∼ ¬work, student |∼ ¬taxpayer, retired |∼
adult, retired |∼ ¬work, whose meaning is that adults typically work, adults
typically pay taxes, students are typically adults, but they typically do not
work, nor they do pay taxes, and so on. Observe that if |∼ were interpreted
as classical (or intuitionistic) implication, we simply would get student |∼ ⊥,
retired |∼ ⊥, i.e. typically there are not students, nor retired people, thereby
obtaining a trivial knowledge base. One can derive new conditional assertions
from the knowledge base by means of a set of inference rules.

In KLM framework, the set of adopted inference rules defines some funda-
mental types of inference systems, namely, from the weakest to the strongest:
Cumulative (C) , Loop-Cumulative (CL), Preferential (P) and Rational logic
(R). All these systems allow one to infer new assertions from K without incur-
ring in the trivialising conclusions of classical logic: regarding our example, in



none of them, one can infer student |∼ work or retired |∼ work. In cumulative
logics (both C and CL) one can infer adult ∧ student |∼ ¬work (giving prefer-
ence to more specific information), in Preferential logic P one can also infer that
adult |∼ ¬retired (i.e. typical adults are not retired). In the rational case R, if
one further knows that adult 6|∼ ¬married (i.e. it is not the case the adults are
typically unmarried), one can also infer that adult ∧married |∼ work.

From a semantic point of view, to the each logic (C, CL, P, R) corresponds
one kind of models, namely, possible-world structures equipped with a prefer-
ence relation among worlds or states. More precisely, for P we have models with
a preference relation (an irreflexive and transitive relation) on worlds. For the
stronger R the preference relation is further assumed to be modular. For the
weaker logic CL, the preference relation is defined on states, where a state can
be identified, intuitively, with a set of worlds. In the weakest case of C, the
preference relation is on states, as for CL, but it is no longer assumed to be
transitive. In all cases, the meaning of a conditional assertion A |∼ B is that B
holds in the most preferred worlds/states where A holds.

In KLM framework the operator ”|∼” is considered as a meta-language oper-
ator, rather than as a connective in the object language. However, it has been
readily observed that KLM systems P and R coincide to a large extent with
the flat (i.e. unnested) fragments of well-known conditional logics, once we in-
terpret the operator ”|∼” as a binary connective [3], [2], [9]. The connections
with conditional and modal logic have been studied further in two directions. A
recent result by Halpern and Friedman [4] has shown that preferential and ratio-
nal logic are quite natural and general systems: surprisingly enough, the axiom
system of preferential (likewise of rational logic) is complete with respect to a
wide spectrum of semantics: from ranked models, to parametrized probabilistic
structures, ε-semantics and possibilistic structures. The result of Halpern and
Friedman can be explained by the fact that all these structures are examples
of plausibility structures (or plausibility ordered structures), and the truth in
them is captured by the axioms of preferential (or rational) logic. These results,
and their extensions to the first order setting [5] are the source of a renewed
theoretical interest in KLM framework.

On the other hand, Lamarre and then Boutillier [2] have shown that pref-
erential and rational logic (but not the weaker C and CL) could be translated
into standard modal logics, although the proposed translation is not the most
natural.

Even if KLM was born as an inferential approach to nonmonotonic reasoning,
curiously enough, there has not been much investigation on deductive mecha-
nisms for these logics. Lehmann has proved that deciding whether a conditional
is entailed by a set of positive conditionals is a CoNP problem in both the pref-
erential and the rational case. Decidability of P and R can be also proved by
mapping them into standard modal logics [2]. A tableaux proof procedure for



cumulative logic has been given in [1]. To the best of our knowledge, for CL no
decision procedure was known before the present work.

In this work we begin our investigation of tableaux procedures for KLM log-
ics, by considering the cases of P and CL. The investigation of tableaux calculi
for the weakest C and the strongest R is left for future work. Our approach is
based on a sort of run-rime translation of P conditional assertions into modal
logic G. The idea is simply to interpret the preference relation as an accessibility
relation: a conditional A |∼ B holds in a model if B is true in all A-worlds w
that are minimal. An A-world is minimal if all smaller worlds are not A-worlds.
The relation with G is motivated by the fact that we assume, following KLM,
the so-called smoothness condition, which is related to the limit assumption.
This condition ensures indeed that A-minimal worlds exist, by preventing an
infinitely descending chain of worlds. This condition is therefore ensured by the
finite-chain condition on the accessibility relation (as in modal logic G). There-
fore, our interpretation of conditionals is different from the one proposed by
Boutilier, who rejects the smoothness condition, and as a consequence, gives a
more complicate interpretation of P into modal logic S4. Moreover, we do not
give a formal translation of P in G, we appeal to the correspondence as far as
it is needed to derive the tableaux rules for P.

We are able to extend our approach to the case of CL by using a second
modality which takes care of states. More precisely, we show that we can map
CL-models into P-models with an additional modality; this fact seems to have
remained unnoticed and might be of independent interest. In both cases, P and
CL, we can define a decision procedure and obtain also a complexity bound for
these logics, namely that they are both CoNP. In case of CL this bound is new,
at the best of our knowledge.

The plan of the paper is as follows: in section 2, we recall preferential logic P.
In section 3, we give a simple tableaux calculus for P, and we prove its sound-
ness and completeness. In section 4 we improve the calculus to obtain a decision
procedure for P and we prove that it is CoNP. In section 5, we give a similar
calculus for logic CL, obtaining a decision procedure and a CoNP complexity
bound for it. In section 6, we discuss some related works and we suggest some
future developments.

2 Preferential Logic P

The language of KLM logics consists just of assertions A |∼ B. We consider a
richer language allowing boolean combinations of assertions and propositional
formulas.

The language L of P is defined from a set of propositional variables ATM ,
the boolean connectives and the conditional operator |∼. The formulas of L are
defined as follows: if A is a propositional formula, A ∈ L; if A and B are



propositional formulas, A |∼ B ∈ L; if A is a boolean combination of formulas of
L, A ∈ L.

The axiomatization of P consists of all axioms and rules of propositional
calculus together with the following axioms and rules:

• REF. A |∼ A (reflexivity)
• LLE. If |= A ↔ B, then from A |∼ C infer B |∼ C (left logical equivalence)
• RW. If |= A → B, then from C |∼ A infer C |∼ B (right weakening)
• CM. ((A |∼ B) ∧ (A |∼ C)) → (A ∧B |∼ C) (cautious monotonicity)
• AND. ((A |∼ B) ∧ (A |∼ C)) → (A |∼ B ∧ C)
• OR. ((A |∼ C) ∧ (B |∼ C)) → (A ∨B |∼ C)

The semantics of P is defined by considering possible world structures with
a preference relation (a strict partial order) w < w

′
whose meaning is that w

is preferred to w
′
. We have that A |∼ B holds in a model M if B holds in all

minimal worlds with respect to the relation < where A holds. This definition
makes sense provided minimal worlds for A exist whenever there are A-worlds.
This is ensured by the smoothness condition in the next definition.

Definition 1 (Semantics of P). A model is a triple M = 〈W , <, V 〉 where:
W is a non-empty set of items called worlds; < is an irreflexive and transitive
relation on W; V is a function V : W 7−→ pow(ATM), which assigns to every
world w the set of atoms holding in that world. We define the truth conditions
(M, w |= A) as follows:

• M, w |= A for the boolean cases is defined in the obvious way;
• Let A be a propositional formula; we define Min<(A) = {w | M, w |= A
and ∀w′

< w M, w
′ 6|= A};

• M, w |= A |∼ B if for all w
′ ∈ Min<(A), then M, w

′ |= B.

We assume that the relation < satisfies the following condition, called smooth-
ness: if M, x |= A then x ∈ Min<(A) or ∃y ∈ Min<(A) such that y < x.
We say that a formula A is valid in a model M, denoted with M |= A, if it
respects the truth conditions in all worlds of the model, i.e. M, w |= A for every
w ∈ W. A formula is valid if it is valid in every model M.

Given a model M, we denote by [A] the set of worlds w such that M, w |= A.
We also introduce in L a modality ¤, whose intuitive meaning is as follows:

¤A holds in a world w if A holds in all the worlds w
′
such that w

′
< w:

Definition 2 (Truth condition of modality ¤). We define the truth condi-
tion of a boxed formula as follows:

M, w |= ¤A iff for every w
′ ∈ W if w

′
< w then M, w

′ |= A

Observe that for any formula A we have that w ∈ Min<(A) iff M, w |=
A∧¤¬A. It is easy to see that ¤ has the properties of the modal system G: the
accessibility relation (i.e. Rxy iff y < x) is transitive and does not have infinite
ascending chains.



3 The Tableaux Calculus for Preferential Logic P

In this section we present a tableaux calculus for P called T P. To save space,
we only give propositional rules for ¬ and ∧.

Definition 3 (The calculus T P). The rules of the calculus manipulates sets
of formulas G. In the rules we write G,A to denote G ∧ A. Moreover, given G
we define the following:

– G¤ = {¤A | ¤A ∈ G} − G¤↓ = {A | ¤A ∈ G}
– G|∼+

= {A |∼ B | A |∼ B ∈ G} − G|∼− = {¬(A |∼ B) | ¬(A |∼ B) ∈ G}
– G|∼± = G|∼+ ∪G|∼−

The tableaux rules are given in Figure 1.

(AX) G, A,¬A (¬)
G,¬¬A

G, A

(|∼+)
G, A |∼ B

G,¬A, A |∼ B G,¬¤¬A, A |∼ B G, B, A |∼ B

(|∼−)
G,¬(A |∼ B)

A, ¤¬A,¬B, G|∼±
(¤−)

G,¬¤A

G¤, G¤↓ , G|∼±,¬A, ¤A

(∧+)
G, A ∧B

G, A, B
(∧−)

G,¬(A ∧B)

G,¬A G,¬B

Fig. 1. Tableaux system T P.

(A |∼ C) ∧ ¬(A ∧ C |∼ C)
(∧+)

A |∼ C,¬(A ∧ C |∼ C)
(|∼−)

A |∼ C, A ∧ C, ¤¬(A ∧ C),¬C
(∧+)

A |∼ C, A, C,¬C, ¤¬(A ∧ C)
×

Fig. 2. A derivation of (A |∼ C) ∧ ¬(A ∧ C |∼ C) in T P.

The system is sound and complete with respect to the semantics.

Theorem 1 (Soundness of T P). The system T P is sound with respect to the
semantics, i.e. if there is a closed tableaux for a set G, then G is unsatisfiable.



To prove the completeness of T P we have to show that if A is unsatisfiable,
then there is a closed tableaux starting with A. We prove the contrapositive,
that is: if there is no closed tableaux for A, then there is a model satisfying
A. To build this model, the idea is to select sets with certain properties from
possibly different open tableaux for A. This proof is inspired by [8].
First of all, we distinguish static and dynamic rules. (|∼−) and (¤−) are called
dynamic, since their conclusion represents another world with respect to the
premise; the other rules are called static, since the world represented by premise
and conclusion(s) is the same. Moreover, we have to introduce the saturation of
a set of formulas G. Given a set of formulas G, we say that it is saturated if all
the static rules have been applied.

Definition 4 (Saturated sets). A set of formulas G is saturated with respect
to the static rules if the following conditions hold:

– if A ∧B ∈ G then A,B ∈ G;
– if ¬(A ∧B) ∈ G then ¬A ∈ G or ¬B ∈ G;
– if ¬¬A ∈ G then A ∈ G;
– if A |∼ B ∈ G then ¬A ∈ G or ¬¤¬A ∈ G or B ∈ G.

Lemma 1. Given a finite set of formulas G, there is a finite and saturated set
G
′ ⊇ G. Moreover, if G is consistent, then G

′
is consistent.

By Lemma 1, we can think of having a function which, given a consistent
set G, returns one fixed consistent saturated set, denoted by SAT(G). Moreover,
we denote by APPLY(G,F ) the result of applying to G the rule for the principal
connective in F . In case the rule for F has more conclusions (the case of a branch-
ing), we suppose that the function APPLY chooses one consistent conclusion in
an arbitrary but fixed manner.

Theorem 2 (Completeness of T P). T P is complete with respect to the se-
mantics.

Proof. As mentioned above, we assume that no tableaux for G0 is closed, then
we construct a model for G0. We build X, the set of worlds of the model, as
follows:

1. initialize X = {SAT(G0)};
2. choose G ∈ X;
3. for each formula ¬(A |∼ B) ∈ G, be G¬(A|∼B) =SAT(APPLY(G,¬(A |∼ B))). If

G¬(A|∼B) 6∈ X, then X = X ∪G¬(A|∼B);
4. for each formula ¬¤A ∈ G, be G¬¤A =SAT(APPLY(G,¬¤A));

– add the relation G¬¤A < G;
– if G¬¤A 6∈ X, then X = X ∪G¬¤A.

5. repeat from 2 until all elements in X have been considered.



This procedure terminates, since the number of possible sets of formulas that
can be obtained by applying T P’s rules to an initial finite set G is finite. We
construct the model M = 〈X, <X , V 〉 for G as follows:

• <X is the transitive closure of the relation <;
• V (G) = {P | P ∈ G}
In order to show that M is a preferential model for G, we prove the following

facts:

Fact 1 The relation <X is acyclic.

Proof. If there were a loop we would have the following situation: there are G1

and G3 in X, G3 <X G1, and G1 is obtained again from G3 by applying step
4 (i.e. G1 <X G3). This situation, presented in Figure 3, will never happen.
Indeed, since G3 <X G1, G3 has been generated by a sequence of applications
of (¤−), starting from an initial application of (¤−) to some formula ¬¤α in
G1. By the (¤−) rule, ¤α ∈ G3. If G1 were to be generated again from G3 by
an application of (¤−), then ¤α ∈ G1, which contradicts the fact that G1 is
consistent. ut

Fig. 3.

Fact 2 For all formulas F and for all sets G ∈ X we have:

– if F ∈ G then M, G |= F ;
– if ¬F ∈ G then M, G 6|= F .

Proof. By induction on the structure of F . If F is an atom P , then M, G |= P by
definition of V . If F is ¬P , then ¬P ∈ G implies that P 6∈ G as G is not closed;
thus, M 6|= P (by definition of V ). For the inductive step we only consider the
case of (¬) |∼ and (¬)¤:

– ¤A ∈ G. Then, for all Gi <X G we have A ∈ Gi since Gi has been generated
by a sequence of applications of (¤−), and by definition of (¤−). By inductive
hypothesis M, Gi |= A, whence M, G |= ¤A.

– ¬¤A ∈ G. By construction there is a G′ s.t. G′ <X G and {¤A,¬A} ⊆ G′.
By inductive hypothesis M, G′ |= ¬A. Thus, M, G 6|= ¤A.



– A |∼ B ∈ G: we have to show that M, G |= A |∼ B. Let H ∈ Min<X
(A);

one can observe that (1)¬A ∈ H or (2)¬¤¬A ∈ H or (3)B ∈ H, since H
is saturated. (1) cannot be, since by inductive hypothesis M, H |= A. If (2),
by the construction of M there exists a set H

′
<X H such that A ∈ H

′
. By

inductive hypothesis M, H
′ |= A, which contradicts H ∈ Min<X(A). Thus it

must be (3)B ∈ H, so that by the inductive hypothesis M, H |= B.
– ¬(A |∼ B) ∈ G: by construction of X, there exists G

′ ∈ X such that
A,¤¬A,¬B ∈ G

′
. By inductive hypothesis we have that M, G

′ |= A and
M, G

′ |= ¤¬A. It follows that G
′ ∈ Min<X

(A). Furthermore, always by
induction, M, G

′ 6|= B.
ut

By the above Lemma the proof of the completeness of T P is over, since M
is a model for the initial set G0. ut

A relevant property of the calculus that will be useful to estimate the com-
plexity of logic P is the so-called disjunction property of conditional formulas:

Proposition 1 (Disjunction property). If there is a closed tableaux for G,¬(A |∼
B),¬(C |∼ D), then there is a closed tableaux either for G,¬(A |∼ B) or for
G,¬(C |∼ D).

The reason why this property holds is that the (|∼−) rule discards all the
other formulas that could have been introduced by a previous application of this
rule.

4 Decision Procedure for P

In this section we analyze the calculus T P in order to obtain a decision procedure
for logic P. We also give explicit complexity bound for it.

First, we observe that the above calculus T P does not ensure a terminating
proof search; in fact, the (|∼+) rule can be applied without any control, and
this is a potential cause of the construction of infinite branches. The intuition
is as follows: one needs to apply the (|∼+) rule on A |∼ B only if any formulas
introduced by the rule (i.e. ¬A, ¬¤¬A and B) is not already in the premise. We
also need to reformulate the rules for the boolean connectives, in such a way that
the formula to which the rule is applied is maintained in the conclusion. This
reformulation is needed to avoid to reconsider a positive conditional A |∼ B once
that its propositional subformulas (¬A and B) have been added to the current
set of formulas. Since these subformulas might be later decomposed, if we do not
keep them we would not be able to block the re-application of (|∼+) on A |∼ B.

The terminating calculus T PT is presented in Figure 4.
The calculus T PT is sound and complete with respect to the semantics; we

briefly show the completeness, as the soundness is immediate.



(|∼+)
G, A |∼ B

G,¬A, A |∼ B G,¬¤¬A, A |∼ B G, B, A |∼ B
if G ∩ {¬A,¬¤¬A, B} = ∅

(∧+)
G, A ∧B

if A 6∈ G
G, A ∧B, A

(∧+)
G, A ∧B

if B 6∈ G
G, A ∧B, B

(∧−)
G,¬(A ∧B)

if ¬A,¬B 6∈ G
G,¬(A ∧B),¬A G,¬(A ∧B),¬B

(¬)
G,¬¬A

if A 6∈ G
G,¬¬A, A

Fig. 4. The calculus T PT. Omitted rules (¤−) and (|∼−) are the same as in Figure 1.

Theorem 3 (Completeness of T PT). The calculus T PT is complete with
respect to the semantics.

Proof. We show that if G is derivable in T P (i.e. there exists a closed tableaux
with root G), then G is derivable in T PT. The prove is by induction on the
height of the derivation of G in T P. If G is an axiom, we are done; otherwise,
consider the rule applied to G: if it is (¤−) or (|∼−), then we can conclude since
the two rules are identical in the two calculi. The same for an application of (|∼+);
indeed, if (|∼+) is applied to G

′
, A |∼ B, then we have to distinguish two cases:

(i) ¬A,¬¤¬A,B 6∈ G
′
: in this case we can easily conclude by an application of

(|∼+) in T PT; (ii) ¬A ∈ G
′
or ¬¤¬A ∈ G

′
or B ∈ G

′
: in this case, the (|∼+) rule

is not applicable, by the restriction given in T PT. However, we are analyzing
the case when, in T P, the (|∼+) rule has been applied on G

′
, A |∼ B and one

of the three conclusions is the same as the set G
′
, A |∼ B, therefore this rule

application is useless and can be removed. By this fact, we can conclude the
proof.

For the rules related to boolean connectives the proof is easy and left to
the reader. As an example, consider (∧+) applied to G

′
, A∧B and just observe

that if A,B 6∈ G
′
, then we obtain a proof in T PT by two applications of (∧+),

otherwise at least one of the conclusions of the rule is identical to the premise,
therefore it is useless to add both subformulas. ut

In order to prove that T PT ensures a terminating proof search, we define a
complexity measure on a set of formulas G, denoted by m(G), which consists of
four measures c1, c2, c3 and c4 in a lexicographic order. Before giving the formal
definition, we need to define the following:

Definition 5 (Saturation multiset S of G). Given a set of formulas G, we
define the saturation multiset S as follows:



S = {F ∈ G | (F = A ∧B and (A 6∈ G or B 6∈ G)) or
(F = ¬(A ∧B) and (¬A 6∈ G and ¬B 6∈ G)) or ((F = ¬¬A) and (A 6∈ G))}

Notice that S is a multiset; in particular, if F = A ∧ B and both A 6∈ G and
B 6∈ G, then two instances of F = A ∧ B belong to S, whereas if A 6∈ G and
B ∈ G, then only one instance of F = A ∧B belongs to S.

We write A |∼ B ∈+ G (resp. A |∼ B ∈− G) if A |∼ B occurs positively
(resp. negatively) in G, where positive and negative occurrences are defined in
the standard way. We also denote with cp(F ) the complexity of a formula F .

Definition 6 (Lexicographic order). We define m(G) = 〈c1, c2, c3, c4〉 where:

• c1 =| {A |∼ B ∈− G} |;
• c2 =| {A |∼ B ∈+ G | ¤¬A 6∈ G} |;
• c3 =| {A |∼ B ∈+ G | {¬A,¬¤¬A, B} ∩G = ∅} |;
• c4 =

∑
F∈S cp(F ).

We consider the lexicographic order given by m(G).

Intuitively, c2 represents the number of positive conditionals in G which can
still create a new world. The application of (¤−) reduces c2: indeed, if (|∼+) is
applied to A |∼ B, this application introduces a branch containing ¬¤¬A; when
a new world is generated by an application of (¤−) on ¬¤¬A, it contains A and
¤¬A. If (|∼+) is applied to A |∼ B once again, then the conclusion where ¬¤¬A
is introduced is closed, by the presence of ¤¬A in that branch. c4 represents the
saturation degree, i.e. the sum of the complexities of formulas to which one can
still apply propositional rules.

In order to prove that T PT ensures a terminating proof search we need the
following:

Lemma 2. Let G
′
be obtained by an application of a rule of T PT to a premise

G. Then, m(G
′
) < m(G).

Now we have all the elements to prove that T PT ensures a terminating proof
search:

Theorem 4 (Termination of T PT). T PT ensures a terminating proof search.

We conclude this section with a complexity analysis of T PT, in order to
prove that validity in P belongs to CoNP. First of all, notice that we could
take advantage of the disjunction property (Proposition 1). By this property we
can reformulate the (|∼−) rule as follows:

G,¬(A |∼ B)
(|∼−)

A, ¤A,¬B,G|∼+



This rule reduces the length of a branch at the price of making the proof
search more non-deterministic. Moreover, observe that with this reformulation
the parameter c1 would no longer be needed.

We give a non-deterministic algorithm for testing validity in P that: (i) takes
a set of formulas G as input; (ii) returns false iff G is satisfiable; (iii) generates
a branch starting with G of polynomial length and requiring only a polynomial
number of guesses in the size of G. The algorithm is defined below; in brackets
we give the complexity of each operation, considering that n =| G |. Moreover,
we assume that after each step from 1. to 4., a procedure CHECK, obviously of
polynomial complexity, is invoked to verify if the current set of formulas is an
axiom and, in that case, the execution terminates returning true:

input G: set of formulas;
output boolean;
begin

1. G
′ ←− guess one branch applying only propositional rules; (O(n))

2. G
′ ←− guess one ¬(Aj |∼ Bj) ∈ G

′
and apply (|∼−) on it; (O(n))

3. for each Ai |∼ Bi ∈ G
′
do

3.1. G
′ ←− G

′∪ one of ¬Ai,¬¤¬Ai and Bi; (O(1))
3.2. G

′ ←− guess one branch applying only propositional rules; (O(n))
4. if ¬¤¬A1, ...¬¤¬Ak ∈ G

′

4.1. G
′ ←− guess one ¬¤¬Ai and apply (¤−) on it; (O(1))

4.2. repeat from 3.;
5. if G

′
is an axiom return true;

else return false;
end

Observe that when the algorithm exit the cycle no rule is applicable to the
current set of formulas. Moreover, it can be shown that one can repeat the cycle
between instructions 3. and 4. at most n times. Therefore, the complexity of the
cycle is O(n2).

Theorem 5 (Complexity of P). Validity of preferential logic P is CoNP.

Proof. A is not valid in P iff the algorithm returns false. Since the algorithm
is NP, non validity is NP; therefore, validity is CoNP. ut

5 Loop Cumulative Logic CL

In this section we develop a tableaux calculus for CL. First we define a mapping
of KLM cumulative models to preferential models which are essentially obtained
by extending P-models with an additional accessibility relation R. Then, we
define tableaux calculus T CL for CL and we show that the calculus T CL can



be turned into a terminating calculus thus providing a decision procedure for
CL and a CoNP complexity bound for validity in CL.

Let us first recall the axiomatization of the system CL and the notion of
cumulative models as given by KLM in [10]. The axiomatization of the system
CL can be obtained by the axiomatixation of the system P by removing the
axiom OR and by adding the following infinite set of axioms LOOP:

(LOOP ) (A0 |∼ A1) ∧ (A1 |∼ A2)...(An−1 |∼ An) ∧ (An |∼ A0) → (A0 |∼ An)

Notice that these axioms are derivable in P.

Definition 7 (Cumulative model (KLM)). A cumulative model is a tuple
M = 〈S, l, <, V 〉, where S is a set, whose elements are called states; l : S 7→ 2U

is a function that labels every state with a nonempty set of worlds; < is an
irreflexive and transitive relation on W. V is a valuation function V : U 7−→
pow(ATM), which assigns to every world w the atoms holding in that world.
For s ∈ S and A propositional, we let s |≡ A iff ∀w ∈ l(s)w |= A. Let Min<(A)
be the set of minimal states s such that s |≡ A. We define M, s |≡ A |∼ B
iff ∀s′ ∈ Min<(A), then s

′ |≡ B. We assume that < satisfies the smoothness
condition.

Let LL be a modal conditional language obtained by L by introducing a
new modality L as follows: (i) if A is propositional, then A ∈ LL; LA ∈ LL;
2¬LA ∈ LL, ¬2¬LA ∈ LL; (ii) if A, B are propositional, then A |∼ B ∈ LL;
(iii) if A is a boolean combination of formulas of LL, then A ∈ LL.

We can map cumulative models into preferential structures with an addi-
tional accessibility relation as defined below:

Definition 8 (CL-preferential structures). A model has the form M =
〈W , R,<, V 〉 where: W is a non-empty set of items called worlds; R is a serial
accessibility relation; < is an irreflexive and transitive relation on W satisfying
the smoothness condition; V is a function V : W 7−→ pow(ATM), which assigns
to every world w the atomic formulas holding in that world. We add to the truth
conditions for preferential models in Definition 1 the following clause:

M,w |= LA iff for all w′ | Rww′, w′ |= A

Moreover, we need to change the truth condition for conditional formulas as
follows M, w |= A |∼ B if Min<(LA) ⊆ [LB].

We establish a correspondence between cumulative models (KLM) and CL-
preferential models by showing that we are able to map cumulative models
to CL-preferential models (and vice-versa) by preserving the satisfiability of
conditional formulas.



Proposition 2. A set of conditional formulas {(¬)A1 |∼ B1, . . . , (¬)An |∼ Bn} is
satisfiable in a cumulative model 〈S, l, <, V 〉 iff it is satisfiable in a C-preferential
model 〈W,R, <, V 〉.

We will now present a tableaux calculus for CL. The calculus can be obtained
from the calculus T P for preferential logics, by adding a suitable rule for dealing
with the modality L. We define GL↓ = {A | LA ∈ G}.

Our tableaux system T CL for CL is shown in Figure 5 and is obtained by
introducing the new modality L in the rules of T P and by adding the new rule
(L−). Observe that rules (|∼+) and (|∼−) have been changed as they introduce the
modality L in front of the propositional formulas A and B in their conclusions.
The new rule (L−) is a dynamic rule.

(|∼+)
G, A |∼ B

G,¬LA, A |∼ B G,¬¤¬LA, A |∼ B G, LB, A |∼ B
(|∼−)

G,¬(A |∼ B)

LA, ¤¬LA,¬LB, G|∼±

(L−)
G,¬LA

where {¬LA} may be empty
GL↓ ,¬A

(¤−)
G,¬¤A

G¤, G¤↓ , G|∼±,¬A, ¤A

Fig. 5. Tableaux system T CL. If ¬LA is not in the premise of (L−) (i.e. {¬LA} = ∅) the rule allows

to step from G to GL↓ . The boolean rules are omitted.

The proof of the completeness of the calculus can be done as for the prefer-
ential case, provided we suitably modify the procedure for constructing a model
for a finite consistent set of formulas G of LL. First of all, we need to modify
the definition of saturated sets.

Definition 9 (Saturated sets). A set of formulas G is saturated with respect
to the static rules if, in addition to the conditions for boolean connectives in
Definition 4, the following conditions also hold:

• if A |∼ B ∈ G then ¬LA ∈ G or ¬¤¬LA ∈ G or LB ∈ G;
• if LA ∈ G then ¬L¬A ∈ G

For this notion of saturated set of formulas we can still prove Lemma 1 for
language LL.

Theorem 6 (Completeness of T CL). T CL is complete with respect to the
semantics.

Let us now analyze the calculus T CL in order to obtain a decision procedure
for CL logic. First of all, we reformulate the calculus as we made for P, obtaining



a system called T CLT. Rules for boolean connectives are the same as in T PT

(see Figure 4). The (|∼+) rule can be applied only if none of the subformulas ¬LA,
¬¤¬LA and LB are already in the current node. The (L−) rule is obviously
applicable only if {¬LA} ∪GL↓ 6= ∅. (|∼−) and (¤−) are not reformulated.

In order to prove that T CLT ensures a terminating proof search we define a
measure m(G) =< c1, c2, c3, c3−4, c4 >, defined as in the case1 of T PT, with the
addiction of the index c3−4 defined as c3−4 =| {(¬)LA | (¬)LA ∈ G} |. Exactly
as we made for P, we consider a lexicographic order given by m(G), and easily
prove that each application of the rules of T CLT reduces this measure, as stated
by the following:

Lemma 3. Consider an application of any rule of T CLT to a premise G and
be G

′
any conclusion obtained; we have that m(G

′
) < m(G).

Proof. Identical to the proof of Lemma 2. Just observe that if (L−) is applied,
then c1, c2 and c3 are the same in both the premise and the conclusion, but
c3−4 decreases, since (at least) one formula LA or ¬LA is removed from the
conclusion. ut

By Lemma 3 we can conclude that T CLT ensures a terminating proof search.
Moreover, we easily observe that the disjunction property holds in CL; there-
fore, the algorithm described to give an explicit complexity bound for P can be
used to prove that validity of CL is a CoNP problem. The algorithm is a non
deterministic algorithm which generates a branch of polynomial length and eval-
uates in polynomial time with respect to the length of the initial set of formulas
if the branch is closed (returning true) or not (returning false). The following
instructions are situated between instructions 4. and 5.:

4’. if LA1, LA2, ..., LAu,¬LA1,¬LA2, ...,¬LAw ∈ G
′

4’.1 G
′ ←− (if w 6= 0) guess one ¬LAi and apply (L−) on it,
otherwise, if w = 0 and u 6= 0, then apply (L−); (O(1))

4’.2 G
′ ←− guess one branch applying only propositional rules; (O(n))

Similarly to the case of P we conclude with the following:

Theorem 7 (Complexity of CL). Validity for CL is CoNP.

6 Conclusions

In this paper, we have presented some tableaux calculi for some of the KLM
logical systems for default reasoning. We have given a tableaux calculus for

1 These indexes are adapted considering the L modality; for instance, c2 is defined as follows: c2 =|
{A |∼ B ∈+ G | ¤¬LA 6∈ G} |.



preferential logic P and for loop-cumulative logic CL. The calculi presented
give a decision procedure for the respective logics, whose complexity is CoNP
for both P and CL.

Artosi, Governatori, and Rotolo [1] develop a labelled tableaux calculus for
a flat fragment of the conditional logic CU, corresponding to the system C. In
this paper, we do not treat this system but a stronger version of it, namely CL.
Furthermore, as a major difference from our approach, the calculus proposed in
[1] makes use of labels. The labels are introduced in order to represent possible
worlds or sets of possible worlds (for instance the label (WA, w) stands for any
world in f(A,w)). In addition to the rules for dealing with ”declarative” for-
mulas, they introduce a unification algorithm in order to deal with labels. As a
difference from our calculus, the one proposed in [1] contains a cut-rule, called
PB, thus is not analytic, unless one can restrict the application of cut in an
analytic way. No matter whether or not cut is advantageous, it is clear that we
could incorporate it as a heuristic rule in our calculus.

In [7] it is defined a labelled tableaux calculus for the logic CE and some
of its extensions. The flat fragment of CE corresponds to the system P. The
similarity between the two calculi lies in the fact that both approaches use a
modal interpretation of conditionals. The major difference is that the calculus
presented here does not use labels, whereas the one proposed in [7] does. This is
of course made possible by the fact that the language here is simpler that the one
in [7], where there are nested conditionals. A further difference is in the logics
considered: whereas [7] considers CE and some stronger logics, we consider P
(corresponding to CE) and the weaker CL.

Lehmann and Magidor [11] propose a non-deterministic algorithm that, given
a finite set K of conditional assertions γi |∼ δi and a conditional assertion α |∼ β,
checks if α |∼ β is not preferentially entailed by K. This algorithm tries to find
a witness for a conditional assertion, i.e. a finite sequence of pairs (Ii, fi), where
Ii are sets of indexes and fi are worlds in a preferential model. They prove that
a conditional assertion α |∼ β has a witness iff it is not preferentially entailed
by K. They conclude that preferential entailement is CoNP, thus obtaining a
complexity result similar to ours. However, it is not easy to compare their al-
gorithm with our calculus, since the two approaches are radically different. As
far as the complexity result is concerned, notice that our result is more gen-
eral than theirs, since our language is richer: we consider boolean combinations
of conditional assertions (and also combinations with propositional formulas),
whereas they do not. As remarked by Boutilier [2], this more general result is
not an obvious consequence of the more restricted one. Moreover, we prove the
CoNP result also for the system CL. At the best of our knowledge, this result
was unknown up to now.

In this paper we only consider two of the logical systems for nonmonotonic
reasoning defined by KLM. We plan to extend our calculi to the other KLM



systems, namely to the weaker C and to the stronger R. For C we conjecture
that a complete calculus is given by a variant of T CL in which the (¤−) rule is
weakened so that it does not enforce the transitivity of the preferential relation
<. Another development of our work will be the extension to first order case.
The starting point will be the analysis of first order preferential and rational
logics by Friedman, Halpern and Koller in [5].
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