Clustering Techniques

Marco BOTTA
Dipartimento di Informatica
Università di Torino
botta@di.unito.it
www.di.unito.it/~botta/didattica/clustering.html

Data Clustering Outline

• What is cluster analysis?
• What do we use clustering for?
• Are there different approaches to data clustering?
• What are the major clustering techniques?
• What are the challenges to data clustering?
What is a Cluster?

- According to the Webster dictionary:
 - a number of similar things growing together or of things or persons collected or grouped closely together: BUNCH
 - two or more consecutive consonants or vowels in a segment of speech
 - a group of buildings and esp. houses built close together on a sizeable tract in order to preserve open spaces larger than the individual yard for common recreation
 - an aggregation of stars, galaxies, or super galaxies that appear together in the sky and seem to have common properties (as distance)
- A cluster is a closely-packed group (of things or people)

What is Clustering in Data Mining?

- Clustering is a process of partitioning a set of data (or objects) in a set of meaningful sub-classes, called clusters.
 - Helps users understand the natural grouping or structure in a data set.
- Cluster: a collection of data objects that are “similar” to one another and thus can be treated collectively as one group.
- Clustering: unsupervised classification: no predefined classes.
Supervised and Unsupervised

- Supervised Classification = Classification
 - We know the class labels and the number of classes

![Supervised Classification](image)

- Unsupervised Classification = Clustering
 - We do not know the class labels and may not know the number of classes

![Unsupervised Classification](image)

What Is Good Clustering?

- A good clustering method will produce high quality clusters in which:
 - the intra-class (that is, intra intra-cluster) similarity is high.
 - the inter-class similarity is low.

- The quality of a clustering result also depends on both the similarity measure used by the method and its implementation.

- The quality of a clustering method is also measured by its ability to discover some or all of the hidden patterns.

- The quality of a clustering result also depends on the definition and representation of cluster chosen.
Requirements of Clustering in Data Mining

- Scalability
- Dealing with different types of attributes
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Interpretability and usability.

Applications of Clustering

- Clustering has wide applications in
 - Pattern Recognition
 - Spatial Data Analysis:
 - create thematic maps in GIS by clustering feature spaces
 - detect spatial clusters and explain them in spatial data mining.
 - Image Processing
 - Economic Science (especially market research)
 - WWW:
 - Document classification
 - Cluster Weblog data to discover groups of similar access patterns
Examples of Clustering Applications

- **Marketing**: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs.
- **Land use**: Identification of areas of similar land use in an earth observation database.
- **Insurance**: Identifying groups of motor insurance policy holders with a high average claim cost.
- **City-planning**: Identifying groups of houses according to their house type, value, and geographical location.
- **Earthquake studies**: Observed earthquake epicenters should be clustered along continent faults.

Major Clustering Techniques

- Clustering techniques have been studied extensively in:
 - Statistics, machine learning, and data mining with many methods proposed and studied.
- Clustering methods can be classified into 5 approaches:
 - partitioning algorithms
 - hierarchical algorithms
 - density-based
 - grid-based
 - model-based method
Five Categories of Clustering Methods

- **Partitioning algorithms**: Construct various partitions and then evaluate them by some criterion
- **Hierarchical algorithms**: Create a hierarchical decomposition of the set of data (or objects) using some criterion
- **Density-based algorithms**: based on connectivity and density functions
- **Grid-based algorithms**: based on a multiple-level granularity structure
- **Model-based**: A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other

Partitioning Algorithms: Basic Concept

- **Partitioning method**: Construct a partition of a database D of n objects into a set of k clusters
- **Given a k**, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - k-means (MacQueen’67): Each cluster is represented by the center of the cluster
 - k-medoids or PAM (Partition around medoids) (Kaufman & Rousseeuw’87): Each cluster is represented by one of the objects in the cluster
Optimization problem

- The goal is to optimize a score function
- The most commonly used is the square error criterion:
 \[E = \sum_{i=1}^{k} \sum_{p \in C_i} \| p - m_i \|^2 \]

The K-Means Clustering Method

- Given \(k \), the \(k \)-means algorithm is implemented in 4 steps:
 - Partition objects into \(k \) nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partition. The centroid is the center (mean point) of the cluster.
 - Assign each object to the cluster with the nearest seed point.
 - Go back to Step 2, stop when no more new assignment.
The K-Means Clustering Method

Comments on the K-Means Method

• Strength
 – Relatively efficient: $O(tkn)$, where n is # objects, k is # clusters, and t is # iterations. Normally, $k, t << n$.
 – Often terminates at a local optimum. The global optimum may be found using techniques such as: deterministic annealing and genetic algorithms

• Weakness
 – Applicable only when mean is defined, then what about categorical data?
 – Need to specify k, the number of clusters, in advance
 – Unable to handle noisy data and outliers
 – Not suitable to discover clusters with non-convex shapes
Variations of the K-Means Method

• A few variants of the k-means which differ in:
 – Selection of the initial k means.
 – Dissimilarity calculations.
 – Strategies to calculate cluster means.
• Handling categorical data: k-modes (Huang’98):
 – Replacing means of clusters with modes.
 – Using new dissimilarity measures to deal with categorical objects.
 – Using a frequency-based method to update modes of clusters.
 – A mixture of categorical and numerical data: k-prototype method.

The K-Medoids Clustering Method

• Find representative objects, called medoids, in clusters
• PAM (Partitioning Around Medoids, 1987)
 – starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 – PAM works effectively for small data sets, but does not scale well for large data sets
• CLARA (Kaufmann & Rousseeuw, 1990)
• CLARANS (Ng & Han, 1994): Randomized sampling
• Focusing + spatial data structure (Ester et al., 1995)
PAM (Partitioning Around Medoids)

- PAM (Kaufman and Rousseeuw, 1987), built in Splus
- Use real object to represent the cluster
 - Select \(k \) representative objects arbitrarily
 - For each pair of non-selected object \(h \) and selected object \(i \), calculate the total swapping cost \(TC_{ih} \)
 - For each pair of \(i \) and \(h \),
 - If \(TC_{ih} < 0 \), \(i \) is replaced by \(h \)
 - Then assign each non-selected object to the most similar representative object
 - repeat steps 2-3 until there is no change

\[
PAM Clustering: \text{Total swapping cost} \quad TC_{ih} = \sum_j C_{jih}
\]

\[
C_{jih} = d(j, h) - d(j, i)
\]

\[
C_{jih} = 0
\]

\[
C_{jih} = d(j, i) - d(j, h)
\]

\[
C_{jih} = d(j, h) - d(j, i)
\]
CLARA (Clustering Large Applications)

• CLARA (Kaufmann and Rousseeuw in 1990)
 – Built in statistical analysis packages, such as S+
• It draws multiple samples of the data set, applies PAM on each sample, and gives the best clustering as the output
• Strength: deals with larger data sets than PAM
• Weakness:
 – Efficiency depends on the sample size
 – A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased

CLARANS (“Randomized” CLARA)

• CLARANS (A Clustering Algorithm based on Randomized Search) (Ng and Han’94)
• CLARANS draws sample of neighbors dynamically
• The clustering process can be presented as searching a graph where every node is a potential solution, that is, a set of k medoids
• If the local optimum is found, CLARANS starts with new randomly selected node in search for a new local optimum
• It is more efficient and scalable than both PAM and CLARA
Two Types of Hierarchical Clustering Algorithms

- Agglomerative (bottom-up): merge clusters iteratively.
 - start by placing each object in its own cluster.
 - merge these atomic clusters into larger and larger clusters.
 - until all objects are in a single cluster.
 - Most hierarchical methods belong to this category. They differ only in their definition of between-cluster similarity.

- Divisive (top-down): split a cluster iteratively.
 - It does the reverse by starting with all objects in one cluster and subdividing them into smaller pieces.
 - Divisive methods are not generally available, and rarely have been applied.

Hierarchical Clustering

- Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition.

![Diagram of Hierarchical Clustering](image-url)
AGNES (Agglomerative Nesting)

- Agglomerative, Bottom-up approach
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster

A *Dendrogram* Shows How the Clusters are Merged Hierarchically

Decompose data objects into a several levels of nested partitioning (tree of clusters), called a dendrogram.

A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster.
DIANA (Divisive Analysis)

- Top-down approach
- Inverse order of AGNES
- Eventually each node forms a cluster on its own

More on Hierarchical Clustering Methods

- Major weakness of vanilla agglomerative clustering methods
 - do not scale well: time complexity of at least $O(n^2)$, where n is the number of total objects
 - can never undo what was done previously
- Integration of hierarchical with distance-based clustering
 - BIRCH (1996): uses CF-tree and incrementally adjusts the quality of sub-clusters
 - CURE (1998): selects well-scattered points from the cluster and then shrinks them towards the center of the cluster by a specified fraction
BIRCH

• Birch: Balanced Iterative Reducing and Clustering using Hierarchies, by Zhang, Ramakrishnan, Livny (SIGMOD 96)

• Incrementally construct a CF (Clustering Feature) tree, a hierarchical data structure for multiphase clustering
 – Phase 1: scan DB to build an initial in-memory CF tree (a multi-level compression of the data that tries to preserve the inherent clustering structure of the data)
 – Phase 2: use an arbitrary clustering algorithm to cluster the leaf nodes of the CF-tree

BIRCH

• Scales linearly: finds a good clustering with a single scan and improves the quality with a few additional scans

• Weakness: handles only numeric data, and sensitive to the order of the data record.
Clustering Feature: \(CF = (N, \overrightarrow{LS}, SS) \)

- \(N \): Number of data points
- \(LS: \sum_{i=1}^{N} X_i \)
- \(SS: \sum_{i=1}^{N} \overrightarrow{X_i} \)

Example: \(CF = (5, (16,30),(54,190)) \)

\((3,4) \)
\((2,6) \)
\((4,5) \)
\((4,7) \)
\((3,8) \)

CF Tree

- Root
- Non-leaf node
- Leaf node

- \(B = 7 \)
- \(L = 6 \)
CURE (Clustering Using REpresentatives)

- CURE: proposed by Guha, Rastogi & Shim, 1998
 - Stops the creation of a cluster hierarchy if a level consists of k clusters
 - Uses multiple representative points to evaluate the distance between clusters, adjusts well to arbitrary shaped clusters and avoids single-link effect

Drawbacks of Distance-Based Method

- Drawbacks of square-error based clustering method
 - Consider only one point as representative of a cluster
 - Good only for convex shaped, similar size and density, and if k can be reasonably estimated
Cure: The Algorithm

- Draw random sample s.
- Partition sample to p partitions with size s/p
- Partially cluster partitions into s/pq clusters
- Eliminate outliers
 - By random sampling
 - If a cluster grows too slow, eliminate it.
- Cluster partial clusters.
- Label data in disk

Data Partitioning and Clustering

- $s = 50$
- $p = 2$
- $s/p = 25$
- $s/pq = 5$
Cure: Shrinking Representative Points

- Shrink the multiple representative points towards the gravity center by a fraction of α.
- Multiple representatives capture the shape of the cluster.

Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD 96)
 - DENCLUE: Hinneburg & D. Keim (KDD 98)
 - CLIQUE: Agrawal, et al. (SIGMOD 98)
DBSCAN: A Density-Based Clustering

- DBSCAN: Density Based Spatial Clustering of Applications with Noise.
 - Proposed by Ester, Kriegel, Sander, and Xu (KDD’96)
 - Relies on a density-based notion of cluster: A cluster is defined as a maximal set of density-connected points
 - Discovers clusters of arbitrary shape in spatial databases with noise

Density-Based Clustering: Background

- Two parameters:
 - Eps: Maximum radius of the neighbourhood
 - $MinPts$: Minimum number of points in an Eps-neighbourhood of that point
- $N_{Eps}(p) : \{ q \text{ belongs to } D \mid dist(p, q) \leq Eps \}$
- Directly density-reachable: A point p is directly density-reachable from a point q wrt. Eps, $MinPts$ if
 - 1) p belongs to $N_{Eps}(q)$
 - 2) core point condition:
 \[|N_{Eps}(q)| \geq MinPts \]

MinPts = 5
Eps = 1 cm
Density-Based Clustering: Background

• Density-reachable:
 – A point \(p \) is density-reachable from a point \(q \) wrt. \(\text{Eps}, \text{MinPts} \) if there is a chain of points \(p_1, \ldots, p_n, p_1 = q, p_n = p \) such that \(p_{i+1} \) is directly density-reachable from \(p_i \).

• Density-connected
 – A point \(p \) is density-connected to a point \(q \) wrt. \(\text{Eps}, \text{MinPts} \) if there is a point \(o \) such that both, \(p \) and \(q \) are density-reachable from \(o \) wrt. \(\text{Eps} \) and \(\text{MinPts} \).

CLIQUE (Clustering In QUEst)

• Agrawal, Gehrke, Gunopulos, Raghavan (SIGMOD’98).

• Automatically identifying subspaces of a high dimensional data space that allow better clustering than original space.

• CLIQUE can be considered as both density-based and grid-based
 – It partitions each dimension into the same number of equal length interval
 – It partitions an \(m \)-dimensional data space into non-overlapping rectangular units
 – A unit is dense if the fraction of total data points contained in the unit exceeds the input model parameter.
 – A cluster is a maximal set of connected dense units within a subspace.
CLIQUE: The Major Steps

- Partition the data space and find the number of points that lie inside each cell of the partition.

- Identify the subspaces that contain clusters using the Apriori principle.

- Identify clusters:
 - Determine dense units in all subspaces of interests
 - Determine connected dense units in all subspaces of interests.

- Generate minimal description for the clusters
 - Determine maximal regions that cover a cluster of connected dense units for each cluster
 - Determination of minimal cover for each cluster.
Strength and Weakness of CLIQUE

- **Strength**
 - It *automatically* finds subspaces of the highest dimensionality such that high density clusters exist in those subspaces
 - It is *insensitive* to the order of records in input and does not presume some canonical data distribution
 - It scales *linearly* with the size of input and has good scalability as the number of dimensions in the data increases
- **Weakness**
 - The accuracy of the clustering result may be degraded at the expense of simplicity of the method

Grid-Based Clustering Method

- Grid-based clustering: using multi-resolution grid data structure.
- Several interesting studies:
 - STING (a STatistical INformation Grid approach) by Wang, Yang and Muntz (1997)
 - BANG-clustering/GRIDCLUS (Grid-Clustering) by Schikuta (1997)
 - WaveCluster (a multi-resolution clustering approach using wavelet method) by Sheikholeslami, Chatterjee and Zhang (1998)
 - CLIQUE (Clustering In QUEst) by Agrawal, Gehrke, Gunopulos, Raghavan (1998).
Model-Based Clustering Methods

- Use certain models for clusters and attempt to optimize the fit between the data and the model.
- Neural network approaches:
 - The best known neural network approach to clustering is the SOM (self-organizing feature map) method, proposed by Kohonen in 1981.
 - It can be viewed as a nonlinear projection from an m-dimensional input space onto a lower-order (typically 2-dimensional) regular lattice of cells. Such a mapping is used to identify clusters of elements that are similar (in a Euclidean sense) in the original space.

Model-Based Clustering Methods

- Machine learning: probability density-based approach:
 - Grouping data based on probability density models: based on how many (possibly weighted) features are the same.
 - COBWEB (Fisher’87) Assumption: The probability distribution on different attributes are independent of each other --- This is often too strong because correlation may exist between attributes.
Model-Based Clustering Methods

• Statistical approach: Gaussian mixture model (Banfield and Raftery, 1993): A probabilistic variant of k-means method.
 – It starts by choosing k seeds, and regarding the seeds as means of Gaussian distributions, then iterates over two steps called the estimation step and the maximization step, until the Gaussians are no longer moving.
 – Estimation: calculating the responsibility that each Gaussian has for each data point.
 – Maximization: The mean of each Gaussian is moved towards the centroid of the entire data set.

Model-Based Clustering Methods

• Statistical Approach: AutoClass (Cheeseman and Stutz, 1996): A thorough implementation of a Bayesian clustering procedure based on mixture models.
 – It uses Bayesian statistical analysis to estimate the number of clusters.
Clustering Categorical Data: ROCK

- **ROCK**: Robust Clustering using linKs,
 by S. Guha, R. Rastogi, K. Shim (ICDE’99).
 - Use links to measure similarity/proximity
 - Not distance based
 - Computational complexity: \(O(n^2 + n m + n^2 \log n) \)

- **Basic ideas:**
 - Similarity function and neighbors:
 \[
 \text{Sim}(T_1, T_2) = \frac{|T_1 \cap T_2|}{|T_1 \cup T_2|}
 \]
 \[
 \text{Sim}(T_1, T_2) = \frac{|\{1, 2, 3\}|}{|\{1, 2, 3, 4, 5\}|} = \frac{1}{5} = 0.2
 \]

Rock: Algorithm

- **Links**: The number of common neighbours for the two points.

\[
\{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \{1,3,4\}, \{1,3,5\} \\
\{1,4,5\}, \{2,3,4\}, \{2,3,5\}, \{2,4,5\}, \{3,4,5\}
\]

\[
\{1,2,3\} \xleftarrow{3} \{1,2,4\}
\]

- **Algorithm**
 - Draw random sample
 - Cluster with links
 - Label data in disk
Problems and Challenges

- Considerable progress has been made in scalable clustering methods:
 - Partitioning: k-means, k-medoids, CLARANS
 - Hierarchical: BIRCH, CURE
 - Density-based: DBSCAN, CLIQUE, OPTICS
 - Grid-based: STING, WaveCluster.
 - Model-based: Autoclass, Denclue, Cobweb.
- Current clustering techniques do not address all the requirements adequately (and concurrently).
- Large number of dimensions and large number of data items.
- Strict clusters vs. overlapping clusters.

EM Algorithm

- Initialize K cluster centers
- Iterate between two steps
 - **Expectation step**: assign points to clusters
 \[
 P(d_i \in c_k) = w_k \frac{Pr(d_i | c_k)}{\sum_j w_j Pr(d_i | c_j)}
 \]
 \[
 w_k = \frac{\sum \Pr(d_i \in c_k)}{N}
 \]
 - **Maximation step**: estimate model parameters
 \[
 \mu_k = \frac{1}{m} \sum_{i=1}^{m} \frac{d_i P(d_i \in c_k)}{\sum_k P(d_i \in c_j)}
 \]