Extending Propositional Logic with Concrete Domains
in Multi-issue Bilateral Negotiation

Azzurra Ragong Tommaso Di Noi&, Eugenio Di Sciascig Francesco M. Donifi

1 SisInfLab, Politecnico di Bari, Bari, Italy
{a. ragone, t. di noi a, di sci asci o}@ol iba.it
2 Universit della Tuscia , Viterbo, Italy
doni ni @nitus.it

Abstract. We present a novel approach to knowledge-based automated aine-sh
multi-issue bilateral negotiation handling, in a homogeneous setting, boteraum
ical features and non-numerical ones. The framework makegboss formally
represent typical situations in real e-marketplaces suclf A&sgend more than
20000<€ for a sedan then | want a navigator pack includeghere both nu-
merical (price) and non-numerical (sedan, navigator pack) issaesgst. To this

aim we introduceP (), a propositional logic extended with concrete domains,
which allows to: model relations among issues (both numerical and mogiiu

cal ones) via logical entailment, differently from well-known approadhat de-
scribe issues as uncorrelated; represent buyer’s request,ssellpply and their
respective preferences as formulas endowed with a formal semaByienodel-

ing preferences as formulas it is hence possible to assign a utility valutoadso
bundle of issues, which is obviously more realistic than the trivial sum of utili-
ties assigned to single elements in the bundle itself. We illustrate the theoretical
framework, the logical language, the one-shot negotiation protocabwpt, and
show we are able to compute Pareto-efficient outcomes, using a mediatdve

a multi objective optimization problem.

1 Introduction

Bilateral negotiation between agents is a challenginglprobwhich finds applications
in a number of different scenarios, each one with its own ledties and issues. In
this work we focus on automated negotiation in e-markegsdd80]. Clearly, in such
domains we do not simply deal with undifferentiated prodicommodities as oil, ce-
ment, etc.) or stocks, where only price, time or quantityehi@vbe taken into account.
In fact also other features have to be considered duringegetration process. When
a potential buyer browses an automobile e-marketplacelosis for a car fulfilling
her needs and/or wishes, so not only the price is importantalso warranty or de-
livery time, as well as look, model, comfort and so on. In sdomains it is harder
to model not only the negotiation process, but also the r&épféer descriptions, as
well as finding the best suitable agreement. Recently, thesdeen a growing interest
toward multi-issue negotiation, also motivated by the ittes richer and expressive
descriptions of demand and supply can boost e-marketp(aees.g, [29] for a rea-
sonable set of motivations) but —to the best of our knowledygso in recent literature,



issues are usually described as uncorrelated terms, wittmsidering any underly-
ing semantics. Notable exceptions are discussed in SeRtibmour approach we use
knowledge representation in two ways: (1) exploiting a datieory to represent rela-
tions among issues and (2) assigning utilities to formutasepresent agents having
preferences over different bundles of issues. For whateroiscthe former, we intro-
duce a logical theory that allows to represent, through logical implication, that
a Ferrari is an Italian cafmérrari = | tal i anMaker) or that an lItalian car is
not a German cai ¢ al i anMaker = —Ger nanMaker ). Furthermore we can ex-
press agent preferences over bundle of isseigsthe buyer can state she would like to
have a car with navigator pack, where the meaning of navigetok is in the Theory
(Navi gat or Pack < Satel | i t eAl ar mA GPS_syst em. In this case, the utility
assigned to a bundle is obviously not necessarily the surtilities assigned to single
elements in the bundle itself. Moreover issues are oftesr-tependent: the selection
of one issue depends on the selection made for other issuear framework agents
can express conditional preference$wasuld like a car with leather seats if its color is
black(Ext er nal Col or Bl ack = Leat her _seat s). In this work we introduce an
extended propositional logi®(N') enriched with concrete domains, which allows —as
itis in the real world— to take into account preferenceslvimg both numerical features
and not numerical ones, g, the seller can state that if you want a car with a GPS sys-
tem you have to wait at least one montBPS_syst em=- del i veryti ne > 31)
as well as preferences can involve only numerical oegg:the buyer can state that she
can accept to pay more than 25@br a sedan only if there is more than a two years
warranty(pri ce > 25000 = year warranty > 2). Contributions of this paper
include: the framework for automated multi-issue bilateegyotiation, the logical lan-
guage to represent existing relations between issues afet@nces as formulas, which
is able to handle both numerical features and not numerita$ @s correlated issues
w.r.t. a logical Theory and the one-shot protocol we adoptictv allows to compute
Pareto-efficient agreements, exploiting a mediator thetesoa multi objective opti-
mization problem. The rest of the paper is structured aevi@i next section discusses
the scenario and the assumptions we make; then we illugtratsodeling of issues
through our logical language and the negotiation mechan®emution 4 presents the
multi-issue bilateral negotiation problem, Section 5 diéss the computation of utili-
ties for numerical fetures. Section 6 shows how to computetBafficient agreement
and Section 7 summarizes the bargaining process. Relatddand discussion close
the paper.

2 Negotiation Scenario

We start introducing the negotiation mechanism and thenag8ons characterizing our
framework. So, in accordance with [25], we define: Bgace of possible dealthe
Negotiation Protocoand theNegotiation StrategyFor what concerns thgpace of pos-
sible dealssince we solve a multi objective optimization problem,gibke deals are all
the solutions of the problem that satisfy the constraintenéf they do not maximize
the objective function (the so calléeasible regiorj11]). TheNegotiation Protocolve
adopt is aone-shofprotocol with the presence of a mediator. Differently frdme tlas-



sicalSingle-shobargaining [23], where one player proposes a deal and ttee ptiyer
may only accept or refuse it [2], in our framework we hypotheshe presence of an
electronic mediator, that may automatically explore thgati@ation space and discover
Pareto-efficient agreements to be proposed to both pag&ieh parties may then ac-
cept or refuse them. We recall that, basically, two diff¢r@pproaches to automated
negotiation existcentralizedanddistributedones. In the first ones, agents elicit their
preferences and then a mediator, or some central entigctsehe most suitable deal
based on them. In the latter ones, agents negotiate throaribus negotiation steps
reaching the final deal by means of intermediate deals, withoy external help [5].
Distributed approaches do not allow the presence of a nerdigicause — as stated in
[14, p.25] — agents cannot agree on any entity, so they do awot to disclose their pref-
erences to a third party, that, missing any relevant infeionacould not help agents.
In dynamic system a predefined conflict resolution cannotlbeved, so the presence
of a mediator is discouraged. On the other hand the presdnaerediator can be
extremely useful in designing negotiation mechanisms amactical important com-
merce settings. As stated in [17], negotiation mechanisiten anvolve the presence
of a mediator®, which collects information from bargainers and explogrthin order
to propose an efficient negotiation outcome. In Section 8esapproaches adopting a
centralized approach are described. Although the mairetarfyan agent is reaching
a satisfying agreement, this alone it is not enough, sincevky if this agreement is
also Pareto-efficient is a matter that cannot be left ous fihdamental to asseksw
hard s to find Pareto-efficient agreements and check whethermgigreement is also
Pareto-efficient. The presence of a trusted third party @p the parties to reach a
Pareto-efficient agreement. As pointed out in [24, p.31&lially, bargainers may not
want to disclose their preferences or utilities to the otbety, but they can be more
willing to reveal these information to a trusted — automatedediator, helping nego-
tiating parties to achieve efficient and equitable outcormie presence of a mediator
and the one-shot protocol is an incentive for the two patte®veal the true prefer-
ences, because they can trust in the mediator and they hawvgl@ sossibility to reach
the agreement with that counterpart. Therefore in our fraonke we propose a one-
shot protocol with the intervention ofraediatorwith a proactive behavior: it suggests
to each participant &ir Pareto-efficient agreement. For what concestnategy the
players reveal their preferences to the mediator and theag ib has computed a solu-
tion, they can accept or refuse the agreement proposedrn they refuse if they think
possible to reach a better agreement looking for anothéngraor another shot, or for
a different set of bidding rules. Notice that here we do naisider the influence of the
outside optiongn the negotiation strategy [18].

3 Representation of issues

We divide issues involved in a negotiation in two categorisme issues may express
properties that argue or false, like, e.g, in an automotive domain,t al i anMaker ,

3 The most well known —and running— example of mediator is eBay siterevaenediator
receives and validates bids, as well as presenting the current higthasid finally determining
the auction winner [17].



or Al ar nByst em We represent them as propositional atofias A,, . . . from a finite
set.A. Other issues involve numerical features lded i ver yti me, orpri ce repre-
sented as variablef, fo, . . ., each one taking values in its specific domaip , Dy, , . . .,
such ag0, 90] (days) fordel i ver yti me, or 1,000, 20,000] (euros), fopri ce. The
variables representing numerical features are alway<reamsd by comparing them to
some constant, likpr i ce < 20,000, ordel i veryti ne > 30, and such constraints
can be combined into complex propositional requirementtse @volving proposi-
tional issues-e.g, I t al i anMaker A(pri ce < 25,000)A(del i verytime < 30)
(representing a car made in Italy, costing no more than 26¢@@os, delivered in less
than 30 days), oAl ar nSyst em= (del i ver yti me > 30) (expressing the seller’s
requirement “if you want an alarm system mounted you'll htvevait more than one
month”). We now give precise definitions for the above intums, borrowing from a
previous formalization of so-callezbncrete domaingl] from Knowledge Representa-
tion languages.

Definition 1 (Concrete Domains, [1]).A concrete domairD consists of a finite set
A.(D) of numerical values, and a set of predicatésD) expressing numerical con-
straints onD.

For our numerical features, predicates will always be thmafyi operators” (D) =
{>,<,>,<,=,#}, whose second argument is a constant\jif D)*. We note that in
some scenarios other concrete domains could be possigle;olors as RGB vectors
in an agricultural market, when looking for or selling fiuit

Once we have defined a concrete domain and constraints, wiercaally extend
propositional logic in order to handle numerical featuk#s.call this languag® (\).

Definition 2 (The languageP (). Let A be a set of propositional atoms, adda
set of pairs(f, D) each made of a feature name and an associated concrete domain
Dy, and letk be a value inD. Then the following formulas are iR(N):

1. every atomd € Ais a formula inP(N)

2. if(f,Dy) € F, k € Dy, andc € {>,<,>,<,=,#} then(fck) is a formula in
PN)

3. if ¢ andy are formulas inP(N) then—), i) A ¢ are formulas inP(N). We also
usey V ¢ as an abbreviation for (- A —p), ¥ = ¢ as an abbreviation for
- V ¢, andy < ¢ as an abbreviation fofy) = ¢) A (¢ = ¥).

In order to define a formal semanticsB{A\/) formulas, we consider interpretation
functionsZ that map propositional atoms infarue, false}, feature names into values
in their domain, and assign propositional values to nuraédenstraints and composite
formulas according to the intended semantics.

Definition 3 (Interpretation and models). An interpretationZ for P(N) is a function

(denoted as a superscript on its argument) that maps each atom.ninto a truth

valueAZ € {true, false}, each feature namg¢ into a valuef* € Dy, and assigns truth
values to formulas as follows:

4 So, strictly speakingC (D) would be a set of unary predicates with an infix notatier,
x > 5 is in fact a predicaté 5 (x) which istrue for all values ofD,, greater than 5 and
false otherwise; however, this distinction is not necessary infoumalization.



- (fck:) = true iff fZck is true inDy, (fck;) = false otherwise
— (=)? = true iff ¢ = false, (¢ A ) = true iff both ) = true and o = true,
etc., according to truth tables for propositional connges.

Given a formulap in P(N), we denote witll |= ¢ the fact thatZ assigngrue to . If

T E ¢ we sayZ is amodelfor ¢, andZ is a model for a set of formulas when it is a
model for each formula.

Clearly, an interpretatioff is completely defined by the values it assigns to proposi-
tional atoms and numerical features.

Example 1.Let A = {Sedan,GPL} be a set of propositional atom#)yj ce =

{0,...,60000} andDyear warranty = {0,1,...,5} be two concrete domains for
the featurepri ce, year war r ant y, respectively. A model for both formulas:

Sedan A (GPL = (year warranty > 1)),
(pri ce < 5,000)

is Sedan? = true, GPL” = false, year war r ant yZ = 0, pri ce? = 4,500.

Given a set of formulag in P(N) (representing an ontology), we denatedelfor 7
asZ = 7. An ontology issatisfiabléef it has a modelZ logically implies a formulap,
denoted byl |= ¢ iff pistrue in all models of”. We denote withM+ = {7, ..., 7, },
the set of all models for, and omit the subscript when no confusion arises.

The following remarks are in order for the concrete domainsuo e-marketplace-

oriented scenarios: _ _ _ o
1. domains ardiscrete with auniformdiscretization step. If the seller states he can-

not deliver a car before one month, he is saying that the elgliitme will be at least
in one month and one ddgel i veryti me > 32), wheree = 1 (in days).

2. domains aréinite; we denote withmax (D) andmin(Dy) the maximum and min-
imum values of each domaif.

3. even for the same feature name, concrete domainsarkeetplace dependeritet
us considepr i ce in two different marketplace scenarios: pizzas and canstheo
former one, the discretization stefs the€-cent: the price is usually something
like 4.50 or 6.00<. On the other hand, specifying the price of a car we usuallg ha
10,500 or 15,00€&; then the discretization step in this case can be fixed a€£100

The above Point 1 and the propositional composition of nicakconstraints imply

that the operator§>, <, >, <, =, #} can be reduced only to, <.

Definition 4 (successor/predecessorfsiven two contiguous elemeritsand k;; in
a concrete domait we denote by:
— s: D — D the successor functios{k;) = k;11 = k; + ¢
— p: D — D the predecessor functiop(k; 1) = k; = kiy1 — €
Clearly, max(Dy) has no successor amdin(Dy) has no predecessor. Based on the

above introduced notions, we can reddgg(D) to {<, >} using the following trans-
formations:

f=k — (f<k)A 77<i) @)
f#k — (f <KV >k )
f>k—f2((k+e) — f=s(k) ®)
f<k—f<(k—e — f<pk) (4)



4 Multi Issue Bilateral Negotiation in P (N\)

Following [21], we use logic formulas i®(N') to model the buyer's demand and the
seller’'s supply. Relations among issues, both propositiand numerical, are repre-
sented by a sef — for Theory — of P(N') formulas.

In a typical bilateral negotiation scenario, the issuesiwiboth the buyer’s request
and the seller’s offer can be split intrict requirementsand preferencesStrict re-
quirements represent what the buyer and the seller want tebessarily satisfied in
order to accept the final agreement — in our framework we tédt sequirementsle-
mand/supplyPreferences denote issues they are willing to negotiatetbis is what
we callpreferences

Example 1 Suppose to have a buyer’s request like “I would like a sedah igather
seats. Preferably | would like to pay less than 12,@furthermore I'm willing to
pay up to 15,00GE if warranty is greater or equal than 3 years. (I don’t want tayp
more than 17,00€ and | don’'t want a car with a warranty less than 2 years)”. Ingh
example we identify:

demand: | want a sedan with leather seats. | don’t want to pay morenth#,000€. |
don’'t want a car with a warranty less than 2 years

preferences: Preferably | would like to pay less than 12,000 , furthersam willing
to pay up to 15,00€E if warranty is greater or equal than 3 years.

Definition 5 (Demand, Supply, Agreement)Given an ontology/” represented as a
set of formulas iP (V) representing the knowledge on a marketplace domain

— a buyer'sdemands a formulag (for Buyer) inP(N) such that7 U {3} is satisfi-
able.

— aseller'ssupplyis a formulas (for Seller) inP(N') such thatZ U{s} is satisfiable.

— 7 is apossible deabetweens ando iff Z = 7 U {0, 8}, that is,Z is a model for
T,o0,ands. We also callZ anagreement

The seller and the buyer model tnand 3 the minimal requirements they accept for
the negotiation. On the other hand, if seller and buyer havstsict attributes that are
in conflict with each other, that i847(, 3 = ), the negotiation ends immediately
because, it is impossible to reach an agreement. If thecgaatits are willing to avoid
theconflict deal[25], and continue the negotiation, it will be necessary tlewise their
strict requirements.

In the negotiation process both the buyer and the selleresgpome preferences
on attributes, or their combination. The utility functios usually defined based on
these preferences. We start defining buyer’s and sellefeances and their associated
utilities: ug for the buyer, and., for the seller.

Definition 6 (Preferences)The buyer'siegotiation preferences = {3, ...,0;} are

a set of formulas inP(/N), each of them representing the subject of a buyer’s prefer-
ence, and a utility functioms : B — R* assigning a utility to each formula, such that
> ug(fi) = 1.

Analogously, the seller'segotiation preference$ = {04, ...,0} are a set of formu-
las inP(N\), each of them representing the subject of a seller’s prafargand a utility
functionu, : S — RT assigning a utility to each formula, such thet, uo(0;) = 1.



Buyer’s request in Example 1 is then formalized as:

B = Sedan A Leat her _seats A (price < 17,000) A
(year warranty > 2)

81 = (price <12000)

B2 = (year warranty > 3) A (pri ce < 15000)

As usual, both agents’ utilities are normalized to 1 to eliaté outliers, and make them
comparable. Since we assumed that utilities are additieqreference utilityis just a
sum of the utilities of preferences satisfied in the agreemen

Definition 7 (Preference Utilities).Let3 andS be respectively the buyer’'s and seller’'s
preferences, and 114, 3 be their agreements set. Theeference utilityf an agree-
mentZ € Mryqq,5; for a buyer and a seller, respectively, are defined as:

ug pny(Z) = E{us(Bi) | T F Bi}
ug py(Z) = X{ug(0;) | T |= 04}

whereX{...} stands for the sum of all elements in the set.

Notice that if one agerd.g, the buyer, does not specify soft preferences, but onlgtstri
requirements, itis a8; = T andug par)(Z) = 1, which reflects the fact that an agent
accepts whatever agreement not in conflict with its striquieements. From the for-
mulas related to Example 1, we note that while considerimgerical features, it is still
possible to express strict requirements and preferencéiseom. A strict requirement
is surely thereservation value [24]. In Example 1 the buyer expresses two reservation
values, one on pricémore than 17,000€" and the other on warrantyess than 2
years”.

Both buyer and seller have their own reservation values oh &ature involved in
the negotiation process. It is the maximum (or minimum) gdhluthe range of possi-
ble feature values to reach an agreemerg, the maximum price the buyer wants to
pay for a car or the minimum warranty required, as well asnftbe seller’'s perspec-
tive the minimum price he will accept to sell the car or the imimm delivery time.
Usually, each participant knows its own reservation value ignores the opponent’s
one. Referring to price and the two corresponding resemataluesr; nrj ce and
T.price for the buyer anq the seller respec_tively, if the buyer expegpri ce <
Tsprice and the sellepri ce > T,price:incaser, price < 75price We
have[r, ori ce:7spri cel @ aZoneOf PossibleAgreement —ZOPA(pri ce),
otherwise no agreement is possible [24]. More formallyegian agreemert and a
featuref, fZ € ZOPA(f) must hold.

Keeping the price example, let us suppose that the maximice fire buyer is
willing to pay is 15,000, while the seller minimum allowakgece is 10,000, then we
can set the two reservation valueg:yy j ce = 15,000 and:, 5 j ce = 10,000, so the
agreement pricevill be in the intervalZOP A(pri ce) = [10000, 15000].

Obviously, the reservation value is considered as privatamation and will not
be revealed to the other party, but will be taken into acchyrthe mediator when the



agreement will be computed. Since setting a reservatiamevah a numerical feature

is equivalent to set a strict requirement, then, once thesband the seller express

their strict requirements, reservation values conssdiate to be added to them (see
Example 1).

In order to formally define a Multi-issue Bilateral Negoiiat problem inP(N),
the only other elements we still need to introduce aradihagreement thresholdalso
called disagreement payoffs;, t,. They are the minimum utility that each agent re-
quires to pursue a deal. Minimum utilities may incorporateagent’s attitude toward
concluding the transaction, but also overhead costs irdoim the transaction itself,
e.g, fixed taxes.

Definition 8 (MBN-P(N)). Given aP(N) set of axiomsl, a demand3 and a set
of buyer’s preference$ with utility functionug »(A and a disagreement threshold
tg, a supplyo and a set of seller's preferences with utility functionu, »A- and

a disagreement thresholt},, a Multi-issue Bilateral Negotiation problem (MBN) is
finding a modell (agreement) such that all the following conditions hold:

IkETU{op} (5)
ugpw) (L) 2 ts (6)
g PN (L) = to 7

Observe that not every agreeménts a solution of an MBN, if eithew,(Z) < t,
orug(Z) < tg. Such an agreement represents a deal which, althoughysagistrict
requirements, is not worth the transaction effort. Alsoic®that, since reservation
values on numerical features are modelediiand o as strict requirements, for each
featuref, the conditionfZ € ZOPA(f) always holds by condition (5).

5 Utilities for Numerical Features

Buyer’s/seller's preferences are used to evaluate how goagossible agreement and
to select the best one. On the other hand, also preferencesnoarical features have
to be considered, in order to evaluate agreements and hodvagjoagreement is w.r.t.

another one. Let us explain the idea considering the demashbwyer’s preferences in

Example 1.

Example 2.Referring to3, 3; andg, in Example 1 let us suppose to have the offer
o =Sedan A (price > 15000) A (year warranty <5)

Three possible agreements between the buyer and the sellanaong others:

7, : {Sedan” = true, Leat her _seat s”* = true,
price’ =17,000,year warranty’* =3}
7, : {Sedan™ = true, Leat her _seat s™ = true,

5 Forillustrative purpose, in this example we consider an offer wherestritf requirements are
explicitly stated. Of course, in the most general case also the seller pagseis preferences.



price’ = 16000,year warranty’ =4}
73 : {Sedan”™ = true, Leat her seat s™ = true,
price’ = 15000,year warranty’ =5}

Looking at the values of numerical featur&s,is the best agreement from the seller’s
perspective whilst; is the best from the buyer’s one. In fact, the buyer the less=lys,
the happier he is and the contrary holds for the seller! Tim¢raoy is for the warranty:
the buyer is happier if he gets a greater year warranty. Opttier handZ, is a good
compromise between buyer’s and seller’'s requirements.

The above example highlights the need for utility functieaking into account the
value of each numerical feature involved in the negotiatimtess. Of course, for each
feature two utility functions are needed; one for the buyerns—, the other for the
seller —u,. ¢. These functions have to satisfy at least the basic pregestiumerated
below. For the sake of conciseness, we wiitevhen the same property holds both for
ug, f andu,,,f. :

1. Sinceuy is a utility function, it is normalized t¢0. . ., 1]. Given the paiKf, Dy),
it must be defined over the domaipy.

2. From Example 2 we note the buyer is happier as the pricedses whilst the seller
is sadder. Hencey; has to be monotonic and whenevey ¢ increases then, s
decreases and vice versa.

3. There is no utility for the buyer if the agreed value on @ris greater or equal
than its reservation value; i j ce =17,000 and there is no utility for the seller if
the price is less than or equaltg i, j ce =15,000. Since concrete domains are
finite, for the buyer the best possible pricaris(Dpy j e ) Whilst for the seller is
max(Dpy j ce)- The contrary holds if we refer to year warranty.

Definition 9 (Feature Utilities). Let (f, D) be a pair made of a feature nanfeand
a concrete domaiD; andr be a reservation value fof. A feature utility function
uy : Dy — [0...,1] is @a monotonic function such that

— if uy monotonically increases then (see Figure 1)

us(v) =0,v € min(Dy), 7]
{uf<max<Df>> —1 (®)

—if uy monotonically decreases then

us(v) = 0,v € [ry, max(Dy)]
{uf<min<Df>> 1 ®)

Given a buyer and a seller, ifg ; increases thenm,, ; decreases and vice versa.

Clearly, the simplest utility functions are the two lineanétions:

v—min(D .
1 - ruffmin((fo)) A [mln(Df)7 ’I"f[
ug(v) = (10)

0, v € [ry,max(Dy)]



if it monotonically decreases and

v—max(D ¢
1_7“]0—T)(((fo)) ,’UE [Tf,HlaX(Df)[

up(v) = (11)
0,v € [min(Dy),r¢]

if it monotonically increases (see Figure 1).

A
Hy (v

. v
min{D} TV, vy, max{D,

Fig. 1. Linear utility functions

6 Computing Pareto agreements irP (A)

Among all possible agreements that we can compute, givesoayti as constraint, we
are interested in agreements that are Pareto-efficienta@infbr both the participants,
in order to make them equally, and as much as possible, sdtisfie now outline how
an actual solution can be found solving a multi objectivérofation problem.

First of all, let{B;,...,Bk,S1,...,5,} bek + h new propositional atoms, and
let7' = TU{B; & Gili = 1,...,k} U{S; & oj|j = 1,...,h} —thatis, every
preference i3 U S is equivalent to a new atom if’.

6.1 Objective functions

Here we define functions to be maximized to find a solution toudtimobjective op-
timization problem. In order to formulate functions to bexingized involving prefer-
ences expressed as formulagiW), let {b, . .. ,bx } the (0,1)-variables one-one with
{B4,...,Br} and similarly{si,...,s,} for {Si,...,S,}. The functions representing
respectively buyer’s and seller’s utility over preferemcan hence be defined as:

k
uppv) = Y, biug(Bi) (12)
=1



h
Uep) = D $ito(0) (13)
j=1

As highlighted in Section 5, also utilities over numericgdfures have to be taken into
account while finding the best solution for both the buyertuedseller. Hence, for each
featuref; involved in the negotiation process we havieature utility function for the
buyerug ;, and one for the selles, ;,. For instance, if we considgr i ce and the
linear function in equations (10) and (11) we likely will lrav

_ v—max(Dpri Ce)
ugpricelv) = . "spri ce max(Pprice)
_ v—min(Dpri Ce)
U, price(v) = . .pri ce ™Pprjce)

6.2 The Multi Objective Optimization Problem

Given the objective functions to be optimized — tieature utility functions and the
preferenceutility functions — in order to compute a Pareto agreementedgice to a
multi objective optimization problem (MOP). The functiotwsbe optimized are utility
functions both for the buyer and the seller, as we want thawmalggsatisfied.

In addition to the set of functions to maximize (or minimize) a MOP there are
a set of constrained numerical variables. In our settinghawe three different sets of
constraints:

1. the (modified) ontology¥’ —see the beginning of Section 6

2. strict requirements ando, including reservation values over numerical features

3. conditions (6) and (7) of an MBN on disagreement threshbjandt, — see the
definition of MBN-P () at the end of Section 4

Notice that the ones involving disagreements thresholdsafready linear con-
straints. In order to model as linear constraints also thes aescribed in points 1 and
2 of the above enumeration, proceed as follows.

Clause reduction Obtain a set of clauseB” s.t. each clause contains only one single
numerical constraint an@”’ is satisfiable iff7’ U {0, 5} does. In order to have such
clauses, if after using standard transformations in claiese [16] you find a clause
with two numerical constraintg : AV ... (fic;k;) V (fjc;k;) pick up a new proposi-
tional atomA and replace, with the set of two clausés

{XlA\/A\/\/(fzczki), }
thﬁA\/A\/...\/(ft]‘Cjkj)

As a final step, for each clause, replaggf < k) with (f > s(k)) and—(f > k) with
(f < p(k)) (see (3) and 4).

5 1t is well know that such a transformation preserves logical entailméht[2



Example 3.Suppose to have the clause

x : | talianMaker v —Ai r Condi ti oni ng Vv
(year warranty > 3)V —(price > 20 500)

First of all split the clause in the following two

x1: AVItalianMaker v —Ai r Condi tioni ngV
(year warranty > 3)

X2 : ~AVItal i anMaker v —Ai r Condi ti oni ng Vv
—(price > 20,500)

then change the second one in

X2 : ~AVItal i anMaker v —Ai r Condi ti oni ng Vv
(pri ce < 20,000)

Here we consider = 500 for the concrete domaiﬂ)pr i ce-

Encoding clauses into linear inequalitiesUse a modified version of well-known en-
coding of clauses into linear inequalitiesd, [19, p.314]) so that every solution of the
inequalities identifies a model a”. If we identify true with values in[1 ... co] and
false with values in[0.. .. 1] each clause can be rewritten in a corresponding inequality.

— map each propositional atorhoccurring in a clausg with a (0,1)-variable:. If A
occurs negated iR then substitute:4 with (1 — a), otherwise substitutd with a.

— replace(f < k) with W(max(Df) — f)and(f > k) with 1 f.

After this rewriting it is easy to see that, considering- logicalor — as classical addi-
tion, in order to have a clauseie the evaluation of the corresponding expression must
be a value grater or equal to 1.

Example 4.If we considermax(Dpr i ce) = 60,000, continuing Example 3 we have
from 1 andy, the following inequalities respectively:

a+i+(1fa)+%year,\/\arranty >1

1

(1—E)+i+(1—a)+—6a000_2(1000

(60,000 —price) >1
whereg, i, a are (0,1)-variables representing propositional tednkt al i anMaker
andAi r Condi ti oni ng.

Looking at the example below, it should be clear the reasoy avtly one numerical
constraint is admitted in a clause.

Example 5.Let us transform the following clause without splitting imettwo corre-
sponding ones

X : I talianMaker Vv (year warranty > 3)V (pri ce <20 000)



the corresponding inequality is then

1

— —pri >
60,000 20‘000(60,000 price)>1

1+ %year warranty +
The interpretation{year warranty = 2,pri ce = 19,500} is not a model fory
while the inequality is satisfied.

7 The bargaining process

Summing up, the negotiation process covers the followiagsst

Preliminary Phase The buyer defines stri¢t and preference8 with correspond-
ing utilities ug(5;) , as well as the thresholg;, and similarly the selles, S, u. (o)
andt,. Here we are not interested in how to comptie,,ug(6;) andu,(o;); we
assume they are determined in advance by means of eithet dggignment methods
(Ordering, Simple Assessing or Ratio Comparison) or paewiomparison methods
(like AHP and Geometric Mean) [20]. Both agents inform thediator about these
specifications and the theof they refer to. Notice that for each feature involved in
the negotiation process, both@ando their respective reservation values are set either
in the form f < r; or in the formf > r.

Negotiation-Core phase For eachs; € B the mediator picks up a new propo-
sitional atomB; and adds the axion®, < (; to 7, similarly for S. Then, it trans-
forms all the constraints modeled jy o and (just extendedY in the correspond-
ing linear inequalities following the procedures illusé@d in Section 6.2 and Section
6.2. Given the preference utility functions p(n) = K bius(B) andu, p(n) =

2?21 sjuq(0j), the mediator adds to this set of constraints the ones imgblisagree-
ment thresholdss p(n) > tg andug p(ar) > to-

With respect to the above set of constraints, the mediateesa MOP maximizing
the preferenceutility functions ug p(ar), uspn) @nd for each featurg involved in
the negotiation process also tfeatureutility functions ug ; andu, . The returned
solution to the MOP is the agreement proposed to the buyettemseller. Notice that
a solution to a MOP is always Pareto optimal [11], furtherentbre solution proposed
by the mediator is also fair solution, because among all the Pareto-optimal solutions
we take the one maximizing the utilities of both the buyer tredseller (see Sec. 6.1).
From this point on, it is dake-it-or-leave-itoffer, as the participants can either accept
or reject the proposed agreement [12]. Let us present a xayple in order to better
clarify the approach. Given the toy ontologyf(/\),

Ext er nal Col or Bl ack = —Ext er nal Col or G ay
T = {Satel liteA arm=- Al ar nByst em
Navi gat or Pack < Satel | i t eAl ar mA GPS_syst em
the buyer and the seller specify their strict requirementsgeferences:

B =Sedan A (price < 30,000) A (kmwar ranty > 120,000) A (year warranty > 4)
31 =GPS.syst emA Al ar nSyst em

(2 =Ext ernal Col or Bl ack = Leat her seat s

B3 = (kmwarranty > 140,000)

ug(B1) =0.5



u5(ﬁ2) =0.2
up(Bs) =0.3
tg =0.2

o =Sedan A (price > 20,000) A (kmwarranty < 160,000) A (year warranty < 6)
o1 =GPS.system= (pri ce > 28,000)

o2 =(kmwarranty < 150,000) V (year warranty < 5)

o3 =Ext ernal Col or Gray

o4 =Navi gat or Pack

ua(crl) =0.2
ug(O'Q) =04
ug((fg) =0.2
uo(o4) =0.2
t, =0.2

Then the final agreement is:

7 : {Sedan” = true, Ext er nal Col or Gray” = true,
Satel liteAl arnf = true, GPS_syst ent = true,
Navi gat or Pack” = true, Al ar nSyst ent = true,
pri ce” = 28000,k = 160,000,year warranty” =5}

Here, for the sake of conciseness, we omit propositionahstaterpreted afalse.

8 Related Work and discussion

Automated bilateral negotiation among agents has beerynitestigated, both in ar-
tificial intelligence and in microeconomics research comities, so this section is nec-
essarily far from complete. Several definitions have beepgsed in the literature for
bilateral negotiation. Rubinstein [26] defined fBargaining Problemas the situation
in which "two individuals have before them several possitbatractual agreements.
Both have interests in reaching agreement but their infesgs not entirely identical.
What 'will be’ the agreed contract, assuming that both partiehave rationally?” In
game theory, the bargaining problem has been modeled @ifftteroperativeor non-
cooperativegames [10]. Al-oriented research has been more focusedtomated ne-
gotiation among agents and on designing high-level prdédooagent interaction [15].
Agents can play different roles: act on behalf of buyer olesebut also play the role
of a mediator or facilitator. Approaches exploiting a meéalianclude among others [8,
13,9]. In [8] an extended alternating offers protocol wassented, with the presence
of a mediator, which improves the utility of both agents.18]a mediated-negotiation
approach was proposed for complex contracts, where infggritkency among issues
is investigated. In [3] the use of propositional logic in thigsue negotiation was in-
vestigated, while in [4] weighted propositional formulaspreference modeling were
considered. However, in such papers, no semantic relatrmng issues is taken into
account. In our approach we adopt a logical thebey, an ontology, which allows.g,

to catch inconsistencies between demand and supply or firelfeasible agreement in



a bundle, which is fundamental to model an e-marketplack-irBerested agents ne-
gotiating over a set of resources to obtain an optimal afiocaf such resources have
been studied in [7,6,5]. Endriss et al. [7] propose an opti@source allocation in
two different negotiation scenarios: one, with money tfansietermines an allocation
with maximal social welfare; the second is a money-free &anork, which results in a
Pareto outcome. In [5] agents negotiate over small bundlessources, and a mech-
anism of resource allocation is investigated, which mazésithe social welfare by
means of a sequence of deals involving at nkagtms each. Both papers [7, 5] extend
the framework proposed in [28], which focused on negotiafar (re)allocating tasks
among agents. We borrow from [31] the definition of agreenasrd model for a set of
formulas from both agents. However, in [31] only multiptainds protocols are stud-
ied, and the approach leaves the burden to reach an agreentieatigents themselves,
although they can follow a protocol. The approach does i@ preferences into ac-
count, so that it is not possible to guarantee the reachestagmt is Pareto-efficient.
Our approach, instead, aims at giving amntomatedsupport to negotiating agents to
reach, in one shot, Pareto agreements. The work presenteduikls on [22], where a
basic propositional logic framework endowed of a logicaldty was proposed. In [21]
the approach was extended and generalized and complesityssvere discussed. In
this paper we further extended the framework, introduciregextended logi®(/N),
thus handling numerical features, and showed we are ablenpute Pareto-efficient
agreements, solving a multi objective optimization prabkdopting a one-shot nego-
tiation protocol.
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