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Abstract. We present a general technique for extending Java-like languages with
dynamic overloading, where method selection depends on the dynamic type of
the parameter, instead of just the receiver. To this aim we use a core Java-language
enriched with encapsulated multi-methods and dynamic overloading. Then we
define an algorithm which translates programs to standard Java code using only
basic mechanisms of static overloading and dynamic binding. The translated
programs are semantically equivalent to the original versions and preserve type
safety.
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1 Introduction

A multi-method can be seen as a collection of overloaded methods, called branches,
associated to the same message, but the method selection takes place dynamically ac-
cording to the run-time types of both the receiver and the arguments, thus implementing
dynamic overloading. Though multi-methods are widely studied in the literature, they
have not been added to mainstream programming languages such as Java, C++ and C#,
where overloading resolution is a static mechanism (the most appropriate implemen-
tation of an overloaded method is selected statically by the compiler according to the
static type of the arguments).

In this paper we present a general technique for extending Java-like languages with
dynamic overloading. To this aim we use the core languages FDJ and FSJ which are
extensions of Featherweight Java [7] with multi-methods and static overloading, re-
spectively. Then, we define an algorithm which translates FDJ programs to FSJ code
using only basic mechanisms of static overloading and dynamic binding. Both FDJ and
FSJ are based on [2], where we studied an extension of FJ with static and dynamic
overloading from the linguistic point of view; thus, in that paper, we focused on the
type system and the crucial conditions to avoid statically any possible ambiguities at
run-time. The multi-methods we are considering are encapsulated in classes and not
external functions, and the branch selection is symmetric: during dynamic overloading
selection the receiver type of the method invocation has no precedence over the argu-
ment types.
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The translation here presented can be regarded as a formalization of a general tech-
nique to implement dynamic overloading in mainstream object-oriented languages.
The translation is type safe (i.e., the generated code will not raise type errors) and
the translated code will have the same semantics of the original program using dy-
namic overloading. In particular, since the translated code uses only static overloading
and dynamic binding, it does not introduce a big overhead (it performs method selec-
tion in constant time, independently from the width and depth of inheritance hierar-
chies) as in other approaches in the literature [4, 6]. In [3] we presented doublecpp,
http://doublecpp.sf.net, a preprocessor for C++ which is based on the approach
here presented ([3] also sketches a very primordial and informal version of the transla-
tion algorithm); the translation presented in this paper is the first formalization of our
technique for implementing dynamic overloading through static overloading.

We briefly present the parts of the core language FDJ (Featherweight Java + Dy-
namic overloading), which is an extension of FJ (Featherweight Java) [7] with multi-
methods, that are relevant for the translation algorithm (we refer to [2] for further de-
tails). In the following we assume that the reader is familiar with FJ, then we will
concentrate on the features of FDJ. The syntax of FDJ is the following:

L ::= class C extends C {C f; K; M} classes
K ::= C(C f){super(f); this.f=f;} constructors
M ::= C m (C x){return e;} methods
e ::= x

∣∣ e.f
∣∣ e.m(e)

∣∣ new C(e) expressions
v ::= new C(v) values

The distinguishing feature, w.r.t. FJ, consists in the definition of multi-methods: the pro-
grammer is allowed to specify more than one method with the same name and different
signatures; any definition of a method m in a class C is interpreted as the definition of a
new branch of the multi-method m (this difference w.r.t. FJ is evident in the typing [2]).
The new branch is added to all the other branches of m that are inherited (if they are
not redefined) from the superclasses of C (copy semantics of inheritance [1]). In FDJ
we also permit method redefinition with a covariant return type, a feature that has been
recently added to Java. In the present paper we limit multi-methods to one parameter.
We do not see this as a strong limitation from a pragmatic point of view. Indeed, most
of the examples found in the literature dealing with multi-methods consider only one
parameter.

A program is a pair (CT,e) of a class table (mapping from class names to class dec-
larations) and an expression e (the program’s main entry point). The subtyping relation
<: on classes (types) is induced by the standard subclass relation. The types of FDJ
are the types of FJ extended with multi-types, representing types of multi-methods. A
multi-type is a set of arrow types associated to the branches of a multi-method, and is
of the shape: {C1→ C′1, . . . ,Cn→ C′n}. We will write multi-types in a compact form,
by using the sequence notation: {C→ C′}. Σ will range over multi-types. We extend the
sequence notation also to multi-method definitions: C′ m (C x){return e;} represents a
sequence of method definitions, each with the same name m but with different signatures
(and possibly different bodies): C′1 m (C1 x){return e1;} . . . C′n m (Cn x){return en;}.
The multi-type of the above multi-method will be denoted by {C→ C′}.
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Multi-types are constrained by two crucial consistency conditions, formulated in
[5], which must be checked statically, in order to be well-formed: a multi-type {B→ B′}
is well-formed if ∀ (Bi→ B′i),(B j → B′j) ∈ {B→ B′} the following conditions are veri-
fied: 1) Bi 6= B j, 2) Bi <: B j ⇒ B′i <: B′j. The first condition requires that all input types
are distinct. The second condition guarantees that a branch specialization is safe: if stat-
ically a branch selection has a return type, and if dynamically a more specialized branch
is selected, the return type is consistent with the static selection (it is a subtype). The
original definition of well-formedness of [5] also contained a third condition, which is
always implied by the other two conditions in our context where we only have single
inheritance and one parameter.

The mtype(m,C) lookup function returns the type of m in the class C which is a
multi-type. In particular, since we consider copy semantics of inheritance, the multi-
type contains both the signatures of the branches defined (or redefined) in the current
class and the ones inherited by the superclass:

class C extends D {C f; K; M} B′ m (B x){return e;} ∈ M
mtype(m,C) = {B→ B′}∪{Bi→ B′i ∈ mtype(m,D) | ∀B j→ B′j ∈ {B→ B′},Bi 6= B j}

class C extends D {C f; K; M} m 6∈ M
mtype(m,C) = mtype(m,D)

Note that we cannot implement mtype(m,C) simply as {B→ B′}∪mtype(m,D) due to
possible method overriding with covariant return types.

The semantics of method invocation is type driven in that it uses mtype to select
the most specialized version among the set of matching branches (it is unique, by well-
formedness, if that set is not empty). The selected method body is not only the most
specialized w.r.t. the argument type but also the most redefined version associated to
that signature. This way, we model standard method overriding inside our mechanism
of dynamic overloading. The language FSJ has the same syntax as FDJ but the multi-
methods are intended as standard overloaded methods and then the overloading resolu-
tion is static.

2 From FDJ to FSJ: the Translation Algorithm

We now use FDJ and FSJ to formalize the transformation from an extended Java with
dynamic overloading to standard Java (with static overloading): in this section we show
how multi-methods can be implemented by static overloading and dynamic binding. Our
goal is to define a general technique to extend a language with dynamic overloading.
The solution presented here is inspired by the one described by Ingall in [8] (on which
also the Visitor pattern is based), but it does not suffer from possible implementation
problems when implementing manually this technique.

We provide a translation algorithm that, given an FDJ program using dynamic over-
loading, produces an equivalent FSJ program only using static overloading and dynamic
binding. This translation is thought to be automatically executed by a program transla-
tor (a preprocessor) that has to be run before the actual language compiler. Note that the
code generated by our translation uses neither RTTI nor, more importantly, type down-
casts which are very common in other proposals and that are notoriously sources of type
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safety violations. Thus, we provide a formal framework to reason about correctness of
compilers when adding dynamic overloading to a language.

In order to give an informal idea of the proposed translation, let us consider the
following example (for simplicity, in the following, we will use the full Java syntax,
e.g., assignments and sequentialization).

Suppose we have the following FDJ program, where B2 <: B1 are not shown:

class A1{
C m (B1 x){return e1;}
C m (B2 x){return e2;}

};

A1 z = new A1();
B1 y = new B2();
z.m(y);

Then we consider the semantics of the method invocation z.m(y): it will select the sec-
ond branch of m in A1 since, in spite of being declared statically as B1, y is of type B2
dynamically.

Let classes A1, B1 and B2 be written in FSJ as follows:

class A1{
C m (B1 x){return x.disp m(this);}
C m (B2 x){return x.disp m(this);}
C m (B1 x){return e1;}
C m (B2 x){return e2;}
}

class B1{
// original contents
C disp m (A1 x){return x. m(this);}
}

class B2 extends B1{
// original contents
C disp m (A1 x){return x. m(this);}
}

Summarizing, all method definitions are renamed by adding the (reserved) prefix and
all the branches of the original multi-methods (including the ones implicitly inherited
with copy semantics) are modified using the forward invocation x.disp m(this). Now
let us analyze how the method invocation z.m(y) proceeds in FSJ:

1. z.m(y) will select the branch C m (B1 x){return x.disp m(this);} in A1 (remem-
ber that y is statically of type B1);

2. x.disp m(this) will select the (only) branch of disp m in B2, since dynamic bind-
ing is employed also in the static overloading invocation;

3. x. m(this) in B2 will use static overloading, and thus will select a branch of m in
A1 according to the static type of the argument: the argument this is of type B2 and
thus the second branch of m in A1 will be selected.

Therefore, z.m(y) in the translated FSJ program, where classes are modified as above,
has the same behavior as in the FDJ original program (since they execute the same
method body e2). Consider the same classes of the previous example and the following
additional classes (where B3 <: B2 and C′ <: C):

class A2 extends A1{
C′ m (B3 x){return e3;}

};

A1 z = new A2();
B1 y = new B3();
z.m(y);



A safe implementation of dynamic overloading in Java-like languages 5

The dynamic overloading semantics will select the branch C′ m(B3 x) in A2. In this case
the program would be translated in FSJ as follows (the translation of class A1 is the
same as before):

class A2 extends A1{
C m (B1 x){return x.disp m(this);}
C m (B2 x){return x.disp m(this);}
C′ m (B3 x){return x.disp m(this);}
C′ m (B3 x){return e3;}

}

class B1{
// original contents
C disp m (A1 x){return x. m(this);}
C disp m (A2 x){return x. m(this);}
}

class B2 extends B1{
// original contents
C disp m (A1 x){return x. m(this);}
C disp m (A2 x){return x. m(this);}

}

class B3 extends B2{
// original contents
C′ disp m (A2 x){return x. m(this);}
}

Let us interpret the method invocation z.m(y) in FSJ:

1. As in the previous example, z.m(y) will select the branch C m (B1 x){return . . .;}
(remember that x is statically of type B1);

2. since dynamic binding is employed, the implementation of m in A2 will be selected
dynamically;

3. the method invocation x.disp m(this) will select statically the second branch of
disp m in B1, since this is (statically) of type A2, but since dynamic binding is
employed, the version of such method provided in B3 will be actually invoked dy-
namically (note that disp m in B3 is an override of disp m in B2 with covariant
return type, which is sound);

4. the method invocation x. m(this) in B3 will select a branch of m in A2 according
to the static type of the argument: the argument this is of type B3 and thus the
branch C′ (B3 x) of m in A2 will be selected.

Again, z.m(y) in FSJ has the same behavior as in FDJ (they both execute the method
body e3). The reader can easily verify that if y is assigned an instance of B2 we would
execute e2, just as in the first example, i.e., the body of the branch with parameter B2 as
defined in A1, implicitly inherited by A2. Summarizing, the idea of our translation is that
the dynamic overloading semantics can be obtained, in a static overloading semantics
language, by exploiting dynamic binding and static overloading twice: this way the
dynamic selection of the right method is based on the run time types of both the receiver
and the argument of the message.

Note that the key point in our translation is to rename by m every method m and then
introduce a new overloaded method m, which is the entry point for dynamic overload-
ing interpretation. The branches of this new multi-method m in a FSJ class Ai are built
starting from the branches of the original FDJ m by considering the set of all the param-
eters types B j of m in Ai (including the ones inherited by copy semantics). One might be
tempted to say that the added methods C m (B1,2 x){return x.disp m(this);} in A2 are
useless since they would be inherited from A1: however, their presence is fundamental
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to make our translated code work, since what matters in this context is the static type of
this; thus, these methods must be present also in A2.

Our translation also relies on a new multi-method disp m introduced in the Bi’s
classes. Let us consider how the branches of disp m are built. Regarding the definition
of the multi-method m in a FDJ class Ai, for each type Bi, such that Bi is the type of the
parameter of a branch of m, we add a branch to disp m in the class Bi with parameter of
type Ai. We add the same branch to disp m in each class B j such that Bi <: B j and B j is
the type of the parameter of a branch of m in Ai or in a superclass Ak (Ai <: Ak).

Let us consider the classes in the second example:

– B1 and B2 are the parameter types of the branches of m in A1, thus we add a branch
to disp m in B1 and B2, with parameter of type A1.

– B3 is the type of the parameter of the branch of m in A2 so we add a branch to disp m
in B3, with parameter of type A2. Moreover, since B3 <: B2 and since B2 is the type
of parameter of a branch of m in A1 (A2 <: A1), we add a branch to disp m in B2,
with parameter of type A2; recursively, we add such a branch to B1, since B2 <: B1
and since B1 is the type of parameter of a branch of m in A1 (A2 <: A1).

To insert the correct disp methods following the strategy above, it is enough to
retrieve all the branches of a multi-method in a class (including those inherited with
copy semantics); for each of such methods in a class Ai, say B′ m(B j x) {. . .}, we insert
in B j a method B′ disp m(Ai x) {return x. m(this);}. It is easy to verify that this
procedure adds exactly all and only the disp that are required to make our translation
work. Summarizing, the method m, in the FSJ translated version, aims at statically using
the type of Ai and dynamically using the type of the B j, while the method disp m has
exactly the opposite task. Together these two methods realize the dynamic overloading
semantics.

Let us now present formally our translation, which is defined on well-typed FDJ pro-
grams, so assuming properties concerning well typedness of programs. In the following
we introduce some auxiliary notations: given a set of method definitions M, a method
definition M, a method name m, a class table CT and class C extends D {C f; K; M} ∈
dom(CT) we use the following notations:

– M \ m = {B′ m′(B x) {return e;} ∈ M | m′ 6= m}
– rename(M,m) = (M \ m)∪{B′ m(B x) {return e;} | B′ m(B x) {return e;} ∈ M}
– rename(CT,C,m) is the class table CT′ that is obtained from CT by renaming the

methods with name m in the class C, i.e., CT′ is such that:
• CT′(C) = class C extends D {C f; K; rename(M,m)}
• ∀C′ ∈ dom(CT) such that C′ 6= C, CT′(C′) = CT(C′)

– CT(C)←← M is the class table CT′ obtained from CT by adding to C the method
definition M, i.e., CT′ is such that:
• CT′(C) = class C extends D {C f; K; M M}
• ∀C′ ∈ dom(CT) such that C′ 6= C, CT′(C′) = CT(C′)

Definition 1 (Translation algorithm from FDJ to FSJ). Let p = (CT,e) be well typed
FDJ program, then the corresponding FSJ translated version, denoted by (CT,e), is
obtained from p by performing the following algorithm:
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1. CT := CT
2. ∀class C extends D {C f; K; M} ∈ dom(CT)

(a) ∀m ∈ Names(M)
i. CT := rename(CT,C,m)

ii. ∀B→ B′ ∈ mtype(m,C), using CT
A. CT := CT(B)←← B′ disp m(C x) {return x. m(this);}
B. CT := CT(C)←← B′ m(B x) {return x.disp m(this);}

Note that the algorithm needs both the original CT and a new class table CT, which
contains the translated classes; the former is used to drive the translation, in particular
for the lookup functions and for retrieving the original method definitions, while the
latter is updated at every step (we use the assignment operator := to update the class
table CT). Thus, we start by initializing CT with a copy of the original class table CT
(this way we also copy all the class fields and constructor definitions that will not be
changed during the translation). Then, for every class in CT we perform the three steps
that act on method names and method definitions. Note that the renaming (step 2(a)i)
is always performed starting from CT, thus incrementally renaming method names one
by one. Step 2(a)iiA generates the disp methods in target classes; the branches to be
generated are collected starting from the original client class in CT, using the mtype
function that implements the copy semantics of inheritance; this is crucial to make the
translation algorithm work correctly. Step 2(a)iiB adds the entry point branches, that
have the same name of the multi methods in the original program, that forward to the
disp methods. Note that in Steps 2(a)iiA and 2(a)iiB it is crucial to start from the
original class, otherwise, the algorithm would treat also the added or renamed methods
in successive steps.

Finally, we observe that the translated program (CT,e) differs from the original
one (CT,e) only with respect to method definitions, affecting neither the body of the
original methods (i.e., the translation never acts on method bodies) nor the main expres-
sion e. The translation algorithm here defined preserves both type safety and semantics
of the original programs, then it implements dynamic overloading in a type safe and
correct way.

3 Conclusions and Related Work

Some object-oriented languages and calculi have been proposed to study multi-methods
and dynamic overloading; we refer to [2] for an extensive discussion of these ap-
proaches. Here we list only a few recent works which are more related to the issues
of the present paper.

Parasitic methods [4] are a linguistic extension of Java with asymmetric multi-
methods, with the main goal of retaining modularity. The approach does not use copy
semantics, the selection of the most specialized method relies on instanceof checks
and consequent type casts (thus it does not perform constantly as in our solution, but es-
sentially linearly on the number of branches), the dispatching semantics is complicated
by the use of textual order of method declarations.

MultiJava [6] is a backward-compatible extension to Java supporting multi-methods
and open classes. New methods in a class C can be added by defining external method
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families in a different compilation unit w.r.t. to the one containing C definition. The
drawback of this approach is that extending, or modifying an existing method, can only
be done by explicitly subclassing all affected variants and overriding the corresponding
branches. This complicates the extensibility and can lead to an inconsistent distribution
of code. MultiJava is directly compiled into Java bytecode. Relaxed MultiJava [9] in-
creases flexibility of MultiJava w.r.t. overloading; however, it is obtained by allowing a
function call to be ambiguous; these ambiguities are caught at class load time.

In [10] C++ is extended with open multi-methods and symmetric dispatch. Differ-
ently from our approach, open multi-methods are external to classes, as the external
added methods of MultiJava.

The translation algorithm presented in this paper can be extended in two directions.
Firstly, we could consider methods with more than one parameter. In this case, the
translation gets more complicated, and it is the subject of an ongoing work. The second
extension, which has a stronger practical impact, consists in handling multiple inheri-
tance. Multiple inheritance introduces subtle ambiguity problems that have always been
the drawback of introducing dynamic overloading in mainstream languages. From the
point of view of the language, in [2] we showed how the type-checking can rule out
all possible ambiguities due to multiple inheritance; then, we have only to extend the
translation algorithm.
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