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ABSTRACT
We propose a rank 2 intersection type system for a language
of modules built on a core ML-like language. The principal
typing property of the rank 2 intersection type system for the
core language plays a crucial role in the design of the type
system for the module language. We first consider a “plain”
notion of module, where a module is just a set of mutually
recursive top-level definitions, and illustrate the notions of:
module intrachecking (each module is typechecked in isola-
tion and its interface, which is the set of typings of the de-
fined identifiers, is inferred); interface interchecking (when
linking modules, typechecking is done just by looking at the
interfaces); interface specialization (interface intrachecking
may require to specialize the typing listed in the interfaces);
principal interfaces (the principal typing property for the
type system of modules); and separate typechecking (looking
at the code of the modules does not provide more type infor-
mation than looking at their interfaces). Then we illustrate
some limitations of the “plain” framework and extend the
module language and the type system in order to overcome
these limitations. The decidability of the system is shown
by providing algorithms for the fundamental operations in-
volved in module intrachecking and interface interchecking.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language classifica-
tions—applicative (functional) languages; D.3.3 [Programming
Languages]: Language Constructs and Features—modules,
packages polymorphism recursion; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—func-
tional constructs type structure
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1. INTRODUCTION
The Damas/Milner type system [9] is the core of the type

systems of modern functional programming languages, like
ML [16] and Haskell. The fact that this type system is some-
what inflexible1 has motivated the search for more expres-
sive, but still decidable, type systems. Extension based on
intersection types [5; 4; 6; 2] are particularly interesting since
they generally have the principal typing property (a.k.a. prin-
cipal pair property),2 whose advantages w.r.t. the principal
type property 3 of the ML type system has been described,
for instance, in [14]. The fact that there is no reasonable
way to define the principal typing property such that ML
has it has been suspected for a long time, see e.g. [8]. Re-
cently, Wells [19] gave a precise definition of principal typing
property4 and proved that ML does not have it. The sys-
tem of rank 2 intersection types [15, 18, 20, 14, 11] seems to
deserve particular attention since it is able to type all ML
programs, has the principal typing property, decidable type
inference, and complexity of type inference which is of the
same order as in ML. For the reader unfamiliar with (rank
2) intersection types, we give an early explanation of what a
rank 2 intersection type is. Intersection types are obtained
from simple types (see, for instance, [13]) by adding the in-
tersection type constructor ∧. An expression has type u1∧u2

(u1 intersection u2) if it has both type u1 and type u2. For
example, the identity function λx.x has both type int → int
and bool → bool, so it has type (int → int) ∧ (bool → bool).
Rank 2 intersection types are types that may contain inter-

1In particular it does not allow to assign different types to
different occurrences of a formal parameter in the body of a
function.
2Roughly speaking, a type system with judgement A ` e : v
(where A is a set of type assumptions for identifiers and v
is a type), has the principal typing property if, whenever a
term e is typable, there exist a typing 〈A0, v0〉 (such that
A0 ` e : v0 holds) “representing all possible typings for e”.
3Roughly speaking, a type system has the principal type
property if, whenever a term e is typable with the type as-
sumptions A0, there exists a type v0 (such that A0 ` e : v0

holds) “representing all possible types for e in A0”.
4According to [19]: The typing 〈A1, v1〉 is stronger than the
typing 〈A2, v2〉 iff, for every term e, A1 ` e : v1 implies
A2 ` e : v2. A typing 〈A, v〉 is principal for a term e iff
A ` e : v holds and if A′ ` e : v′ holds then 〈A, v〉 is stronger
than 〈A′, v′〉. The system ` has the principal typing property
if any typable term has a principal typing.



sections only to the left of a single arrow. So, for instance,
((int → int)∧(bool → bool)) → int → int is a rank 2 intersec-
tion type,5 while (((int → int)∧ (bool → bool)) → int) → int
is not a rank 2 intersection type.

Separate compilation allows to divide a large program into
smaller modules, which can be typechecked and compiled in
isolation. The complete program is closed, but modules may
contain free identifiers (since may refer to other modules).
As pointed out in Section 4 of [14], the principal typing prop-
erty provides, among others things, elegant support for sep-
arate compilation, including incremental type inference [1]
and smartest recompilation [17].

In this paper we propose a rank 2 intersection type system
for a language of modules built on the small ML-like lan-
guage considered in [11]. Separate compilation is intended
as separate typechecking and separate code generation for
modules. Following [3] we do not consider issues of code
generation and focus on typechecking, which (at least from
the point of view of language design) is the hardest part of
separate compilation.

In the following we illustrate the framework by using the
simple language of modules considered in [14], where a mod-
ule is just a set of mutually recursive top-level definitions
{x1 = e1, . . . , xn = en} (note that, although module syntax
is the same as record syntax in Standard ML [16], modules
are not first-class values). The principal typing property of
the rank 2 intersection type system for the core language
allows to perform type inference on program fragments with
free identifiers. For instance, the core language expression
tolist 3 has principal typing 〈{tolist : int → α}, α〉 and
the core language expression tolist true has principal typ-
ing 〈{tolist : bool → β}, β〉. We define the interface of a
module to be a set of typings for the identifiers defined in
the module. So, the (open) module

pm1 = {x = tolist 3, y = tolist true}

is typable (or, according to [3], intrachecks) with principal
interface

I1 = {x : ∀α . 〈{tolist : int → α}, α〉,
y : ∀ β . 〈{tolist : bool → β}, β〉}

specifying that the module pm1 provides the definition for
the identifiers x and y and, in order to produce a complete
program (that is a closed module), it must be linked with a
module providing a definition for the identifier tolist having
a type that can be “unified” both with the type int → α and
with the type bool → β. The (closed) module

pm2 = {tolist = λ z.cons z nil},

which defines the identifier tolist, intrachecks with principal
interface

I2 = {tolist : ∀ γ . 〈∅, γ → γ list〉}.

Since the interface I1 can be specialized to the interface

I ′
1 = {x : ∀ ε . 〈{tolist : int → int list}, int list〉,

y : ∀ ε . 〈{tolist : bool → bool list}, bool list〉}

and ∀ γ . γ → γ list (the type scheme for tolist specified by
I2) can be instantiated to both int → int list and bool →

5As usual, the arrow type constructor is right associative,
so ((int → int) ∧ (bool → bool)) → int → int means ((int →
int) ∧ (bool → bool)) → (int → int).

bool list (the types for tolist required by I ′
1) we have that the

interfaces I1 and I2 intercheck. Their composition,

I1 ⊕ I2 = {x : ∀ ε . 〈∅, int list〉, y : ∀ ε . 〈∅, bool list〉,
tolist : ∀ γ . 〈∅, γ → γ list〉},

turns out to be an interface for the (closed) module

pm1∪pm2 = {x = tolist 3, y = tolist true, tolist = λz.cons z nil}.

The various rank 2 intersection type systems for modules
presented in this paper satisfy the following properties:
Principal interface property. If a module pm intra-
checks, then it has a principal interface, that is, an interface
I such that

1. every interface I ′ for pm is a specialization of I, and

2. every specialization I ′ of I is an interface for pm.

Separate type inference property. If pm1 intrachecks
with interface I1 and pm2 intrachecks with interface I2, then

1. the interfaces I1 and I2 intercheck iff the module pm1∪
pm2 intrachecks with interface I1 ⊕ I2, and

2. Ii principal interface for pmi (1 ≤ i ≤ 2) imply that,
if pm1 ∪ pm2 intrachecks with interface I1 ⊕ I2, then
I1 ⊕ I2 is a principal interface for pm1 ∪ pm2.

The “plain” module system outlined above (which cor-
responds essentially to the separate compilation framework
proposed in [14]) is simple and elegant, but has some lim-
itations. A first problem is due to the fact that a module
{x1 = e1, . . . , xn = en} is typed by assuming simple types
for the uses of the identifiers x1, . . . , xn in e1, . . . , en. This
strategy limits the possibility of dividing a complex func-
tion into smaller functions, which can be reused in different
contexts. For instance, the module

pm3 = {twice = λf.λ x.f (f x), g = twice (λ z.cons z nil)}

does not intracheck, since the system tries to type it by
assigning a simple type to the occurrence of the identifier
twice in the body of the function g, while to type pm3 it
is necessary to assign to that occurrence of twice a rank 2
type of the form ((u → u list) ∧ (u list → u list list)) → u →
u list list.

A second problem is due to the fact that modules are
typed by assuming simple types for the references to other
modules. This strategy limits the possibility of decomposing
a program in modules. For instance, the modules

pm4 = {twice = λf.λ x.f (f x)} and
pm5 = {g = twice (λ z.cons z nil)}

intracheck with principal interfaces I4 = {twice : ∀α1 α2 α3 .
〈∅, ((α1 → α2) ∧ (α2 → α3)) → α1 → α3〉} and I5 = {g :
∀ δ1 δ2 . 〈{twice : (δ1 → δ1 list) → δ2}, δ2〉}, respectively, but
these interfaces do not intercheck (since the type inferred for
twice in pm4, ((α1 → α2) ∧ (α2 → α3)) → α1 → α3, cannot
be “unified” with the type assumed for the use of twice in
pm5, (δ1 → δ1 list) → δ2).

The two problems are related, since they both concern
the (im)possibility of using the expressive power provided
by rank 2 intersection types. In this paper we extend the
“plain” module system in order to overcome these limita-
tions. Our aim is to show that the technology of rank 2



intersection types, which brings the advantages of the prin-
cipal typing property (see, e.g., [14, 19]), is “sufficiently ma-
ture” to be used in (improved versions of) the type system
of languages like Standard ML, O’Caml and Haskell.

1.1 Organization of the paper
Section 2 of this paper recalls syntax, type system, and

principal typings for the small ML-like language considered
in [11], which is our core language. Section 3 introduces the
algorithms for scheme instantiation and specialization, that
are the fundamental operations involved in module intra-
checking and interface intercheching. In order to simplify
the exposition, we introduce our module language and type
system incrementally: In Section 4 we consider modules to
be just sets of mutually recursive top-level definitions (this
is essentially the separate compilation framework proposed
in [14]). Then we illustrate some limitations of the “plain”
framework and propose, in Sections 5 and 6, two orthogo-
nal extensions that allow to overcome such limitations. A
further refinement of the system of Section 6 is described
in Section 7. A version of this paper with conclusions and
appendices ([10]) is available at the author’s web page.

2. SYSTEM `Core: RANK 2 INTERSECTION
TYPES FOR THE CORE LANGUAGE

In this section we introduce the rank 2 intersection type
system for the core language. We first present the syntax
of the language (Section 2.1) and the syntax of our rank 2
intersection types together with other basic definitions that
will be used in the rest of the paper (Section 2.2). Then we
present the type system for the core language (Section 2.3)
and state its principal typing property (Section 2.4).

2.1 Syntax
We consider two classes of constants: constructors for de-

noting base values (integer, booleans) and building data
structures, and base functions for denoting operations on
base values and for decomposing data structures. The base
functions include some arithmetic and logical operators, and
the functions for decomposing pairs (fst and snd). The
constructors include the unique element of type unit, the
booleans, the integer numbers, and the constructors for tu-
ples and lists. Let bf range over base functions (all unary)
and csn range over n-ary constructors (n 6= 1). The syntax
of constants (ranged over by c) is as follows

c ::= bf | cs0 | cs2 | cs3 | · · ·
bf ::= not | and | or | + | − | ∗ | / | = | < | fst | snd
cs0 ::= () | true | false | · · · | −1 | 0 | 1 | · · · | nil
cs2 ::= tuple2 | cons
csn ::= tuplen (n ≥ 3)

Sometimes we will use pair as short for tuple2.
Expressions (ranged over by e) and patterns (ranged over

by pt) have the following syntax

e ::= x | c | λ x.e | e1e2 | let x = e0 in e
| reci {x1 = e1, . . . , xn = en} | if e0 then e1 else e2

| match e0 with {pt 1 ⇒ e1[] · · · []ptn ⇒ en}
pt ::= x | cs0 | cs2pt1pt2 | cs3pt1pt2pt3 | · · ·

where x, x1, . . ., xn range over identifiers. The construct
rec allows mutually recursive expression definitions, and the
construct match allows definitions by pattern matching.

The finite set of the free identifiers of an expression e is
denoted by FV(e).

2.2 Types, schemes, environments, and ∀-closure
In this section we introduce the syntax of our rank 2 in-

tersection types, together with other basic definitions that
will be used in the rest of the paper.

2.2.1 Types and schemes
We will be defining several classes of types. The set of sim-

ple types (T0), ranged over by u, is defined by the pseudo-
grammar:

u ::= α | u1 → u2 | d0 | u1d
1 | u1u2d

2 | · · ·

We have type variables (ranged over by α), arrow types,
and a selection of parametric datatypes (ranged over by dn,
where n ≥ 0 is the number of parameters). The 0-parameter
datatypes (also called ground types) are: unit (the singleton
type), bool (the set of booleans), and int (the set of integers).
The other types are list types and n-ary product types (n ≥
2).

d0 ::= unit | bool | int d1 ::= list dn ::= ×n (n ≥ 2)

For sake of readibility, we will write u1 × · · · ×un instead of
u1 · · ·un×

n.
The constructor → is right associative, e.g., u1 → u2 → u3

means u1 → (u2 → u3), and the constructors dn (n ≥ 1)
bind more tightly than →, e.g., u1 → u2 list means u1 →
(u2 list).

The set of rank 1 intersection types (T1), ranged over by
ui , the set of rank 2 intersection types (T2), ranged over by
v, and the set of rank 2 intersection schemes (T∀2), ranged
over by vs , are defined as follows

ui ::= u1 ∧ · · · ∧ un (rank 1 types)
v ::= u | ui → v (rank 2 types)
vs ::= ∀−→α .v (rank 2 schemes)

where u ranges over the set of simple types T0, n ≥ 1, and
−→α is a finite (possibly empty) sequence of type variables
α1 · · ·αm (m ≥ 0). Note that T0 = T1 ∩ T2. Let ε denote
the empty sequence, ∀ε.v is a legal expression, syntactically
different from v, so that T2 ∩ T∀2 = ∅. The constructor
∧ binds more tightly than →, e.g., u1 ∧ u2 → u3 means
(u1 ∧ u2) → u3.

Free and bound type variables are defined as usual. For
every type t ∈ T1 ∪ T2 ∪ T∀2 let FTV(t) denote the set of
free type variables of t. For every scheme ∀−→α .v it is assumed
that {−→α } ⊆ FTV(v). Moreover, schemes are considered
equal modulo renaming of bound type variables. We say
that a scheme vs is closed if FTV(vs) = ∅. Let T∀c2 be the
set of close rank 2 type schemes, ranged over by vcs .

We consider ∧ to be associative, commutative, and idem-
potent. So any type in T1 can be considered as a set of
types in T0.

We assume a countable set Tv of type variables. A sub-
stitution s is a function from type variables to simple types
which is the identity on all but a finite number of type
variables. The domain and the set of free type variables
occurring in the range of a substitution s are the sets of
type variables: Dom(s) = {α | s(α) 6= α} and FTVR(s)
= ∪α∈Dom(s)FTV(s(α)). Substitutions will be denoted by
[α1 := u1, . . . , αn := un] (n ≥ 0); the empty substitution
will be denoted by [ ].



The composition of two substitutions s1 and s2 is the sub-
stitution, denoted by s1◦s2, such that s1◦s2(α) = s1(s2(α)),
for all type variables α. We say that s is more general than
s′, written s ≤ s′, if there is a substitution s′′ such that
s′ = s′′ ◦ s. A substitution is idempotent if s = s ◦ s (i.e. if
Dom(s) ∩ FTVR(s) = ∅).

The application of a substitution s to a type t, denoted
by s(t), is defined as usual. Note that, since substitutions
replace free variables by simple types, we have that T0, T1,
T2, and T∀2 are closed under substitution.

The following definitions are fairly standard. Note that we
keep a clear distinction between subtyping relations (between
two types) and instantiation relations (between a scheme
and a type). A third kind of relation, specialization (be-
tween two schemes), will be introduced in Section 2.2.3.
All these three kinds of relation capture the fact that the
type/scheme on the left is stronger (i.e., according to [19],
it can be assigned to less expressions) than the type/scheme
on the right.

Definition 1. (Subtyping relations ≤1 and ≤2). The sub-
typing relations ≤1 (⊆ T1 × T1) and ≤2 (⊆ T2 × T2) are
defined by the rules in Fig. 1.6

The relations ≤1 and ≤2 are reflexive and transitive.

Definition 2. (Instantiation relations ≤∀2,0 and ≤∀2,1). The
instantiation relations ≤∀2,0 (⊆ T∀2 × T0) and ≤∀2,1 (⊆
T∀2 ×T1) are defined as follows. For every scheme ∀−→α .v ∈
T∀2 and for every type

• u ∈ T0, let ∀−→α .v ≤∀2,0 u to mean that u = s(v), for
some substitution s;

• u1∧· · ·∧un ∈ T1, let ∀−→α .v ≤∀2,1 u1∧· · ·∧un to mean
that ∀−→α .v ≤∀2,0 ui, for every i ∈ {1, . . . , n}.

Example 1. For vs = ∀α1α2α3.((α1 → α3)∧(α2 → α3)) →
α3, we have (remember that ∧ is idempotent):

• vs ≤∀2,0 (int → int) → int (by using the substitution
s1 = [α1, α2, α3 := int]), and

• vs ≤∀2,1 ((int → int) → int) ∧ ((bool → bool) → bool)
(by s1 as above, and s2 = [α1, α2, α3 := bool]).

Subtyping and instantiation are closed by substitution.

2.2.2 Environments and pair schemes
An environment T is a set {x1 : t1, . . . , xn : tn} of type

or scheme assumptions for identifiers such that every iden-
tifier xi (1 ≤ i ≤ n) can occur at most once in T . The
expression Dom(T ) denotes the domain of T , which is the
set {x1, . . . , xn}. We write

T1, T2 for the environment T1 ∪ T2 where it is assumed that
Dom(T1) ∩ Dom(T2) = ∅, and T, x : t as short for
T, {x : t}.

T |
X

for the restriction of T to the set of identifiers X,
which is the environment {x : t ∈ T | x ∈ X}.

The application of a substitution s to an environment T ,
denoted by s(T ), is defined as usual.

6In rule (Ref), the condition that u is not an arrow type (i.e.,
not a type of the shape u′ → u′′) is included for technical
convenience only, to get a syntax directed system.

Definition 3. (Rank 0 and rank 1 environments).

0. A rank 0 environment U is an environment {x1 : u1, . . . ,
xn : un} of simple type assumptions for identifiers.

1. A rank 1 environment A is an environment {x1 : ui1, . . . ,
xn : uin} of rank 1 type assumptions for identifiers.

A pair scheme ps is a formula ∀−→α .〈A, v〉 where A is a rank 1
environment, v is a rank 2 type, and −→α = FTV(A)∪FTV(v).

Definition 4. (Scheme environments, closed rank 2 envi-
ronments, and pair scheme environments).

1. A scheme environment D is an environment {x1 : t1, . . . ,
xn : tn} of closed rank 2 type schemes and pair scheme
assumptions for identifiers (that is, each ti is either a
closed rank 2 type scheme or a pair scheme) such that

Dom(D) ∩ FVR(D) = ∅,

where the expression FVR(D) denotes the set of iden-
tifiers occurring in the range of D, which is the set
∪x:∀−→

α .〈A,v〉∈Dom(D)Dom(A).

2. A closed rank 2 environment G is a scheme environ-
ment {x1 : t1, . . . , xn : tn} where each ti (1 ≤ i ≤ n)
is a closed rank 2 scheme.

3. A pair scheme environment L is a scheme environment
{x1 : t1, . . . , xn : tn} where each ti (1 ≤ i ≤ n) is a
pair scheme.

Given two rank 1 environments A1 and A2 we write A1 +
A2 to denote the rank 1 environment

{x : ui1 ∧ ui2 | x : ui1 ∈ A1 and x : ui2 ∈ A2}
∪{x : ui1 ∈ A1 | x 6∈ Dom(A2)} ∪ {x : ui2 ∈ A2 | x 6∈ Dom(A1)}

and write A1 ≤1 A2 to mean that

• Dom(A1) = Dom(A2),
7 and

• for every assumption x : ui2 ∈ A2 there is an assump-
tion x : ui1 ∈ A1 such that ui1 ≤1 ui2.

Definition 5. (Subtyping relation ≤•). We write 〈A, v〉 ≤•

〈A′, v′〉 to mean that v ≤2 v′ and A′ ≤1 A.

Definition 6. (Instantiation relation ≤∀•,•). We write ∀−→α .〈A, v〉
≤∀•,• 〈A′, v′〉 (to be read “the pair 〈A′, v′〉 is an instance of
the pair scheme ∀−→α .〈A, v〉”) if there is a substitution s such
that Dom(s) = −→α and s(〈A, v〉) ≤• 〈A′, v′〉.

2.2.3 ∀-closure and scheme specialization
Given a type v ∈ T2 and a rank 1 environment A, we

write

• Close(v) for the ∀-closure of v, i.e. for the scheme ∀−→α .v
where −→α = FTV(v), and

• Close(〈A, v〉) for the ∀-closure of 〈A, v〉, i.e. for the
scheme ∀−→α .〈A, v〉 where −→α = FTV(A) ∪ FTV(v).

7The requirement Dom(A1) = Dom(A2) in the definition
of A1 ≤1 A2 is “unusual” (going counter to the definitions
in other papers). The “usual” definition drops this require-
ment, thus allowing Dom(A1) ⊇ Dom(A2). We have added
such a requirement since it will simplify the presentation
of the type inference system for the core language (in Sec-
tion 2.3) and for modules (in Sections 4, 5, 6, and 7).



(Ref)
u ∈ T0 and u is not an arrow type

u ≤2 u (∧)
{u1, . . . , un} ⊇ {u′

1, . . . , u
′
m}

u1 ∧ · · · ∧ un ≤1 u′
1 ∧ · · · ∧ u′

m

(→) ui ′ ≤1 ui v ≤2 v′

ui → v ≤2 ui ′ → v′

Figure 1: Subtyping relations ≤1 and ≤2

Given a type v ∈ T2 and a set of type variables W , we write
Gen(W, v) for the ∀-closure of v in W , i.e. for the scheme
∀−→α .v where {−→α } = FTV(v) − W . For every rank 1 envi-
ronment A, let Gen(A, v) be a short for Gen(FTV(A), v).

Definition 7. (Scheme specialization relations ≤∀• and ≤∀c2).

1. We write ps ≤∀• ps ′ (to be read “ps is a specializa-
tion of ps ′”) to mean that ps ′ = Close(〈A′, v′〉) and
ps ≤∀•,• 〈A′, v′〉.

2. We write vcs ≤∀c2 vcs ′ (to be read “vcs is a special-
ization of vcs ′”) to mean that vcs = Close(v), vcs ′ =
Close(v′), and Close(〈∅, v〉) ≤∀•,• 〈∅, v′〉.

Example 2. We have

∀α1α2α3.〈{f : (α1 → α2) ∧ (α2 → α3)}, α1 → α3〉 ≤∀•

∀β.〈{f : (β → β list) ∧ (β list → β list list)}, β → β list list〉

and

∀α1α2α3.((α1 → α2) ∧ (α2 → α3)) → α1 → α3 ≤∀c2

∀β.((β → β list) ∧ (β list → β list list)) → β → β list list.

2.3 The type inference rules of `Core

The type inference system `Core has judgements of the
form

D; A `Core e : v,

(to be read “e has `Core-pair 〈A, v〉 w.r.t. D” or “〈A, v〉 is a
`Core-pair for e w.r.t. D”) where

• v is the rank 2 type inferred for e,

• D is a scheme environment specifying closed rank 2
schemes for the globally defined identifiers (i.e. the iden-
tifiers defined in the libraries available to the program-
mer) and pair schemes for the locally defined identifiers
(i.e. the identifiers defined in the program by using the
let construct), and

• A is a rank 1 environment containing the type as-
sumptions for the free identifiers of e which are not
in Dom(D).

In any valid judgement we have: Dom(D) ∩ Dom(A) = ∅,
Dom(A) = (FV(e)−Dom(D))∪FVR(D|FV(e)), and FV(e) =

Dom(D|FV(e)) ∪ Dom(A|FV(e)).

System `Core is meant to be used to infer pairs (and not
just types).8 We call undefined the identifiers in Dom(A),
since their definition is not available when typechecking the
expression e.9

8A way to emphasize this aspect is to use typing judgements
of the shape D `Core e : 〈A, v〉. However, to make easier the
comparison with other type systems, we adopt the more
usual notation D; A `Core e : v.
9The possibility of dealing with undefined identifiers will be
a key ingredient of the type systems for modules presented
in Sections 4, 5, 6, and 7.

In order to be able to understand the rest of this paper
it is not necessary to know the detail of the typing rules of
system `Core. The rules are given in Appendix A of [10]
(more detailed explanations, examples, and proofs can be
found in [11]).

2.4 Principal typings for `Core

Definition 8. (Principal pairs for `Core). A `Core-pair p
for e is principal w.r.t. D if

• any pair for e w.r.t. D is an instance of Close(p), and

• any instance of Close(p) is a pair for e w.r.t. D.

It is worth mentioning that, when the environment D is
fixed, principal pairs as defined above turns out to be prin-
cipal typings in the sense of [19].10

If 〈A, v〉 is a principal pair for e w.r.t. D we say that
D; A `Core e : v is a principal typing judgement for e w.r.t.
D.

The type derivations of system `Core are closed by sub-
stitution (remember that FTV(D) = ∅) and the system has
the principal typing property.

Lemma 1. (Substitutivity property for `Core). If D; A `Core

e : v, then D; s(A) `Core e : s(v), for every substitution s.

Theorem 2.1. (Principal pair property for `Core). If e
has a `Core-pair w.r.t. D, then it has a principal pair w.r.t.
D.

3. ALGORITHMS FOR SCHEME INSTAN-
TIATION AND SPECIALIZATION

The instantiation relation ≤∀2,1 (in Definition 2), the no-
tion of ≤∀2,1-satisfaction problem (in Section 3.1), and the
specialization relation ≤∀c2 (in Definition 7) play a central
role in the type systems for modules that will be presented
in Sections 4, 5, 6, and 7. In this section we show that they
are decidable.

Until now we have considered ∧ to be associative, com-
mutative, and idempotent. In this section we do not rely on
this syntactic convention.

3.1 Algorithms for the instantiation relation
≤∀2,1 and ≤∀2,1-satisfaction problems

In this section we give the notion of ≤∀2,1-satisfaction
problem and state its decidability [14] (algorithms and proofs
can be found, for instance, in [11]).

Following Jim [14] we say that a ≤∀2,1-satisfaction prob-
lem is a formula ∃−→α .P , where −→α is a (possibly empty) se-
quence of type variables occurring free in P , and P is a set
in which every element is

10Observe that the fact that FTV(D) = ∅ makes Definition 8
substantially different from the notion of “A-principal typ-
ing” that can be found, for instance, in [12, 19].



• an equality between T0 types, or

• an inequality between a T2 type and a T1 type, or

• an inequality between a T∀2 type and a T1 type.

A substitution s is a solution to ∃−→α .P if there exists a sub-
stitution s′ such that

• s(α) = s′(α) for all α 6∈ −→α ,

• s′(vs) ≤∀2,1 s′(ui) for every inequality (vs ≤ ui) ∈ P ,
and

• s′(u1) = s′(u2) for every equality (u1 = u2) ∈ P .

Definition 9. (Most general solutions of a ≤∀2,1-satisfaction
problem).

1. A substitution s is a most general solution (mgs) of
a ≤∀2,1-satisfaction problem ∃−→α .P if it satisfies the
following conditions: s is a solution of ∃−→α .P , s ≤
s′, for all solutions s′ of ∃−→α .P , s is idempotent, and
Dom(s) ⊆ FTV(∃−→α .P ).

2. We write MGS(∃−→α .P ) for the (possibly empty) set of
the most general solutions of ∃−→α .P .

Theorem 3.1. If a ≤∀2,1-satisfaction problem is solvable,
then there is a most general solution for it. In particular,
there is an algorithm that decides, for any ≤∀2,1-satisfaction
problem, whether it is solvable, and, if so, returns a most
general solution.

3.2 Algorithms for the specialization relation
≤∀c2

The algorithms introduced in this section are a key com-
ponent of both intracheking and interchecking algorithms
for the systems `Dec (in Section 6) and `Bin (in Section 7).
Note that they are not needed for the systems `Plain (in
Section 4) and `Hid (in Section 5), since these systems do
not use the ≤∀c2 relation.

For all i (0 ≤ i ≤ 2), the algorithm MSi, defined in Fig. 2,
takes a pair of types in t, t′ ∈ Ti and returns a set of sub-
stitutions, MSi(t, t

′), that we call the “set of matching sub-
stitutions on t against t′”. The fundamental property of the
algorithms MSi is given by the following lemma, which can
be proved by induction on the definition of MSi.

Lemma 2. 0. MS0(u, u′) = {s | Dom(s) = FTV(u) −
FTV(u′) and s(u) = u′}.

1. MS1(ui , ui
′) = {s | Dom(s) = FTV(ui) − FTV(ui ′)

and ui ′ ≤1 s(ui)}.

2. MS2(v, v′) = {s | Dom(s) = FTV(v) − FTV(v′) and
s(v) ≤2 v′}.

By observing that, for all rank 2 types v and v′ such that
FTV(v)∩FTV(v′) = ∅, Close(v) ≤∀c2 Close(v′) if and only if
MS2(v, v′) 6= ∅, we have that Lemma 2 implies the following
theorem.

Theorem 3.2. There is an algorithm that, given two closed
rank 2 schemes vcs and vcs ′ decides whether the inequality
vcs ≤∀c2 vcs ′ holds.

The design of the algorithms MSi has been influenced by
the unification procedure proposed in [7].

4. SYSTEM `Plain: RANK 2 INTERSECTION
FOR PLAIN MODULES

In this section we introduce a rank 2 intersection type
system for a simple language of modules. We first define
the module syntax (Section 4.1). Then we present the type
system (Section 4.2), its principal typing property (in Sec-
tion 4.3), and its separate type inference property (in Sec-
tion 4.4). The framework considered in this section is essen-
tially the one proposed in [14]. In Sections 5, 6, and 7 we
will increase the flexibility of the framework by extending
both the module language and the type system.

4.1 Syntax
Plain modules (ranged over by pm) have the following

syntax

pm ::= {x1 = e1, . . . , xn = en}

where x1, . . . , xn are distinct identifiers and e1, . . . , en are
expressions of the core language (see Section 2.1). The mod-
ule pm is just a set of mutually recursive top-level defini-
tions. The expression Def(pm) denotes the set {x1, . . . , xn}
of the identifiers defined by pm and the expression FV(pm)
denotes the set (∪i∈{1,...,n}FV(ei)) − Def(pm) of the free
identifiers of pm.

Let G be closed rank 2 environment specifying types for
the library identifiers. We say that a module pm is complete
w.r.t. G if FV(pm) ⊆ Dom(G).

4.2 The type inference rules of `Plain

The type inference system `Plain has judgements of the
form

G `Plain pm : I

(to be read “pm `Plain-intrachecks with interface I w.r.t.
G”) where

• I is a pair scheme environment containing the pair
schemes inferred for the identifiers in Def(pm), and

• G is a closed rank 2 environment specifying types for
the library identifiers.

In any valid judgement we have: Dom(I) = Def(pm), Dom(I)∩
Dom(G) = ∅, and FVR(I) = FV(pm) − Dom(G).

The (unique) type inference rule of system `Plain (in Fig-
ure 3) is based on the rule (Rec2) of System `Core (in Fig. 10
of Appendix A of [10]).

Example 3. The modules

pm1 = {x = tolist 3, y = tolist true} and
pm2 = {tolist = λ z.cons z nil},

introduced in Section 1, have (principal) typing judgements
∅ `Plain pm1 : I1 and ∅ `Plain pm2 : I2, where

I1 = {x : ∀α . 〈{tolist : int → α}, α〉,
y : ∀ β . 〈{tolist : bool → β}, β〉} and

I2 = {tolist : ∀ γ . 〈∅, γ → γ list〉}.

4.3 Principal typings for `Plain

Definition 10. (Interface specialization and principal in-
terfaces for `Plain).



(For all i ∈ {0, 1, 2}) MSi(t, t
′) = MS′

i(t, t
′, FTV(t′)), where

MS′
0(u, u, W ) = {[ ]}

MS′
0(α, u, W ) = {[α := u]}, if α 6∈ W

MS′
0(u1 → u2, u

′
1 → u′

2, W ) = {s2◦s1 | s1 ∈ MS′
0(u1, u

′
1, W ) and s2 ∈ MS′

0(s1(u2), u
′
2, W )}

MS′
0(u1 · · ·undn, u′

1 · · ·u
′
ndn, W ) = {sn◦ · · · ◦s1 | s1 ∈ MS′

0(u1, u
′
1, W ), s2 ∈ MS′

0(s1(u2), u
′
2, W ), . . . ,

sn ∈ MS′
0(sn−1◦ · · · ◦s1(un), u′

n, W )}
MS′

0(u, u′, W ) = ∅, otherwise

MS′
1(u1 ∧ · · · ∧ um, u′

1 ∧ · · · ∧ u′
n, W ) = {sn◦ · · · ◦s1 | s1 ∈ MS′

0(u1, u
′
i1

, W ), s2 ∈ MS′
0(s1(u2), u

′
i2

, W ), . . . ,
sn ∈ MS′

0(sn−1◦ · · · ◦s1(um), u′
im

, W ) and i1, . . . , im ∈ {1, . . . , n}}

MS′
2(u, u′, W ) = MS′

0(u, u′, W )
MS′

2(α, ui → v, W ) = {s2◦s1◦[α := α1 → α2] | s1 ∈ MS′
1(α1, ui , W ) and s2 ∈ MS′

2(α2, v, W )},
if α 6∈ W , for some fresh α1 and α2

MS′
2(ui1 → v2, ui

′
1 → v′

2, W ) = {s2◦s1 | s1 ∈ MS′
1(ui1, ui

′
1, W ) and s2 ∈ MS′

2(s1(v2), v
′
2, W )}

MS′
2(v, v′, W ) = ∅, otherwise

Figure 2: Algorithms MS0, MS1, and MS2

(ModPlain)
(for all i ∈ {1, . . . , n}) G; Ai `

Core ei : vi

G `Plain {x1 = e1, · · · , xn = en} : {x1 : ps1, . . . , xn : psn}
provided A1 + · · · + An = ((A1 + · · · + An)|Dom(A1+···+An)−{x1,...,xn}), xj1 : uij1 , . . . , xjm

: ui jm
,

(for all j ∈ {j1, . . . , jm}) Gen(A1 + · · · + An, vj) ≤∀2,1 uij , and
(for all i ∈ {1, . . . , n}) Close(〈Ai|Dom(Ai)−{x1,...,xn}, vi〉) ≤∀• ps i

Figure 3: Typing rules for plain modules (system `Plain)

1. An interface I ′ is a specialization of an interface I if
I ′ = {xi : ps ′

i | i ∈ {1, . . . , n}}, I = {xi : ps i | i ∈
{1, . . . , n}}, and for all i ∈ {1, . . . , n} ps i ≤∀• ps ′

i.

2. An interface I for pm is principal w.r.t. G if

• any interface I ′ for pm w.r.t. G is a specialization
of I, and

• any specialization I ′ of I is an interface for pm
w.r.t. G.

It is worth mentioning that, when the environment G is
fixed, principal interfaces as defined above turns out to be
principal typings in the sense of [19].

If I is a principal interface for pm w.r.t. G we say that
G `Plain pm : I is a principal typing judgement for pm w.r.t.
G.

The type system `Plain has the interface specialization
property and the principal interface property.

Lemma 3. (Interface specialization property for `Plain).
If G `Plain pm : I, then G `Plain pm : I ′, for every special-
ization I ′ of I.

Theorem 4.1. (Principal interface property for `Plain).
If pm `Plain-intrachecks w.r.t. G, then it has a principal
interface w.r.t. G.

4.4 Separate type inference for `Plain

Definition 11. (Interface interchecking and composition
for `Plain).

1. The interfaces I1 = {xi : ∀
−−→
α(i).〈Ai, vi〉 | i ∈ {1, . . . , h}}

and I2 = {xi : ∀
−−→
α(i).〈Ai, vi〉 | i ∈ {h + 1, . . . , h +

k}} `Plain-intercheck if Dom(I1) ∩ Dom(I2) = ∅ and
the ≤∀2,1-satisfaction problem π = ∃ε.{Gen(Aj , vj) ≤
uij | j ∈ J}, where

• J is such that A1 + · · · + Ah+k =
((A1 + · · · + Ah+k)|Dom(A1+···+Ah+k)−{x1,...,xh+k}), {xj :

uij | j ∈ J}, and

•
−−→
α(1), . . . ,

−−−−→
α(h+k) are pairwise disjoint (note that

this condition can always be satisfied since these
type variables are bound),

is solvable, and

2. if I1 and I2 `Plain-intercheck, then the composition of
I1 and I2 is the pair environment I1 ⊕ I2 = {xi :
Close(〈s(Ai|Dom(Ai)−{x1,...,xh+k}), s(vi)〉) | i ∈ (J ∪

L)}∪{xi : ∀
−−→
α(i).〈Ai, vi〉 | i ∈ ({1, . . . , h+k}−(J∪L))},

where L = {l | l ∈ {1, . . . , h + k} and Dom(Al) ∩
{x1, . . . , xh+k} 6= ∅} and s ∈ MGS(π).

Note that the composition operation for `Plain-intercheckable
interfaces (⊕) is both commutative and associative.

Theorem 4.2. (Separate type inference property for `Plain).
If G `Plain pmi : Ii (1 ≤ i ≤ n), then

1. I1, . . . , In `Plain-intercheck if and only if
G `Plain ∪i∈{1,...,n}pmi : ⊕i∈{1,...,n}Ii, and



2. G `Plain pmi : Ii (1 ≤ i ≤ n) principal w.r.t. G im-
ply that if G `Plain ∪i∈{1,...,n}pmi : ⊕i∈{1,...,n}Ii holds
then it is principal w.r.t. G.

Example 4. Consider the principal typing judgements ∅ `Plain

pm1 : I1 and ∅ `Plain pm2 : I2 of Example 3. We have
∅ `Plain pm1 ∪ pm2 : I1 ⊕ I2, where

I1 ⊕ I2 = {x : ∀ ε . 〈∅, int list〉, y : ∀ ε . 〈∅, bool list〉,
tolist : ∀ γ . 〈∅, γ → γ list〉}

Remark 1. (About automatic type inference). Replacing
the inequality Close(〈A′

i, vi〉) ≤∀• ps i, in the last row of
Figure 3, with the equality Close(〈A′

i, vi〉) = ps i does not
reduce the expressive power of system `Plain. In fact the

resulting system, `Plain′
, is such that: if G `Plain pm : I

is principal w.r.t. G then G `Plain′
pm : I. So, in order

to be able to compute principal interfaces, we do not need
an algorithm for the relation ≤∀•. The same holds for the
systems `Hid, `Dec, and `Bin of Sections 5, 6, and 7.

5. SYSTEM `Hid: RANK 2 INTERSECTION
FOR MODULES WITH HIDDEN DEFI-
NITIONS

A plain module {x1 = e1, . . . , xn = en} is just a set of
mutually recursive definitions. This very simple structure
has some drawbacks, as illustrated by the following example.

Example 5. The module

pm3 = {g = twice (λz.cons z nil), twice = λ f.λ x.f (f x)},

introduced in Section 1, cannot be typed by using `Plain.
This is due to fact that system `Plain forces to assign a
rank 0 type to the occurrence of the identifier twice in the
body of the function g, while to type pm3 it is necessary to
assign to that occurrence of twice a rank 2 type of the form
((u → u list) ∧ (u list → u list list)) → u → u list list.

In this section we extend the language of modules and the
type system in order to overcome this problem. Indeed, a
“brute force” strategy to solve the problem is already avail-
able: we can perform some “inlining” and replace pm3 by
the module

pm ′
3 = {twice = λf.λ x.f (f x),

g = (λf.λ x.f (f x)) (λ z.cons z nil)}

or by the module

pm ′′
3 = {twice = λ f.λ x.f (f x),

g = let h = λ f.λ x.f (f x) in h (λz.cons z nil)}

having principal typing judgements ∅ `Plain pm′
3 : I3 and

∅ `Plain pm ′′
3 : I3, where I3 =

{twice : ∀α1α2α3.〈∅, ((α1 → α2) ∧ (α2 → α3)) → α1 → α3〉,
g : ∀γ.〈∅, γ → γ list list〉}.

We have qualified “brute force” the above strategy since,
both in pm ′

3 and in pm ′′
3 , we have payed the price of du-

plicating the code of the function twice in the code of the
function g. The extension proposed in this section avoids
such duplication of code. For instance, it will allow to re-
place the module pm ′

3 (or pm ′′
3 ) by the module

hm3 = hide h = λ f.λ x.f (f x)
define {twice = h, g = h (λz.cons z nil)}.

We first extend the module syntax with top-level hidden (or
private) definitions (Section 5.1). Then we present the new
type system (Section 5.2) and discuss principal typings and
separate type inference (in Section 5.3).

5.1 Syntax
Modules with hidden definitions (ranged over by hm) have

the following syntax

hm ::= hide x1 = e1, . . . , xq = eq define pm

where

• x1, . . . , xq are distinct identifiers,

• pm, called the body of hm, is a plain module such that
Def(pm) ∩ {x1, . . . , xq} = ∅, and

• e1, . . . , eq are expressions of the core language such
that, for all j ∈ {1, . . . , q}, (FV(e1) ∪ · · · ∪ FV(ej)) ∩
({xj , . . . , xq} ∪ Def(pm)) = ∅.

The module hm defines the identifiers in Def(pm) by using
the locally defined identifiers x1, . . . , xq that are visible only
inside the module. According to this semantics we define
Def(hm) = Def(pm) to be the set the identifiers defined
by hm and FV(hm) = ((∪i∈{1,...,q}FV(ei)) ∪ FV(pm)) −
{x1, . . . , xq} be the set of free identifiers of hm.

Let G be a closed rank 2 environment specifying types for
the library identifiers. We say that a module hm is complete
w.r.t. G if FV(hm) ⊆ Dom(G).

5.2 The type inference rules of `Hid

The type inference system `Hid has judgements of the
form

G `Hid hm : I

(to be read “hm `Hid-intrachecks with interface I w.r.t. G”)
where I and G obey to the same restrictions listed for `Plain

(see Section 4.2). The (unique) type inference rule of system
`Hid (in Figure 4) is based on rules (LetPs) and (Rec2) of
System `Core (in Fig. 10 of Appendix A of [10]).

Example 6. The module hm3 introduced at the end of
Example 5 has (principal) typing judgement ∅ `Hid hm3 : I3,
where I3 is the interface introduced in Example 5.

5.3 Principal typings and separate type infer-
ence for `Hid

The principal typing and the separate type inference prop-
erty for `Hid follows straightforwardly from the correspond-
ing properties of `Plain by the following lemma.

Lemma 4. Let hm = hide x1 = e1, . . . , xq = eq define pm
be a module with hidden definitions. Then G `Hid hm : I if
and only if G `Plain pm[xq := eq] · · · [x1 := e1] : I.

6. SYSTEM `Dec: RANK 2 INTERSECTION
FOR MODULES WITH EXPLICIT DEC-
LARATIONS

The language of modules considered in Sections 4 and 5
forces to assign a rank 0 type to each use of an external
identifier. This strategy limits the possibility of dividing a
program into modules, as illustrated by the following exam-
ple.



(ModHid)

G; A′
1 `Core e ′

1 : v′
1 · · · G, y1 : Close(〈A′

1, v
′
1〉), . . . , yq−1 : Close(〈A′

q−1, v
′
q−1〉); A

′
q `Core e ′

q : v′
q

(for all i ∈ {1, . . . , n}) G, y1 : Close(〈A′
1, v

′
1〉), . . . , yq : Close(〈A′

q, v
′
q〉); Ai `

Core ei : vi

G `Hid hide y1 = e ′
1, · · · , yq = e ′

q define {x1 = e1, · · · , xn = en} : {x1 : ps1, . . . , xn : psn}
provided A1 + · · · + An = ((A1 + · · · + An)|Dom(A1+···+An)−{x1,...,xn}), xj1 : uij1 , . . . , xjm

: ui jm
,

(for all j ∈ {j1, . . . , jm}) Gen(A1 + · · · + An, vj) ≤∀2,1 uij , and
(for all i ∈ {1, . . . , n}) Close(〈Ai|Dom(A)−{x1,...,xn}, vi〉) ≤∀• ps i

Figure 4: Typing rules for modules with hidden definitions (system `Hid)

Example 7. System `Plain does not allow to decompose
the module pm ′

3 or the module pm ′′
3 of Example 5 into the

modules

pm4 = {twice = λ f.λ x.f (f x)} and
pm5 = {g = twice (λz.cons z nil)}

introduced in Section 1 (the same holds for system `Hid and
the module hm3 of Example 5). In fact, we have the princi-
pal typing judgements ∅ `Plain pm4 : I4 and ∅ `Plain pm5 :
I5, where the interfaces I4 = {twice : ∀α1 α2 α3 . 〈∅, ((α1 →
α2)∧(α2 → α3)) → α1 → α3〉} and I5 = {g : ∀ δ1 δ2 . 〈{twice :
(δ1 → δ1 list) → δ2}, δ2〉} do not `Plain-intercheck.

The extension proposed in this section allows to declare
closed rank 2 schemes for external identifiers. For instance,
it will be possible to replace the modules pm4 and pm5 with
the modules

dm4 = declare { } define {twice = λ f.λ x.f (f x)} and
dm5 = declare E5 define {g = twice (λ z.cons z nil)},

where the environment

E5 = {twice : ∀α1 α2 α3 .
((α1 → α2) ∧ (α2 → α3)) → α1 → α3}

contains the type declaration for the identifier twice.

We first extend the module syntax (Section 6.1). Then
we present type system (Section 6.2), principal typings (Sec-
tion 6.3), and separate type inference (Section 6.4). To sim-
plify the presentation we do not consider hidden definitions
(introduced in Section 5), but they can be added without
problems.

6.1 Syntax
Modules with explicit assumptions (ranged over by dm)

have the following syntax

dm ::= declare E define pm

where

• E, called the declaration part of dm, is a closed rank
2 environment declaring the type of some of the iden-
tifiers used in pm, and

• pm, called the body of dm, is a plain module such that
Dom(E) ⊆ Def(pm) ∪ FV(pm).

The plain module pm = {x1 = e1, . . . , xn = en} is typed by
using the closed rank 2 schemes in E to type the occurrences
in e1, . . . , en of the identifiers in Dom(E). According to this
semantics we define Def(dm) = Def(pm) to be the set the
identifiers defined by dm and FV(dm) = FV(pm)−Dom(E)
to be the set of free identifiers of dm.

Let G be a closed rank 2 environment specifying types for
the library identifiers. We say that a module dm = declare E

define pm is complete w.r.t. G if FV(dm) ⊆ Dom(G) and
Dom(E) ⊆ Def(pm).

6.2 The type inference rules of `Dec

The type inference system `Dec has judgements of the
form

G `Dec dm : 〈E, I〉

(to be read “dm `Dec-intrachecks with declaration interface
E and definition interface I w.r.t. G”) where

• E is the declaration part of dm (that is, the closed
rank 2 environment occurring between the keywords
declare and define),

• I is a pair scheme environment containing the pair
schemes inferred for the identifiers in Def(dm), and

• G is a closed rank 2 environment specifying types for
the library identifiers.

In any valid judgement we have: Dom(I) = Def(dm), (Dom(I)∪
Dom(E))∩Dom(G) = ∅, and FVR(I) = FV(dm)−Dom(G).

The (unique) type inference rule of system `Dec is given
in Figure 5.

Example 8. The modules dm4 and dm5 introduced at the
end of Example 7 have (principal) typing judgements ∅ `Dec

dm4 : 〈∅, I4〉 and ∅ `Dec dm5 : 〈E5, I
′
5〉, where

I4 is the interface introduced in Example 7,
E5 is the environment introduced in Example 7, and
I ′
5 = {g : ∀ γ . 〈∅, γ → γ list list〉}.

6.3 Principal typings for `Dec

The type system `Dec has the definition interface special-
ization property and the principal definition interface prop-
erty.

Lemma 5. (Definition interface specialization property for
`Dec). If G `Dec dm : 〈E, I〉, then G `Dec dm : 〈E, I ′〉, for
every specialization I ′ of I.

Theorem 6.1. (Principal definition interface property for
`Dec). If dm `Dec-intrachecks w.r.t. G, then it has a prin-
cipal definition interface w.r.t. G.

6.4 Separate type inference for `Dec

Definition 12. (Interface interchecking and composition
for `Dec).

1. The interfaces 〈E1, I1〉 and 〈E2, I2〉, where

E1 = {yj : vcsj | j ∈ {1, . . . , k1}},

I1 = {xi : ∀
−−→
α(i).〈Ai, vi〉 | i ∈ {1, . . . , h1}},

E2 = {yj : vcsj | j ∈ {k1 + 1, . . . , k1 + k2}}, and

I2 = {xi : ∀
−−→
α(i).〈Ai, vi〉 | i ∈ {h1 + 1, . . . , h1 + h2}},



(ModDec)
(for all i ∈ {1, . . . , n}) G, E; Ai `

Core ei : vi

G `Dec declare E define {x1 = e1, · · · , xn = en} : 〈E, {x1 : ps1, . . . , xn : psn}〉
provided A1 + · · · + An = ((A1 + · · · + An)|Dom(A1+···+An)−{x1,...,xn}), xj1 : uij1 , . . . , xjm

: uijm
,

(for all j ∈ {j1, . . . , jm}) Gen(A1 + · · · + An, vj) ≤∀2,1 uij ,
(for all i ∈ {1, . . . , n}) Close(〈Ai|Dom(Ai)−{x1,...,xn}, vi〉) ≤∀• psi, and

(for all xl : ∀
−−→
α(l).〈∅, vl〉 ∈ {x1 : ps1, . . . , xn : psn}) xl : vcs l ∈ E implies ∀

−−→
α(l).vl ≤∀c2 vcs l

Figure 5: Typing rules for modules with explicit declarations (system `Dec)

`Dec-intercheck if

(a) y : vcs ′ ∈ E1 and y : vcs ′′ ∈ E2 imply vcs ′ =
vcs ′′,

(b) (Dom(I1)∪FVR(I1))∩(Dom(E2)−Dom(E1)) = ∅
and (Dom(I2)∪FVR(I2))∩(Dom(E1)−Dom(E2)) =
∅,

(c) I1 and I2 `Plain-intercheck, and

(d) for all z : ∀−→γ .〈∅, v〉 ∈ I1 ⊕ I2, if z : vcs ∈ E1 ∪E2

then ∀−→γ .v ≤∀c2 vcs .

2. The composition of two interfaces 〈E1, I1〉 and 〈E2, I2〉
that `Dec-intercheck is the interface 〈E1, I1〉⊕〈E2, I2〉 =
〈E1 ∪ E2, I1 ⊕ I2〉.

Note that the composition operation for `Dec-intercheckable
interfaces (⊕) is both commutative and associative.

Theorem 6.2. (Separate type inference property for `Dec).
If G `Dec declare Ei define pmi : 〈Ei, Ii〉 (1 ≤ i ≤ n), then

1. 〈E1, I1〉, . . . , 〈En, In〉 `
Dec-intercheck if and only if G `Dec

declare ∪i∈{1,...,n} Ei define ∪i∈{1,...,n} pmi :
⊕i∈{1,...,n}〈Ei, Ii〉, and

2. G `Dec declare Ei define pmi : 〈Ei, Ii〉 (1 ≤ i ≤ n)
principal w.r.t. G imply that if G `Dec declare ∪i∈{1,...,n}

Ei define ∪i∈{1,...,n}pmi : ⊕i∈{1,...,n}〈Ei, Ii〉 holds then
it is principal w.r.t. G.

Example 9. Explicit declarations allow to overcome the
limitation illustrated at the beginning of the section: the
module pm ′

3 (or pm ′′
3 ) introduced in Example 5 can be di-

vided into the modules dm4 and dm5 (introduced at the
end of Example 7) that have principal typing judgements
∅ `Dec dm4 : 〈∅, I4〉 and ∅ `Dec dm5 : 〈E5, I

′
5〉 (see Ex-

ample 8) such that the principal typing judgement ∅ `Dec

dm4,5 : 〈E5, I4 ⊕ I ′
5〉, where

E5 is the environment introduced in Example 7,
dm4,5 = declare E5

define {twice = λf.λ x.f (f x),
g = twice (λ z.cons z nil)}, and

I4 ⊕ I ′
5 = I3 (the interface introduced in Example 5),

holds.
The declaration interface of a module is not required to

specify the principal closed rank 2 schemes for the declared
identifiers. For instance, the system `Dec allows to decom-
pose pm′

3 (or pm ′′
3 ) into the modules dm4 (as above) and

dm′
5 = declare E′

5 define {g = twice (λz.cons z nil)}

that has principal typing judgement ∅ `Dec dm ′
5 : 〈E′

5, I
′
5〉,

where E′
5 =

{twice : ∀ δ.((δ → δ list)∧(δ list → δ list list)) → δ → δ list list}
and I ′

5 is the principal definition interface of dm5 (see Ex-
ample 8).

7. SYSTEM `Bin: RANK 2 INTERSECTION
FOR MODULES WITH BOUNDED DEC-
LARATIONS

The module system of Section 6 forces to use the same
declaration (possibly no declaration) for all the uses of an
identifier in different modules. This strategy is indeed un-
necessarily restrictive, as shown by the following example.

Example 10. Consider the principal typing judgements ∅ `Dec

dm4 : 〈∅, I4〉 and ∅ `Dec dm5 : 〈E5, I
′
5〉 of Example 8 and

the module

dm6 = declare { } define {h = twice (λ w.w)}

that has principal typing judgement ∅ `Dec dm6 : 〈∅, I6〉,
where

I6 = {h : ∀α1 α2 . 〈{twice : (α1 → α1) → α2}, α2〉}.

We have that 〈∅, I4〉 and 〈E5, I
′
5〉 `Dec-intercheck (see Ex-

ample 9), 〈∅, I4〉 and 〈∅, I6〉 `Dec-intercheck (the check is
straightforward), and 〈E5, I

′
5〉 and 〈∅, I6〉 do not `Dec-intercheck

(since the requirement (b) in Definition 12.1 is not satisfied),
so the three modules cannot be combined.

Similarly, if we replace the module dm6 with the module

dm7 = declare E7 define {r = twice (λz.pair z 3)}

which has principal typing judgement ∅ `Dec dm7 : 〈E7, I7〉,
where

E7 = {twice : ∀γ.
((γ → (γ × int)) ∧ ((γ × int) → ((γ × int) × int)))
→ γ → ((γ × int) × int))} and

I7 = {r : ∀ β . 〈∅, β → ((β × int) × int)〉},

we have that the requirement (a) in Definition 12.1 is not
satisfied.

In this section, in order to be able to combine the mod-
ules considered in the above example, we introduce a “lower
level” language of modules, the language of modules with
bounded declarations. Indeed, a module with explicit decla-
rations

declare {y1 : vcs1, . . . , ym : vcsm}
define {x1 = e1, · · · , xn = en}

should be consider just as a “syntactic sugared” version for
the module with bounded declarations

bind {y1 : {y′
1 : vcs1}, . . . , ym : {y′

m : vcsm}}
define {x1 = e1, · · · , xn = en}[y1 := y′

1, . . . , y1 := y′
m]

where the (bounded) identifiers y′
1, . . . , y

′
m are fresh.



7.1 Syntax
A binding environment B is a set {x1 : G1, . . . , xq : Gq}

where

• x1, . . . , xq are distinct identifiers, and

• G1, . . . , Gq are non empty closed rank 2 environments
such that Dom(G1), . . ., Dom(Gq), and {x1, . . . , xq}
are pairwise disjoint.

The binding environment B declares that, for all i ∈ {1, . . . , q},
the (bounded) identifiers in Dom(Gi) are “aliases” for the
identifier xi. The expression Dom(B) denotes the domain of
B, which is the set {x1, . . . , xq}, and the expression Env(B)
denotes the closed rank 2 environment ∪i∈{1,...,q}Gi.

Modules with bounded declarations (ranged over by bm)
have the following syntax

bm ::= bind B define pm

where

• B, called the binding part of bm, is a binding environ-
ment such that the closed rank 2 environment Env(B)
declares the type of some of the identifiers used in pm,
and

• pm, called the body of bm, is a plain module such
that Dom(B) ∩ FV(pm) = ∅ and Dom(Env(B)) ⊆
Def(pm) ∪ FV(pm).

The keyword bind binds the identifiers of Dom(Env(B)) in
pm. The plain module pm = {x1 = e1, . . . , xn = en}
is typed by using the closed rank 2 schemes in Env(B)
to type the occurrences in e1, . . . , en of the identifiers in
Dom(Env(B)). According to this semantics we define Def(bm) =
Def(pm) to be the set the identifiers defined by bm and
FV(bm) = FV(pm) − Dom(Env(B)) to be the set of free
identifiers of bm.

Let G be a closed rank 2 environment specifying assump-
tion for the library identifiers. We say that a module bm =
bind B define pm is complete w.r.t. G if FV(bm) ⊆ FV(G)
and Dom(Env(B)) ⊆ Def(pm).

7.2 The type inference rules of `Bin

The type inference system `Bin has judgements of the
form

G `Bin bm : 〈B0, I〉

(to be read “bm `Bin-intrachecks with binding interface B0

and definition interface I w.r.t. G”) where

• B0 is the subset of the binding part of bm (that is, the
binding environment occurring between the keywords
bind and define) containing only the declarations for
the identifiers with an incomplete definition (i.e, ei-
ther identifiers defined in other modules or identifiers
defined in bm with a definition containing identifiers
in FV(bm)),

• I is a pair scheme environment containing the pair
schemes inferred for the identifiers in Def(bm), and

• G is a closed rank 2 environment specifying types for
the library identifiers.

In any valid judgement G `Bin bind B define pm : 〈B0, I〉
we have: Dom(I) = Def(bm), B0 = B − {z : G ∈ B | z :
∀−→α .〈∅, v〉 ∈ I for some −→α , v}, (Dom(I)∪Dom(B0))∩Dom(G) =
∅, and FVR(I) = FV(bm) − Dom(G).

The (unique) type inference rule of system `Bin (in Fig-
ure 6) is based on the rule for System `Dec (in Figure 5).

Example 11. The “de-sugared versions” of the modules
dm4, dm5, dm6, and dm7 of Example 10:

bm4 = bind { } define {twice = λ f.λ x.f (f x)},
bm5 = bind B5 define {g = twice5 (λz.cons z nil)},
bm6 = declare { } define {h = twice (λ w.w)}, and
bm7 = declare B7 define {r = twice7 (λz.pair z 3)},

have (principal) typing judgements ∅ `Bin bm4 : 〈∅, I4〉,
∅ `Bin bm5 : 〈B5, I

′
5〉, ∅ `Bin bm6 : 〈∅, I6〉, and ∅ `Bin bm7 :

〈B7, I7〉, where

I4 is the interface introduced in Example 7,
B5 = {twice : {twice5 : ∀α1 α2 α3 .

((α1 → α2) ∧ (α2 → α3)) → α1 → α3}},
I ′
5 is the interface introduced in Example 8,

I6 is the interface introduced in Example 10,
B7 = {twice : {twice7 : ∀γ.

((γ → (γ × int)) ∧ ((γ × int) → ((γ × int) × int)))
→ γ → ((γ × int) × int))}}, and

I7 is the interface introduced in Example 10.

7.3 Principal typings for `Bin

The type system `Bin has the definition interface special-
ization property and the principal definition interface prop-
erty.

Lemma 6. (Definition interface specialization property for
`Bin). If G `Bin bm : 〈B, I〉, then G `Bin bm : 〈B, I ′〉, for
every specialization I ′ of I.

Theorem 7.1. (Principal definition interface property for
`Bin). If bm `Bin-intrachecks w.r.t. G, then it has a princi-
pal definition interface w.r.t. G.

7.4 Separate type inference for `Bin

Definition 13. (Interface compatibility and interface com-
position for `Bin).

1. The composition of two binding environments B1 and
B2 is the binding environment B1

�
B2 =

{x : (E1 ∪ E2) | x : E1 ∈ B1 and x : E2 ∈ B2}
∪{x : E1 | x : E1 ∈ B1 and x 6∈ Dom(B2)}
∪{x : E2 | x : E2 ∈ B2 and x 6∈ Dom(B1)}

where it is assumed that Dom(Env(B1))∩Dom(Env(B2)) =
∅ (note that this condition can always be satisfied since
the identifiers in Dom(Env(B1)) and Dom(Env(B2))
are bound).

2. The composition of two binding environments B1 and
B2 w.r.t. the definition interface I is the binding envi-

ronment B1

I�
B2 = (B1

�
B2)− {z : G ∈ B1

�
B2 | z :

∀−→γ .〈∅, v〉 ∈ I for some −→γ , v}.

3. The interfaces 〈B1, I1〉 and 〈B2, I2〉 `
Bin-intercheck if

• I1 and I2 `Plain-intercheck, and



(ModBin)
G `Dec declare Env(B) define {x1 = e1, · · · , xn = en} : 〈Env(B), I〉

G `Bin bind B define {x1 = e1, · · · , xn = en} : 〈B0, I〉
where B0 = B − {z : G ∈ B | z : ∀−→α .〈∅, v〉 ∈ I for some −→α , v}

Figure 6: Typing rules for modules with bounded declarations (system `Bin)

• for all z : ∀−→γ .〈∅, v〉 ∈ I1 ⊕ I2, if z : G ∈ B1
�

B2

and z′ : vcs ∈ G then ∀−→γ .v ≤∀c2 vcs .

4. The composition of two interfaces 〈B1, I1〉 and 〈B2, I2〉
that `Bin-intercheck is the interface 〈B1, I1〉⊕〈B2, I2〉 =

〈B1

I1⊕I2�
B2, I1 ⊕ I2〉.

Theorem 7.2. (Separate type inference property for `Bin).
If G `Bin bind Bi define pmi : 〈Bi, Ii〉 (1 ≤ i ≤ n), then

1. 〈B1, I1〉, . . . , 〈Bn, In〉 `
Bin-intercheck if and only if G `Bin

bind B define pm : 〈B0, I〉, and

2. G `Bin bind Bi define pmi : 〈Bi, Ii〉 (1 ≤ i ≤ n) prin-
cipal w.r.t. G imply that if G `Bin bind B define pm :
〈B0, I〉 holds then it is principal w.r.t. G,

where B =
�

i∈{1,...,n}Bi, pm = ∪i∈{1,...,n}pmi, I = ⊕i∈{1,...,n}Ii,

and B0 =
I�

i∈{1,...,n} Bi.

Example 12. Bounded declarations allow to overcome the
unnecessary restriction illustrated at the beginning of the
section. Consider, for instance, the principal typing judge-
ments ∅ `Bin bm4 : 〈∅, I4〉, ∅ `Bin bm5 : 〈B5, I

′
5〉, ∅ `Bin

bm6 : 〈∅, I6〉, and ∅ `Bin bm7 : 〈B7, I7〉 of Example 11. We
have the principal typing judgement

∅ `Bin bind B5
�

B7 define pm4 ∪ pm5 ∪ pm6 ∪ pm7 :
〈∅, I4 ⊕ I ′

5 ⊕ I6 ⊕ I7〉,

where B5
�

B7 =

{twice :
{twice5 : ∀α1 α2 α3 .((α1 → α2) ∧ (α2 → α3)) → α1 → α3,
twice7 : ∀γ.((γ → (γ × int)) ∧ ((γ × int) → ((γ × int) × int)))

→ γ → ((γ × int) × int))}}

and I4 ⊕ I ′
5 ⊕ I6 ⊕ I7 =

{twice : ∀α1 α2 α3 . 〈∅, ((α1 → α2) ∧ (α2 → α3)) → α1 → α3〉,
g : ∀ γ . 〈∅, γ → γ list list〉,
h : ∀ δ . 〈∅, δ → δ〉,
r : ∀β . 〈∅, β → ((β × int) × int)〉 }.
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