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Abstract

We address the problem of formal reasoning about mobile code. We consider an
Ambient Calculus, where process syntax includes constructs for object-oriented se-
quential programming. For the sake of concreteness, and because of practical rele-
vance, we consider objects using message exchange to implement method invocation
and overriding. The main contribution of the paper is an intersection type assign-
ment system, obtained by a combination of systems introduced for the Calculus of
Mobile Ambients and for the ς-calculus. We exploit, in the mobility framework,
a typical feature of the intersection type discipline for object calculi, namely late
typing of self. The proposed system is then checked against standard properties of
related systems, establishing type invariance and a completeness theorem.
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1 Introduction

Many theoretical models have been proposed to attack the urgent problem
of understanding “global computing”, as it has been recently dubbed the sce-
nario in which programmers have to cope with a plethora of computing devices
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and a great variety of interconnections, messages and code exchanges. These
models, however, stemming from Milner π-calculus or from the Ambient Cal-
culus of [CG00], do not directly take into account sequential procedures. Any
reasonable language for designing and programming mobile systems needs to
have a sequential component. As a matter of fact actual languages designed
for the network have a sequential core and a set of primitives for communi-
cation, concurrency and mobility. In the models mentioned above, sequential
procedures have to be simulated via heavy encodings.

A possible reaction is the one pursued e.g. in [BCC01], were the formal-
ization of object-oriented concepts, borrowed from calculi like the ς-calculus
of [AC96], are strongly tied to the formalizations of distributed and mobile
aspects, coming from the calculus of Mobile Ambients (MA). Another possible
approach is to keep ambients and sequential code each other apart, as it is
the case of the λ-terms inside ambients in [AKPG01]. The latter choice has
the advantage of conceptual clarity, which is reflected by the type system and
(denotational) semantics.

We shall describe a calculus where the sequential and the mobile/distributed
components are loosely coupled, that is where objects and ambients have dif-
ferent syntax and operational semantics; but, much as for “concurrent objects”
in [Lan01], objects are allowed to interact with processes and to drive mobility
of ambients.

The contribution of the paper, however, is not the calculus itself, but rather
a type assignment system. This is mainly because what we intend to focus on
is partial (semantical) information that one can get about programs, rather
than ensuring global properties of the system (e.g. well-formedness, error
freeness, etc.), which is typical of typed calculi a’ la Church. Therefore our
calculus is type free, and types, which are better understood as predicates,
are deduced for terms a posteriori.

As a matter of fact we also try to partially reflect in the type system
the “loosely coupling” aspect of distributed/mobile and sequential features of
the calculus, borrowing from type assignment systems for ς-calculus objects
proposed in [dL01] and from the system for ambients introduced in [CD01].
The same approach should apply in the case of other sequential components
of ambients, e.g. functional programs.

From the work on type assignment for sequential objects, developed in
works by the second author of the present paper [dL01,vBdL03] we retain the
idea of “late typing of the self”. This consists in typing objects as records
of methods; methods are typed by recording pre and post-conditions (the an-
tecedent and the consequent of an arrow type respectively); it is only when
a method is invoked that the system checks if the object satisfies the precon-
dition of that particular method, which is actually a precondition of the self
variable. This is contrasted to what we call the “early typing of the self”,
consisting in the typing policy adopted in all type systems for objects, like
those in [AC96], where all relevant information about the self variables needs
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to be checked prior to any possible method invocation. Early typing of the self
leads to difficulties that have been faced in the literature by means of poly-
morphic types, as it is the case of the subtyping and matching polymorphism
in [BCC01].

The main result in the paper is that types catch computational properties
of terms because the system defines a model of the calculus. It is a logical
model (namely a filter model), where each term denotes the sets of its prop-
erties, that is of its types; dually, types denote sets of terms sharing certain
relevant properties. This is the contents of our completeness theorem, which
is also the basic tool to characterize the behavior of terms via their typings.

2 A calculus of Mobile Objects

Definition 2.1 The set P of process terms of the Mobile Ambients calculus
MA [CG00] (omitting restriction (νn)P ) is defined by the grammar:

P,Q ::= 000 | (P | Q) | !!!P | n[[[ P ]]] |M ... P

where n ranges over a denumerable set of names, and

M ::= inn | outn | openn

The operational semantics of the MA calculus is given in terms of a struc-
tural congruence relation ≡, making | into an associative and commutative
operator with unit 000 and such that !!!P ≡ P | !!!P , and a reduction relation.

Definition 2.2 Over P a reduction relation −→ is defined by the following
clauses:

(R− in ) n[[[ inm... P | Q ]]] | m[[[ R ]]] −→ m[[[ n[[[ P | Q ]]] | R ]]]

(R− out ) m[[[ n[[[ outm... P | Q ]]] | R ]]] −→ n[[[ P | Q ]]] | m[[[ R ]]]

(R− open ) openn... P | n[[[ Q ]]] −→ P | Q

(R− Par) P −→ Q =⇒ P | R −→ Q | R

(R− Amb) P −→ Q =⇒ n[[[ P ]]] −→ n[[[ Q ]]]

(R− ≡) P ≡ P ′, P −→ Q,Q ≡ Q′ =⇒ P ′ −→ Q′

In [CG00] the extension of MA with communication primitives amounts
to the redefinition of the action part M in the prefix operator by adding send
and receive actions of the asynchronous π-calculus. Besides, we need to add
the proper clauses to the definition of the reduction relation.
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In order to embody objects in MA, several possibilities are open. In
[BCC01] objects are ambients with two fields: the first one is a list of meth-
ods, the second is a process. Overriding is then implemented by means of the
open primitive.

To the other extreme one might follow [AKPG01], where MA is extended
by redefining values that can be communicated to be (first order typed) λ-
terms instead of plain names. It is not difficult to do the same using terms
from any ς-calculus in [AC96].

The calculus considered here sits in between: objects are considered as spe-
cial processes, and we use prefixing to exchange messages representing method
invocation and overriding. Nevertheless objects retain their own syntax and
operational semantics from the ς-calculus, and are not ambients. Instead, to
make the calculus more expressive and allowing mobility primitives in the syn-
tax of the “sequential” part, method bodies are processes themselves. This
choice is closer to the “concurrent objects” in [Lan01].

Definition 2.3 Terms P+ of the MA calculus extended with objects are ob-
tained by adding to Definition 2.1 the following clauses:

a ::= x | o | a.l | a.l⇐ ς(x)b

b ::= a | P

o ::= [li = ς(xi)bi
i∈I ]

P ::= . . . | o | 〈l〉 | 〈l⇐ ς(x)b〉

The operational semantics of the calculus is then given by extending Definition
2.2 by:

(R− 1) o | 〈l〉 −→ o.l

(R− 2) o | 〈l ⇐ ς(x)b〉 −→ o.l ⇐ ς(x)b

(R− 3) [li = ς(xi)bi
i∈I ].lj −→ bj{[li = ς(xi)bi

i∈I ]/xj}

(R− 4) [li = ς(xi)bi
i∈I ].lj ⇐ ς(y)b −→ [li = ς(xi)bi

i∈I\{j}, lj = ς(y)b]

where in (R− 3) and (R− 4) we assume that j ∈ I.

3 A Type Assignment System

Our types, which could be more appropriately called predicates, are basically
intersection types (see e.g. [DGdL98]). Their syntax comes from [CD01] for
the MA terms, and from [dL01] for the ς-terms.
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Γ ` P : σ
(M)

Γ `M ... P : M ... σ

Γ ` P : σ Γ ` Q : τ
(|)

Γ ` P | Q : σ | τ

Γ ` P : σ
(n[[[ ]]])

Γ ` n[[[ P ]]] : n[[[ σ ]]]

Γ ` P : σ Γ ` !!!P : τ
(|)

Γ ` !!!P : σ | τ

Fig. 1. Type Inference Rules for Ambients

Definition 3.1 The set T of types is the union of process types TP and func-
tional types TF , which are defined by mutual induction according to the gram-
mars:

TP : σ, τ ::= ω |M ... σ | n[[[ σ ]]] | (σ | τ) |

σ ∧ τ | {li : ϕi
i∈I} | 〈l〉 | 〈l⇐ ϕ〉,

TF : ϕ, ψ ::= σ → τ | ϕ ∧ ψ.

The intended meaning of types is that of predicates, namely sets of terms
sharing certain relevant properties. More precisely, types are seen as partial
information about the “future” of process terms, so that whenever we say:
“the meaning of the type σ is the set of processes such and such”, one should
understand “the meaning of the type σ is the set of processes eventually re-
ducing to something such and such” (among other possibilities).

M ... σ is the type of processes that may exhibit the capability M and then
continue with something of type σ; n[[[ σ ]]] is the type of processes that are
ambients named n, enclosing some process in σ; finally (σ | τ) is the set of
processes (equivalent to) (P | Q), where P and Q are in σ and τ respectively.
The formal definition of our type inference rules for ambients is given in Figure
1, where the statements Γ ` P : σ, for Γ = {x1 : σ1, . . . , xk : σk}, have the
standard meaning: P has type σ under the assumptions in the basis Γ.

Types for the object part of the calculus have a similar meaning to types in
[dL01] or predicates in [vBdL03]. {li : σi → τi

i∈I} is the type of objects having
at least methods labelled li such that, if the object itself satisfies σi (hence a
precondition about the self), then the body will return a value satisfying τi (a
postcondition of the method). We remark that this is a conditional statement,
not involving any assumption about the actual properties of the object as a
whole. This is also the basic tool to resolve the recursive nature of objects
into simpler concepts. The rules for typing objects are in Figure 2, where
lj = ς(xj)bj ∈ a is defined as follows:

• j ∈ I =⇒ lj = ς(xj)bj ∈ [li = ς(xj)bi
i∈I ]

• l = ς(x)b ∈ a.l⇐ ς(x)b
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Γ, x : σ ` b : τ l = ς(x)b ∈ a
({ }-I)

Γ ` a : {l : σ → τ}

Γ ` a : {l : σ → τ} Γ ` a : σ
({ }-E)

Γ ` a.l : τ

Fig. 2. Type Inference Rules for objects

• l = ς(x)b ∈ a, l 6= l′ =⇒ l = ς(x)b ∈ a.l′ ⇐ ς(x′)b′

Types 〈l〉 and 〈l⇐ ϕ〉 are about communication; in particular if an update
message of the shape 〈l ⇐ ς(x)b〉 is sent, then the type 〈l ⇐ σ → τ〉 records
the pre and post conditions of the method implemented by the new body b.
Rules for typing messages are in Figure 4.

The type ω, arrow types and intersection types have their standard mean-
ing: ω is the trivial predicate “true”, namely the whole set of terms; σ → τ is
the type of functions (in the present case methods) sending anything of type
σ into something of type τ (which is our understanding of pre and postcon-
ditions); σ ∧ τ is the property of any terms satisfying both σ and τ , so that
extensionally it is the intersection of them.

The typing rules dealing with intersection are given in the set of Logical
Rules in Figure 3 in the style of the BCD type system [BCD83], where σ ≤ τ
is logical implication of predicates, hence set inclusion extensionally. The
relation ≤ is axiomatized in Figures 5 and 6.

4 Late versus Early Typing of Self

Before embarking in the technical treatment, let us pause on some relevant
aspects of the assignment system we have proposed.

The most apparent feature of the calculus is that at first glance we regard
objects as records of methods. This is the content of the following rule, which

(Var)
Γ, x : σ ` x : σ

(ω)
Γ ` a : ω

Γ ` a : σ Γ ` a : τ
(∧-I)

Γ ` a : σ ∧ τ

Γ ` a : σ σ ≤ τ
(≤)

Γ ` a : τ

Fig. 3. Logical Type Inference Rules
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(MsgSel)
Γ ` 〈l〉 : 〈l〉

Γ, x : σ ` b : τ
(MsgUpdate)

Γ ` 〈l⇐ ς(x)b〉 : 〈l⇐ σ → τ〉

Fig. 4. Type Inference Rules for Communication

is admissible in the system:

xj : σj ` bi : τj ∀j ∈ J
(J ⊆ I)

Γ ` [li = ς(xi)bi
i∈I ] : {lj : σj → τj

j∈J}

Note that the σj do not need to be the same, not even equivalent each other.
The admissibility follows since ς(xj)bj ∈ [li = ς(xi)bi

i∈I ] for all j ∈ J , so that,
by using Rules ({ }-intro) and (∧-I) repeatedly, we eventually get Γ ` [li =
ς(xi)bi

i∈I ] :
∧

j∈J σj → τj, which is equivalent to {lj : σj → τj
j∈J}. So we

conclude by Rule (≤).

Reasoning in the same way we see that also the following rule is admissible:

Γ ` a : {li : ϕi
i∈I} x : σ ` b : τ

Γ ` a.lk ⇐ ς(x)b : {li : ϕi
i∈I\{k}, lk : σ → τ}

This has the obvious advantage that we can treat uniformly the typing of
an object and of the overriding operation, so that e.g. we can give the same
types, say {l0 : σ0 → τ0, l1 : σ1 → τ1, l2 : σ2 → τ2}, both to

o = [l0 = ς(x0)b0, l1 = ς(x1)b1, l2 = ς(x2)b2]

and to

o′ = ([l0 = ς(x0)b0, l1 = ς(x1)b
′
1, ]〈l1 ⇐ ς(x1)b1〉)〈l2 ⇐ ς(x2)b2〉

where o′
∗−→ o, given that xi : σi ` bi : τi for i = 0, 1, 2. Besides, observe

that we may allow for the overriding of a method which is not in the object,
namely for object extension, which is not possible in the ς-calculus.

It would be surely incorrect to step from a : {li : σi → τi
i∈I} to a.li : τi,

since we have never checked that a : σi, that is a (the object itself) satisfies the
precondition of its method li. In [dL01,vBdL03] the same difficulty is solved
by means of a late typing of the self, that is by checking the object against the
precondition of the selected method just before method invocation:

Γ ` a : {li : σi → τi
i∈I} Γ ` a : σk

(k ∈ I)
Γ ` a.lk : τk

This should be contrasted to the type systems of the ς-calculus in [AC96],
where e.g. the rule to type an object [li = ς(xi)bi

i∈I ] by A = [lk : Bk
k∈I ] is
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• Commutativity and distributivity of |

(| 1) σ | τ ' τ | σ (| 2) (σ | τ) | γ ' σ | (τ | γ)

• Axioms for ω

(ω1) σ ≤ ω (ω2) σ ' σ | ω (ω3) σ → ω ≤ ω → ω

• Distributivity of ∧

(a[[[ ]]]∧) a[[[ σ ∧ τ ]]] ' a[[[ σ ]]] ∧ a[[[ τ ]]] (| ∧) σ | (τ ∧ γ) ' (σ | τ) ∧ (σ | γ)

(.∧) m .(σ ∧ τ) ' m .σ ∧m .τ

({ }∧1) {l : σ} ∧ {l : τ} ≤ {l : σ ∧ τ} ({ }∧2) {li : σi
i∈I} '

∧
i∈I{li : σi}

(〈 〉∧) 〈l ⇐ σ〉 ∧ 〈l ⇐ τ〉 ≤ 〈l ⇐ σ ∧ τ〉

• Sequentialization

(. |1) m .σ | τ ≤ m .(σ | τ) (. |2) m .σ | n .τ ' m .(σ | n .τ) ∧ n .(m .σ | τ)

• Reduction

(in) a[[[ in b.σ | τ ]]] | b[[[ γ ]]] ≤ b[[[ a[[[ σ | τ ]]] | γ ]]]

(|) a[[[ b[[[ out a.σ | τ ]]] | γ ]]] ≤ a[[[ γ ]]] | b[[[ σ | τ ]]]

(open) open a.σ | a[[[ τ ]]] ≤ σ | τ

(out-in) in a.out a.in a.σ ≤ in a.σ

(in-out) out a.in a.out a.σ ≤ out a.σ

(comm-1)({l : σ → τ} ∧ σ) | 〈l〉 ≤ τ

(comm-2){li : ϕi
i∈I} | 〈lk ⇐ ϕ〉 ≤ {li : ϕi

i∈I\{k}, lk : ϕ}

Fig. 5. Type Entailment Rules, Part I

E, xi : A ` bi : Bi ∀i ∈ I

E ` [li = ς(xi)bi
i∈I ] : [lk : Bk

k∈I ]

That is all relevant information has to be assumed for the self variables xi,
and it is coded in their type A which has to be the same as that of the object
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• Congruence

(cg −M[[[ ]]])
σ ≤ τ

a[[[ σ ]]] ≤ a[[[ τ ]]]
(cg − act)

σ ≤ τ

m .σ ≤ m .τ

(cg− |)
σ ≤ γ τ ≤ γ

σ | τ ≤ γ | γ
(cg − 〈 〉)

σ ≤ τ

〈l ⇐ σ〉 ≤ 〈l ⇐ τ〉

(cg − { })
σ ≤ τ

{l : σ} ≤ {l : τ}

• Transitivity

(trans)
σ ≤ τ τ ≤ γ

σ ≤ γ

• Logical

(∧ − id) σ ≤ σ ∧ σ (∧ − l) σ ∧ τ ≤ σ

(∧ − r) σ ∧ τ ≤ τ (→ −) (σ → τ) ∧ (σ → τ ′) ≤ σ → (τ ∧ τ ′)

(∧− ≤)
σ ≤ σ′ τ ≤ τ ′

σ ∧ τ ≤ σ′ ∧ τ ′
(→ −)

σ ≥ σ′ τ ≤ τ ′

σ → τ ≤ σ′ → τ ′

Fig. 6. Type Entailment Rules, Part II

(hence the same for all i). We call this an early typing of the self.

This choice makes it clear what the self variables stay for, and that ob-
jects are in fact recursive records, but causes lots of troubles when dealing
with object modification and extension, which are essential features of object
based languages in practice. Such problems become even more apparent when
mobility is involved, since we can know in advance neither in which ambient
the methods of an object will be actually invoked, nor whether the object will
be modified before the invocation. Consequently, the impact of early typing
of the self in such cases would be very restrictive.

As it is the case of [CD01], the essential properties of typing are invariance
under structural equivalence and, more importantly, subject expansion. We
have that a | 〈l〉 −→ a.l. Assume now that a.l : τ since a : {l : σ → τ} ∧ σ.
This implies that we can type a | 〈l〉 by ({l : σ → τ} ∧ σ) | 〈l〉. This forces to
us the type inequality:

({l : σ → τ} ∧ σ) | 〈l〉 ≤ τ
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which implies a | 〈l〉 : τ by (≤). Similarly for overriding we have the schema:

{li : ϕi
i∈I} | 〈lk ⇐ ϕ〉 ≤ {li : ϕi

i∈I\{k}, lk : ϕ}.

5 Invariance under Congruence and Expansion

To establish the invariance of types under congruence and expansion we need
a first lemma, essentially reversing the derivation rules.

Lemma 5.1 (Generation Lemma)

(i) Γ ` 000 : σ iff σ ' ω;

(ii) Γ ` m ... P : σ iff Γ ` P : τ and m ... τ ≤ σ for some τ ;

(iii) Γ ` a[[[ P ]]] : σ iff Γ ` P : τ and a[[[ τ ]]] ≤ σ for some τ ;

(iv) Γ ` P | Q : σ iff Γ ` P : τ , Γ ` Q : ρ and τ | ρ ≤ σ for some τ, ρ;

(v) Γ `!P : σ iff Γ ` P : τi for (1 ≤ i ≤ n) and τ1 | . . . | τn ≤ σ for some
τ1, . . . , τn.

(vi) Γ ` [li = ς(xi)bi
i∈I ] : σ iff Γ, xj : σj ` bj : τj, and {lj : σj → τj

j∈J} ≤ σ,
for some J ⊆ I, σj and τj;

(vii) Γ ` a.l : τ iff Γ ` a : {l : σ → τ ′} ∧ σ and τ ′ ≤ τ , for some σ and τ ′;

(viii) Γ ` a.lk ⇐ ς(x)b : σ iff Γ ` a : {li : σi
i∈I}, Γ, x : σ′ ` b : τ and

{li : σi
i∈I\{k}, lk : σ′ → τ} ≤ σ, for some I, σi, σ

′ and τ ;

(ix) γ ` 〈l〉 : σ iff 〈l〉 ≤ σ

(x) γ ` 〈l⇐ ς(x)b〉 : σ iff Γ, x : σ′ ` b : τ where 〈l⇐ σ′ → τ〉 ≤ σ.

Lemma 5.1 is proved using similar techniques as in the λ-calculus case, e.g.
in [BCD83], because rule (≤) does not commute with the arrow introduction
in rule ({ }-I). By the way, we cannot have in the present setting a conjunctive
normal form of normal types as it happens in [CD01], where only the ambient
part of the calculus is dealt with.

Lemma 5.2 (Subject Congruence)
If P ≡ Q and Γ ` P : σ then Γ ` Q : σ

Proof. By induction on the definition of ≡, using Lemma 5.1. 2

Theorem 5.3 (Subject Expansion)

If P
∗−→ Q and Γ ` Q : σ then Γ ` P : σ.

Proof. By induction on the definition of −→, using Lemma 5.1 and Lemma
5.2.

2

We observe that subject reduction does not hold: n[[[ 000 ]]] | openn...000 has
type n[[[ ω ]]] (among others), but it reduces to 000 | 000 ≡ 000 which is only typable
by ω or equivalent types.
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6 Type Semantics and Completeness Theorem

Given that P0 is the set of closed terms, and P [x] the set of terms whose
free variables are included in {x}, we define a type interpretation which is
essentially based on the concept of saturated sets used e.g. in [Kri90]. They
are subsets of P0, closed under expansion. This happens to be the same
interpretation of types given in [dL01] to characterize convergence in the ς-
calculus, and in [CD01] to model the MA calculus. The following definition
is a bit more involved because we do not have λ-abstractions in the syntax
to interpret arrow types, namely types in TF , which occur in the typing of
objects.

Definition 6.1 We define by mutual induction the maps [[ ]]P : TP → ℘(P0)
and [[ ]]F : TF × Var → ℘(

⋃
x∈VarP [x]) as follows:

(i) [[ω]]P = P0

(ii) [[σ ∧ τ ]]P = [[σ]]P ∩ [[τ ]]P

(iii) [[M ... σ]]P = {P ∈ P0 : ∃Q ∈ [[σ]]P . P
∗−→M ...Q}

(iv) [[n[[[ σ ]]]]]P = {P ∈ P0 : ∃Q ∈ [[σ]]P , R ∈ P0. P
∗−→ n[[[ Q ]]] | R}

(v) [[(σ | τ)]]P = {P ∈ P0 : ∃Q ∈ [[σ]]P , R ∈ [[τ ]]P . P
∗−→ Q | R}

(vi) [[〈l〉]]P = {P ∈ P0 : P
∗−→ 〈l〉}

(vii) [[〈l⇐ ϕ〉]]P = {P ∈ P0 : ∃ ς(x)b. P ∗−→ 〈l⇐ ς(x)b〉, b ∈ [[ϕ]]F(x)}
(viii) [[{li : ϕi

i∈I}]]P
= {P ∈ P0 : ∃o. P ∗−→ o & ∀ i ∈ I ∃ li = ς(xi)bi ∈ o. bi ∈ [[ϕi]]F(xi)}

(ix) [[σ → τ ]]F(x) = {b ∈ P [x] : ∀P ∈ [[σ]]P . b{P/x} ∈ [[τ ]]P}
(x) [[ϕ ∧ ψ]]F(x) = [[ϕ]]F(x) ∩ [[ψ]]F(x)

Lemma 6.2

(i) For all σ, τ ∈ TP , if σ ≤ τ then [[σ]]P ⊆ [[τ ]]P .

(ii) For all ϕ, ψ ∈ TF , if ϕ ≤ ψ then [[ϕ]]F(x) ⊆ [[ψ]]F(x), for all x ∈ Var.

Definition 6.3 Let Γ = {x1 : σ1, . . . , xk : σk}, P ∈ P . σ ∈ TP and ϑ :
Var → P0 is a substitution, and Pϑ is the result of substituting ϑ(x) for x in
P for each free variable x of P , avoiding variable clashes by renaming bound
variables. Then we define:

(i) ϑ |= Γ if ϑ(xi) ∈ [[σi]]P , for all 1 ≤ i ≤ k;

(ii) Γ |= P : σ if for all ϑ such that ϑ |= Γ, it is the case that Pϑ ∈ [[σ]]P .

Lemma 6.4 (Soundeness) If Γ ` P : σ then Γ |= P : σ.

Proof. By induction on the derivation of Γ ` P : σ, using theorem 5.3 and
lemma 6.2. 2

11



Barbanera, de’Liguoro

Theorem 6.5 (Completeness)

Γ ` P : σ ⇔ Γ |= P : σ.

Proof. The only if part is lemma 6.4. To prove the if part we reason by
induction on the size of σ. We report some interesting cases only (the others
are either immediate consequence of the induction hypothesis, or they are
similar to the proofs of analogous results in [dL01,CD01])

Case 〈l ⇐ ϕ〉: given any closed substitution ϑ such that ϑ |= Γ, we know

that Pϑ
∗−→ 〈l ⇐ ς(x)b〉, for some b ∈ [[ϕ]]F(x). Now ϕ =

∧
j∈J(σj → τj),

and clearly

[[ϕ]]F(x) =
⋂
j∈J

[[σj → τj]]F(x),

being J finite, so that b ∈ [[σj → τj]]F(x) for all j ∈ J . Let Q ∈ [[σJ ]]P
be arbitrarily chosen, and ϑ′ be the same as ϑ but for ϑ′(x) = Q. Then
we have that ϑ′ |= Γ, x : σj and that bϑ′ = b{Q/x} ∈ [[τJ ]]P , namely that
Γ, x : σj ` b : τj by induction, since the size of τj has to be smaller than the
size of ϕ. By this we deduce Γ ` 〈l ⇐ ς(x)b〉 : 〈l ⇐ σj → τj〉 for all j ∈ J
by rule (MsgUpdate), and eventually Γ ` 〈l ⇐ ς(x)b〉 : 〈l ⇐ ϕ〉 by rules
(∧-I) and (≤). The thesis then follows by theorem 5.3.

Case {li : ϕi
i∈I}: in this case we have that Pϑ

∗−→ o and that bi ∈ [[ϕi]]F(xi)
for all li = ς(xi)bi ∈ o. By reasoning in a similar way as in the previous
case, this time using rule ({ }-I), we conclude that Γ ` o : {li : ϕi} for all
i ∈ I, end hence Γ ` o : {li : ϕi

i∈I} by rules (∧-I) and (≤). Again the
thesis follows by 5.3.

2

The completeness theorem has relevant consequences. First we have a
model, properly a filter model, of the calculus. Closed terms P ∈ P0 denote
filters of types, namely upward sets closed under ∧, by setting

[[P ]] = {σ ∈ TP : P ∈ [[σ]]P}.

By theorem 6.5 we have that

[[P ]] = {σ ∈ TP : ` P : σ}

By introducing the notion of environments ξ, assigning filters to term variables,
and setting ξ |= Γ if σ ∈ ξ(x) whenever x : σ ∈ Γ, we have for arbitrary terms
P ∈ P :

[[P ]]ξ = {σ ∈ TP : ∃Γ. ξ |= Γ & Γ ` P : σ}.
Second we have a framework to logically characterize the capabilities that

a process term P exhibits in one of its reducts by inspecting its typings.
In fact it is not difficult to define a convergence predicate ⇓ by combining
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the definitions in [dL01] and [CD01], and then use theorem 6.5 to show that
` P : n[[[ ω ]]] if and only if P ⇓ n (namely it reduces to a parallel of processes
having at top level an ambient named n), or that ` P : {l : ω → ω} if and

only if P ⇓ l (that is P
∗−→ o and o is an object that reacts to the message

〈l〉).

7 Conclusion

The type assignment systems for ς-calculus and the MA calculus smoothly
combine into a system for a calculus of mobile objects. Essential proper-
ties, namely type invariance under expansion of subjects, completeness and
adequacy of the assignments system with respect to an observational seman-
tics based on capabilities of reducts, the construction of a logical model of
properties, are retained by the resulting system. Full abstraction remains to
be investigated (but then we need something like the self-open capability of
[CD01], at least). More interesting would be a study of general methods to
compose sequential and mobile/concurrent calculi in such a way that their
assignment systems compose, namely their semantics.
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