
A Core Calculus of Higher-Order Mixins and Classes ∗

[Poster Abstract]

Lorenzo Bettini1 Viviana Bono2 Silvia Likavec2

1Dipartimento di Sistemi ed Informatica, Università di Firenze, bettini@dsi.unifi.it
2Dipartimento di Informatica, Università di Torino,{bono,likavec}@di.unito.it

ABSTRACT
We present an object-oriented calculus based onhigher-order
mixin construction viamixin composition, where some software en-
gineering requirements are modelled in a formal setting, allowing
to prove the absence ofmessage-not-understoodrun-time errors.

1. INTRODUCTION
Recently, mixins are undergoing a renaissance (see, for exam-

ple, [1, 2]), due to their nature of “incomplete” classes prone to be
completed according to the programmer’s needs. Mixins [4, 5] are
(sub)class definitions parameterized over a superclass and were in-
troduced as an alternative to some forms of multiple inheritance. A
mixin could be seen as a function that, given one class as an argu-
ment, produces another class, by adding or overriding certain sets
of methods. The same mixin can be used to produce a variety of
classes with the same functionality and behavior, since they all have
the same sets of methods added and/or redefined. Also, the same
mixin can be applied to the same class more than once, thus en-
abling incremental changes in the subclasses. The superclass defi-
nition is not needed at the time of writing the mixin definition. This
minimizes the dependencies between superclass and its subclasses,
as well as between class implementors and end-users, thus improv-
ing modularity. The uniform extension and modification of classes
is instead absent from the classical class-based languages. More-
over, in class-based languages, parentage is determined statically
at compile time instead of at run-time. Thus, using mixins avoids
code duplication and improves modularity of the program.

In this work we extend the core calculus of classes and mixins
of [3] with higher-ordermixins. A mixin can: (i) be applied to a
class to create a fully-fledged subclass; or (and this is the novelty
with respect to [3]) (ii) be composedwith another mixin in order
to obtain yet another mixin with more functionalities. This enables
cleaner modular and reusable object-oriented design via the con-
struction of sophisticated class hierarchies, while keeping the good

∗This work has been partially supported by EU within the FET -
Global Computing initiative, project MIKADO IST-2001-32222,
project DART IST-2001-33477, and by MIUR project NAPOLI.
The funding bodies are not responsible for any use that might be
made of the results presented here.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMarch 14-17, 2004, Nicosia, Cyprus
Copyright 2004 ACM 1-58113-000-0/00/0000 ...$5.00.

“software engineering” features of the original core calculus [3].
Our design decisions are strongly based on the choices that

were made in [3]. Class hierarchies in a well-designed object-
oriented program must not be fragile: if a superclass implemen-
tation changes but the specification remains intact, the implemen-
tors of the subclasses should not have to rewrite subclass imple-
mentations. This is only possible if object creation is modular.
In particular, a subclass implementation should not be responsi-
ble for initializing inherited fields when a new object is created.
Unlike many theoretical calculi for object-oriented languages, our
calculus directly supports modular object construction. The mixin
implementor only writes the local constructor for his own mixin.
Mixin applications and compositions are reduced to generator func-
tions that call all constructors in the inheritance chain in the correct
order, producing a fully initialized object. To ensure that mixin
inheritance can be statically type checked, the calculus employs
constrained parameterization. From each mixin definition the type
system infers a constraint specifying to which classes the mixin
can be applied so that the resulting subclass is type-safe. The con-
straint includes bothpositive(which methods the class must con-
tain) andnegative(which methods the class must not contain) in-
formation. New and redefined methods are distinguished in the
mixin implementation. From the implementor’s viewpoint, a new
method may have arbitrary behavior, while the behavior of a re-
defined method must be “compatible” with that of the old method
it replaces. Having this distinction in the syntax helps mixin im-
plementors avoid unintentional redefinitions of superclass methods
and facilitates generation of the constraint for mixin’s superclasses
and for mixins that participate in mixin composition. The full paper
and the metatheory for the calculus (that proves that “message-not-
understood” errors do not occur in the calculus) can be found at
http://www.dsi.unifi.it/~bettini/mixin-high.html.

2. OVERVIEW OF THE CALCULUS
Our calculus relies on theReference ML[6], extended with ob-

jects (which are recursive records), and class- and mixin-related
constructs. A class is a generator function, following Cook’s semi-
nal ideas. A mixin has the form:

mixin
method mj = vmj ;

(j∈New)

redefine mk = vmk ; (k∈Redef)

expect mi ; (i∈Expect)

constructor vc;
end

Expressionsmj = vmj are definitions of the new methods,mk = vmk

are method redefinitions that will replace the methods with the
same name in the superclass, andmi are method (names) that the
superclass is expected to implement. Each method bodyvmj (re-

spectively,vmk) is a function of the privatefield and ofself , which
will be bound to the newly created object at instantiation time. The
vmk ’s are also functions ofnext , which will be bound to the cor-
responding old method from the superclass. Thevc value in the
constructor clause is a function that calculates two values, one to
initialize the private field of an object at instantiation time, and one
which will be passed as an argument to the superclass constructor.
Constructors are used in: (i) mixin application,e1 � e2, which de-
notes the application of mixine1 to classe2, producing a subclass of
e2; (ii) mixin composition,e1 • e2, that produces a new mixin tak-
ing components from bothe1 ande2. The two mixins may partially
complete each others’ definitions, providing (some of) the missing
components. Lete be the resulting mixin. The mixine2 acts as
a “superclass” fore1 (mirroring mixin application order), and, in
particular, some ofe1 methods may override some ofe2 methods.
Therefore, all of the new methods of the mixine1 are inserted in
the resulting mixineas new, while only the new methods ofe2 that
are not redefined bye1 become part of the new methods ofe (name
clashes are checked by the type system at compile time). As far as
redefining methods are concerned, the methods specified as redefin-
ing in e1 can override: some “new” methods ofe2 (these methods
become part of the new methods ofe), some “redefining” meth-
ods ofe2 (these methods become redefining methods ofe, as the
redefinition with thee2 bodies is delayed, whilee1 has already per-
formed a sort of “internal” redefinition overe2), and (even if only
virtually) some of the “expected” methods frome2 (these methods
become redefining methods ofe). As in [3], we define the root of
the class hierarchy, classObject , as a predefined class value.

3. EXAMPLE OF MIXIN INHERITANCE
In the following, we define anEncrypted mixin and a

Compress mixin that implement encryption and compression func-
tionality on top of any stream class. The class to which the mixin
is applied may have more methods than expected by the mixin.
For example,Encrypted can be applied toSocket � Object, even
thoughSocket � Object has other methods besidesreadandwrite.
The mixinRandom allows random access to any stream class, thus
we can build a random access file class with the mixin application
Random � FileStream.

let FileStream =mixin
method write = . . .
method read = . . .
end in

let Socket =mixin
method write = . . .
method read = . . .
method IPadd = . . .
end in

let Random =mixin
method lseek = . . .
expect write;
expect read;
end in

let Encrypted =
mixin
redefine write = λ key. λ self . λ next . λ data.next (encrypt(data, key));
redefine read =λ key. λ self . λ next . λ . decrypt(next (), key);
constructor λ (key, arg).{fieldinit=key,superinit=arg};
end in

let Compress =
mixin
redefine write = λ level. λ self . λ next . λ data.next (compress(data, level));
redefine read =λ level. λ self . λ next . λ . uncompress(next (), level);
constructor λ (level, arg).{fieldinit=level,superinit=arg};
end in . . .

From the definition ofEncrypted, the type system infers the types
of the methods that the mixin wants to redefine: any class to which
Encrypted is applied must containwrite andreadmethods whose
types must be supertypes of those given towrite and read, in the
definition of Encrypted. In RandomFile they are declared as
expectedand they are used within the methodlseek. Once again
the type system infers their types according to how they are used
in lseek. To create an encrypted stream class, one must apply
the Encrypted mixin to an existing stream class. For example,
Encrypted � FileStream is an encrypted file class. Note that

mixin Encrypted can be applied to a family of different streams.
For example, we can constructEncrypted � Socket, which is a
class that encrypts data communicated over a network. Moreover,
we can express many uses of multiple inheritance by applying more
than one mixin to a class. For example,PGPSign � UUEncode �
Encrypted � Compress � FileStream produces a class of files
that are compressed, then encrypted, then uuencoded, then signed.
Furthermore, mixins can be used for some other forms of inher-
itance. In the above example, the result of applyingEncrypted

to a stream satisfies the constraint required byEncrypted itself,
therefore, we can applyEncrypted more than once:Encrypted
� Encrypted � FileStream is a class of files that are encrypted
twice. In our system, class private fields do not conflict even if they
have the same name, so each application ofEncrypted can have
its own encryption key.

Mixin composition enhances the (re)usability of classes and
mixins. We can build a customized library of reusable mix-
ins starting from existing mixins: one can create the new mixin
2Encrypt = Encrypted • Encrypted, instead of applying the
mixin Encrypted twice to every stream class in a program. This
also enables consistency: if the definition of the mixin2Encrypt

is extended, e.g., by UU encoding, then by changing only the def-
inition of 2Encrypt through an additional mixin composition, it
is guaranteed that all the functions that used2Encrypt will use
the new version. Moreover, construction of mixins can be dele-
gated to different parts of the program (thus exploiting modular
programming) and the resulting mixins can then be assembled in
order to build a class. For instance, the following code delegates
the construction of mixins for encryption and compression to two
functions, and then assembles the returned mixins for later use:

let m1 = build compression() in let m2 = build encryption() in
let m= m1 •m2 in (new(m�FileStream)).write("foo")

The functionbuild compression returns a specific mixin ac-
cording to user’s requests: it can return a simpleCompress

mixin, or a more elaborateUUEncode • Compress mixin. Sim-
ilarly, build encryption, instead of simply returning a mixin
Encrypted, returns the compositionPGPSign • Encrypted. All
these modular functionalities would not bedirectly provided by
simple mixin application. In fact, if from an algebraic point of
view it is desirable that(M1•M2)�C = M1�(M2�C) (this holds in
our calculus), it is also true that the ability of composing(M1•M2)
without creating immediately a class, therefore of keeping the com-
position as an “incomplete class”, gives the possibility of using it
within all wanted contexts without rewriting the mixins code.

4. REFERENCES
[1] D. Ancona, G. Lagorio, and E. Zucca. Jam - a smooth

extension of Java with mixins. InProc. ECOOP 2000, pages
154–178. LNCS 1850, Springer-Verlag, 2000.

[2] L. Bettini, V. Bono, and B. Venneri. Coordinating Mobile
Object-Oriented Code. InProc. Coordination 2002, pages
56–71. LNCS 2315, Springer-Verlag, 2002.

[3] V. Bono, A. Patel, and V. Shmatikov. A core calculus of
classes and mixins. InProc. ECOOP ’99, pages 43–66. LNCS
1628, Springer-Verlag, 1999.

[4] G. Bracha and W. Cook. Mixin-based inheritance. InProc.
OOPSLA ’90, pages 303–311, 1990.

[5] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and
mixins. InProc. POPL ’98, pages 171–183, 1998.

[6] A. Wright and M. Felleisen. A syntactic approach to type
soundness.Information and Computation, 115(1):38–94,
1994.

