
Total Functionals and Well-founded Strategies

(Extended abstract)

Stefano Berardi Ugo de'Liguoro

Dipartimento di Informatica, Universit�a di Torino,
Corso Svizzera 185, 10149 Torino, Italy
e-mail: fstefano,deligug@di.unito.it

Abstract. In existing game models, total functionals have no simple
characterization neither in term of game strategies, nor in term of the
total set-theoretical functionals they de�ne. We show that the situation
changes if we extend the usual notion of game by allowing in�nite plays.
Total functionals are, now, exactly those having a tree-strategy in which
all branches end in a last move, winning for the strategy. Total functionals
now de�ne (via an extensional collapse) all set-theoretical functionals.
Our model is concrete: we used in�nite computations only to have a nice
characterization of totality. A computation may be in�nite only when
the input is a discontinous functional; in practice, never.

1 Introduction

Games and strategies have emerged as useful tools to model interaction, with
applications both to logic and to the theory of higher type functionals.

We address the problem of characterizing total functionals in game theoretic
models. A natural conjecture is that a functional is total if and only if it is
the extensional counterpart of some winning well-founded strategy. This would
mean that a total functional can always be described via strategies whose plays
eventually end, after �nitely many steps, in some move by the Player, which
Opponent cannot reply to.

We prove, however, that this is the case only (and exactly) for Tait-de�nable
functionals, and that some interesting computable total functionals have in�nite
branches in any strategy de�ning them. This calls for a generalization of the
notion of play to ordinal sequences of moves (possibly of trans�nite length),
and for a proper notion of winning strategy. Later, we will remark that in�nite
plays arise only in the application of a functional to some discontinous functional.
Hence trans�nite plays are relevant to have a nice characterization of total maps,
but they cannot arise in practice.

In the literature game theoretic concepts have been proposed to construct
models of lambda calculi, by extensionally collapsing certain sets of strategies.
There have been two proposals: the �rst one is based on the idea of history-free
strategies [3]; according to the second one players move depending on \views"of
the play: these are called dialog games and innocent strategies, as de�ned in
[10, 11].

In [7] an apparently di�erent notion of game, originally introduced by Noviko�,
is used to give an intuitionistic explanation of the classical notion of truth. As
it will be explained in sections 2 and 3 of the present paper, dialog games and
Noviko�-Coquand games are closely related: the former can be obtained from
the latter by distinguishing between question and answer moves, and by impos-
ing Gandy's \no dangling question" condition (no computation may end before
all its sub-computations ended).

In all cases quoted above strategies produce either �nite plays, or non-
terminated plays of length !. This is not necessary, at least in the case of
strategies depending on views (called \innocent strategies" in [10]), since a gen-
eralization of dialog games to plays of trans�nite length has been achieved in [5].
As we pointed out in the abstract, in this way all total set-theoretical functionals
become naturally de�nable via strategies in which all branches end (maybe after
in�nitely many steps) in a last move, winning for the strategy.

We do not loose concreteness of the game interpretation: trans�nite plays
may arise only as the e�ect of the application to discontinuous arguments. Yet,
trans�nite branches are necessary even to represent some computable function-
als.

To substantiate this claim, we provide two type 3 examples of functionals,
taken from Kreisel Realization model of the Analysis. They require strategies
with trans�nite branches; but, if their arguments are hereditarily continuous
functionals, the resulting play is always �nite, and it is recursive if the arguments
are.

The plan of the paper is as follows. In section 2 we introduce the basic def-
initions of trans�nite dialog games. Then, in section 3, we specialize games to
functional games. In section 4 we characterize total functionals, as promised.
In the same section, we characterize total functionals de�nable via well-founded
strategies as the Tait-continuous functionals. Finally, in section 5, we prove that
this class does not contain even all \computable" total functionals: in partic-
ular certain type 3 realizers for Classical Second Order Arithmetic cannot be
described via well-founded strategies.

Because of lack of space, almost all proofs have been omitted.

2 Games with trans�nite plays

In this section we introduce Coquand's notion of game, as generalized in [5].

We want games able to model computation consisting of questions/answers
(or dialogues) between two process. The �rst question is the input value, its an-
swer is the output value, and it ends the dialogue. During the dialogue, processes
alternate: each process answers to some previous question of the other process.
The answer may be another question (concerning the value of a subcomputa-
tion); or it may be the �nal value of a (sub)computation.

We �x a trivial example we will use through the paper. Let F : (N ! N)!
N , and f : N ! N . Assume f(0) = a; f(1) = b; f(2) = c. We will describe

the computation of F (f) = f(0) + f(1) + f(2) as a dialogue between a process
F and a process f . First, f asks "F (f) =?" (asks F for the value of F (f)). F
answers by asking "f(x) =?" (by asking f for the value of f(x) in x = 0; f , in
turn, answers "x =?" (asks F for the input value x). F answers by "x = 0!"
(by sending an input value 0 to f); now f answers F 's original question, by
"f(x) = a!" (by returning the output value a of f(x) in x = 0).

The same questions and answers are used to compute f(1) and f(2). Even-
tually, F may answers f 's �rst question: "F (f) =?", by returning (a + b + c).
This ends the dialogue.

We will model processes by players, whose goal is always to provide an answer
to other player's questions. The �rst player unable to answer looses. Game rules
�x a possible set of answers to each question. Computations are represented by
plays which follow the rules of the game. A winning strategy will model a total
functional, while a strategy which may loose will model a partial functional. We
will de�ne strategies at the end of this next section. Before we will formally
de�ne Coquand's games and plays.

De�nition1. A game is a 5-ple G = hA;B;M;R;m0i such that:

1. A;B are the names of the �rst and the second player;
2. M is a set, whose elements are the moves of G;
3. R �M �M is the set of rules of G: hm;m0i 2 R, also written mRm0, reads

as \m0 is a legal reply to move m";
4. m0 2M is the starting move.

We assume the relation R having �nite depth: there exists k < ! such that,
if m0Rm1 � � �mn�1Rmn, then n � k.

In our example, A and B are the processes f and F . M is the set of possible
questions and answers between any two F : (N ! N) ! N , and f : N ! N ,
that is: F (f) =?; F (f) = i!; f(x) =?; f(x) = j!; f(x) = k!. We list now a coding
for the elements of M .

1. m0 =?" is F (f) =?, the �rst question of the game, of f about the value
of F (f). 2. The possible answers of F to ?" are: the answer !i, or F (f) = i!"
consisting of the output value i 2 N for F , and another question, ?1, or f(x) =?,
of F to f , about the value of f(x). 3. The possible answers of f to ?1 are: the
answer !1:j, or f(x) = j!, consisting of the output value j 2 N of f(x), and the
question ?1:1, or x =?, of f to F , about the value of its input x. 4. The only
possible answers of F to ?1:1 are ?1:1:k, or x = k!, consisting of a value k 2 N

for x. (In the next section, we will describe more in general a coding for the
elements of M).

The relation R(m;m0) on M , or "game rule", describes the set of all m0

which are a correct answer to m: in our case, according to what said, we have
R(?"; !i); R(?"; ?1); R(?1; !1:j); R(?1;?1:1); R(?1:1; !1:1:k). The height of R is �-
nite (equal to 3).

The next step will be to introduce �rst "generic" plays, and then specialize
them to the particular notion of play we will use: "Noviko� plays".

De�nition2. A generic play of the game U above is a triple p = hI; r;m(:)i
such that:

1. I, called the carrier set, is a non-empty well-order (total and well-founded),
with minimum 0I . Its elements are the indexes of the moves of the play p.

2. r : I � f0Ig ! I is a map, such that r(i) < i for all i 2 I. r is called the
replay map; r(i) denotes (the index of) the move to which the move with
index i answers to. Thus, r(0) is unde�ned.

3. m(:) : I !M is a map, associating to each index i 2 I a movemi 2M of the
play, having such index. We ask moreover that R(mi;mr(i)) (that whenever
a move answers to another one, then it is a correct answer to it)

In our example, the whole play has 14 moves, and index set I = f0 : : :13g.
The moves are: m0 =?" (or F (f) =?), m1 =?1 (or f(x) =?), m2 =?1:1 (or
x =?), m3 =!1:1:0 (or x = 0!), m4 =!1:a (or f(x) = a!), . . .The last move is
m13 =!(a+ b+ c), or F (f) = (a+ b+ c)!. The reply map r keeps track to which
move answers each move: we may check that its values are: r(1) = 0; r(2) =
1; r(3) = 2; r(4) = 1; : : : (the move 4 provides the value of f(x) in x = 0, hence
it answers to the move 1). Remark that r(13) = 0 (the last move provides the
value of the whole computation, hence it answers to the move 0).

We will now de�ne a map turn : I ! fA;Bg, telling which player is on turn
at a given step. Since r(i) < i for i > 0, we have rn(i) = 0 for a unique n 2 N .
The player on turn on 0 is A by the rules of the game, and the player on turn
on r(i) is the opponent of the player on turn on i. Thus, we may de�ne turn as
follows: turn(i) = A if the �rst n such that rn(i) = 0 is even, and turn(i) = B if
such an n is odd.

The last step is to restrict the set of plays we allow by introducing the
notion of visibility. Visibility models the memory of the computation (which
past moves may be used by a player to decide the next move, or which moves
may be answered). We follows Noviko� and Coquand, and we decide to assume
that each move between a question in j = r(i) and its answer in i are invisible
for the player who got the answer. The reason is that we think of the moves in
]j; i[as a subcomputation, with input the question in j, and output the answer
in i. And we want to model any computation by a "black box", with only visible
points the input and the output, as real computations are. Thus, the player
who sent the input in j and received the output in i should see nothing else in
between.

Let U = turn(k). We may express Noviko�-Coquand by requiring: 1. each
segment [0; i[of the play is split into a partition made of segments [r(k); k]
(r(k) = question of U , k = answer of his opponent); 2. the only visible moves,
by U from i, are the endpoints fr(k); kg of such segments; 3. r(i) = k for the
last point k of one of such segments. This latter requirement means that U , in
i, replies to some visible answer of his opponent. We will now formalize the idea
above into de�nition of Noviko� play.

De�nition3. { We associate to any i 2 I a segment by S(i) = [0; 0] if i = 0,

S(i) = [r(i); i] if i > 0. We call S(i) an R-segment: it is the segment of moves
between the move i answers to (if any), and i itself.

{ We say that fS(k)jk 2 V g is a "black box structure" over I if it is a partition
of I. We call the set V above, consisting of the last points of the segments
S(k), a visibility set over I.

{ We say that p = hI; r;m(:)i is aNoviko� play if there is a map V (:) : I ! }(I)
such that, for all i 2 I, V (i) is a visibility set over [0; i[and r(i) 2 V (i).

Starting from the sets V (i), we may formalize the visibility predicate Vis(U; �; �)
(to be read \� is visible by player U at �"), by Vis(turn(�); �; �) , � 2 V (�) _
�r(V (�) � f0g) and, if U = turn(r(�)) 6= turn(�), Vis(turn(�); �; �) , � =
r(�) _ Vis(U; r(�); �). The �rst de�nition expresses that V (�) [r(V (�) � f0g)
is the set of endpoints of the "black box structure" associated to � and to the
player on turn on �. The second de�nition expresses the fact that no move in
]r(�); �[is visible by the the player U on turn on r(�). This is because the seg-
ment [r(�); �] starts by a question by U , and ends by the answer of the other
player. Thus, according to our assumptions, its interior is invisible by U .

The view of U on p at � is the set

view(U; p; �) = f� j Vis(U; �; �)g:

The main result about Noviko� plays is the following (proved in [5]):

Theorem4.

Let p be any Noviko� play. Then all one-step extensions of p have, in their last
move, the same visibility set and the same player on turn.

Because of 4, if a play p of length � can be extended, it makes sense to speak
of the player on turn at �-th step: abusing notation we simply write turnp(�).

The theorem 4 is easy to prove when I has a successor length, but di�cult
when I has a limit length. Herbelin [8] remarked that the case length(I) = !

is elementary equivalent to Tait's normalization result for !-logic. As an easy
corollary, the visibility assignment V (:) : I ! }(I) such that r(i) 2 V (i) for all
i > 0, if it exists, it is unique; and V (i); turn(i) are uniquely determined by r

restricted to [0; i[. Thus, in principle, we could just say that a play is Noviko�,
without quoting the map V (:) : I ! }(I), since this map is unique.

Our example of play is a Noviko� play. We will now write down, for each
move, a row with all visibility informations for the player on turn. Moves visible
by the player on turn will be marked "v", or "v " for the moves of his opponent,
forming the visibility set. Invisible moves will be marked "i". We call the process
F "P" (for "Player"), and process f "O" (for "Opponent").

turn Move Coding of the move r 0 1 2 3 4 : : : : : : 13
0 O F (f) =? ?" - i i i i i i
1 P f(x) =? ?1 0 v i i i i i
2 O x =? ?1:1 1 v v i i i i
3 P x = 0! !1:1:0 2 v v v i i i
4 O f(x) = a! !1:a 1 v v v v i i
: : : : : : : : : : : : i
: : : : : : : : : : : : i
13 P F (f) = a+ b+ c! !(a+ b+ c) 0 v v i i v i

Remark that move 13 cannot see, for instance, the moves 2; 3. The reason
is that such moves are in the interior of the R-segment [1; 4], that is, of the
subcomputation with question f(x) =? and answer f(x) = a!. Thus, moves 2; 3
are, for the player on turn on move 13, inside a "black box", hence invisible.

In the case of �nite pre-plays, we may prove that the set view is the visibil-
ity set of view-strategies (called \innocent" in [10]), having a simple inductive
de�nition:

view(U; p; i) =

�
fi� 1g [view(U; p; i� 1) if turn(i) = U

fr(i)g [view(U; p; r(i)) if turn(i) 6= U .

This is the standard notion of visibility in dialog games: it is de�ned in this
way both in [10, 11] and in [7]. the case of plays of possibly trans�nite length
has been considered for the �rst time in [5], from which we borrow the axiomatic
de�nition of Vis. De�nition above does not tell, explicitly, who is the player on
turn at a limit point � 2 I, nor his views. The main theorem 4, however, states
that r restricted to [0; �[uniquely determine the turn and the view at point �.

This ends the introduction of Noviko� plays. In the remaining of this section,
we will introduce strategies. In the next section, we will use them to model
functionals.

To de�ne strategies, concepts and terminology about certain parts of plays
are in order. First, if � 2 I then pd� (a pre�x play of p) is the (pre) play whose
carrier set is [0; �[, whose r;m(:) are the restrictions to [0; �[of those of p. More
in general if J � I then pdJ is the structure hJ; r0;m0

(:)i where r
0;m0

(:) come from
r;m(:); by restricting them to J .

Given a play p we can choose J such that pdJ is closed under the reply
function and has the structure of a play, but it is not such for trivial reasons:
e.g. because its �rst move is not m0, or it is played by P . To de�ne the notion of
subplay without being too restrictive we introduce the notion of play morphism
(see also [10]).

De�nition5. If p and q are (pre) plays, with carrier sets I; J , then ' : p ! q

is a play morphism if it consists of a pair of maps h'0; '1i such that '0 : I ! J

is strictly increasing and '1 : fO;Pg ! fO;Pg is identity or exchange, and for
all � < �:

turnq('0(�)) = '1(turnp(�)); rq('0(�)) = '0(rp(�)):

The image '[p] in q is a subplay of q.

The subplay '[p] of q has the same structure of p, and its reply and turn
functions are rqd'0[�] and turnqd'0[I] (where '0[I] is the image of I in J via
'0).

Proposition6. If '[p] is a subplay of q, then I = '0[length(p)] is such that:

1. if �; � 2 I are such that � < � and there exists no � 2 I such that � < � < �,
then turn(�) 6= turn(�);

2. I 6= ; and r[I n fmin(I)g] � I;
3. for any � 2 I, if I0 = f� 2 I j � < �g then I0 \ view(turn(�); q; �) is co�nal in

I0.

Vice versa, if I � length(q) satis�es the above conditions, then qdI is a subplay
of q.

A pre-play is U -cut free, for U 2 fO;Pg if

� > 0 ^ turn(�) 6= U) � = r(�) + 1;

namely if the opponent of U is forced to reply to the last move of U .
U -cut free (pre) plays is the terminology of [7]. If a pre-play has �nite length

then the previous de�nition is a generalization of [11], de�nition 3.1.3. Observe
that in a U -cut free pre-play, U is the unique player allowed to play at limit
points.

Any view determines a subplay (but not vice versa), i.e. any non empty
I = view(U; q; �) satis�es the conditions of 6. Such a qdI is a U -cut free play
which, with overloaded terminology, we call the U -view of q at �. Also I [f�g
determines a subplay qd(I [f�g), which we call "large U -view".

We say that player U is deterministic on a play p if for all �; � < length(p),
if turn(�) = turn(�) = U and pdview(U; p; �) isomorphic to pdview(U; p; �) (i.e.,
that they are the same up to renaming of the elements of the carrier sets) then
the lare U -views of �; � are isomorphic, too. A play p is a deterministic play if
both players are deterministic on p.

De�nition7. A strategy s for player U over a game U (shortly an U -strategy)
is a tree (i.e. a pre�x closed set) of U -cut free plays of U such that, for all p 2 s

with � = length(p):

1. if turn(�) = U then there is at most one q 2 s of length �+ 1 such that p is
a pre�x of q;

2. if turn(�) 6= U (hence � is a successor) then for any m 2M which is a legal
reply to p��1, i.e. such that p��1Rm, there exists q 2 s of length �+1 such
that p is a pre�x of q, q� = m and rq(�) = �� 1.

Player U follows the strategy s in the play q if for all � < length(q) the large
U -view p of q at � belongs to s, up to renaming of the carrier set. Clearly U

follows some strategy in q if and only if U is deterministic on q.
The main consequence of Theorem 4 w.r.t. strategies is the cut-elimination

theorem:

Theorem8 Cut-elimination [5]. Let s be a P -strategy and t an O-strategy
such that the heights of s and t are bounded above by some in�nite regular ordinal
�. Then there exists a unique play p of maximal length such that P and O follow
the strategies s and s0 respectively, and length(p) = �+ 1 < �.

This play has successor length, hence it has a last move; the player who did
the last move won. Therefore any two strategies s and t, for Player and Opponent
respectively, determine a winning player.

3 Sequential functionals of �nite type

The present section specializes dialog games to games and strategies represent-
ing functionals. In this case the role of Player is to show that a functional Fs,
associated to the strategy s, is de�ned against the arguments Ft1 ; : : :; Ftk: if s
wins against t1; : : :; tk then either some ti misses a move or the resulting play
has a last move !v such that Fs(Ft1 ; : : :; Ftk) = v. Therefore winning strategies
(i.e. strategies such that the player who follows them is always able to play a
move, when on turn) naturally induce total functionals.

We base our treatment on [11]. Admittedly formalizations based on the cat-
egorical semantics of linear logic, as it is the case of [6, 2, 3, 1, 9], have the
advantage of being compositional with respect to the type structure, which is
not the case of the present one. However the actual description of strategies
seems more direct in a formulation which does not make use of the decomposi-
tion of the function space bifunctor into linear implication and the comonad \!".
Perhaps the best thing would be a compromise between the two, which is still
on demand.

Let � = f
0;
1; : : :g be a set of ground types, and T(�) be the set of simple
types over � . We �x an interpretation of types in � as a set of values V =S
fV
 j
 2 �g.
Any type has the form � = �1 ! (� � � ! (�k !
)) 2 T(�), and is abbreviated

by (�1; : : :; �k !
). The set of occurrences of � , Occ(�) is de�ned inductively:
" 2 Occ(�) and �" =
; if 1 � i � k and a 2 Occ(�i) then i:a 2 Occ(�) and
�i:a = (�i)a.

To each type � it is associated a game G� as follows.

De�nition9. For � 2 T(�), G� is the game hM� ; R� ; ?"i where:

1. M� = f?a; !a:v j a 2 Occ(�; v 2 V
 ; for
 last atom in �ag;
2. R� is the least binary relation over M� such that:
(R1) a:i 2 Occ(�))?aR�?a:i,
(R2) a 2 Occ(�) ^ �a =
 ^ v 2 V
)?aR� !a:v.

InM� moves of the form ?a are queries for the output value of a functional of
type �a, applied to all its arguments; moves of the form !a:v are the corresponding
answers.

De�nition10. A functional play (henceforth simply a play) over the game G�

is a deterministic play p over it such that

(F) p� =!v ^ r(�) < � < � ^ p� =?a) 9�0; v0: �0 < � ^ p�0 =!v0 ^ r(�0) = �.

(F) imposes that an answer replies to the last unanswered question (the \no
dangling condition" of [10]). By (R1)-(R2) only queries can be replied to.

Let hp; rpi be a play and hp0; rp0i a subplay (of any other play). By p � p0

we indicate the partially de�ned operation of concatenating p with p0: p � p0

is de�ned and equal to hq; rqi if length(q) = length(p) + length(p0), q� = p� if
� < length(p), p0� if � = length(p) + �, and �nally

rq(�) =

8>><
>>:

rp(�) if � < length(p)
length(p) + rp0 (�) if � = length(p) + � > length(p)
length(p)� 1 if � = length(p) is a successor, and

plength(p)�1Rq�

If some of the above conditions cannot be satis�ed, p � p0 is unde�ned. If it is
de�ned we set turnq as the function determined by rq.

Let p be a play of type �i, for 1 � i � k, and � = (�1; : : :; �k !
). Then
we may construct a play p(i) = h?"i � p0 of type � by adding a �rst move ?"
and by transforming each move over �i into the corresponding move over � : so
p0 is the (sub) play obtained from p by changing any question of the form ?a
into a question of the form ?i:a. Because of the de�nition of concatenation, the
�rst move of p0 replies to ?", which implies that players on p0 are interchanged

with respect to p (indeed, for all � < length(p), p� corresponds to p
(i)
1+�, so that

rnp (�) = 0 if and only if rn+1
p(i)

(1+ �) = 0: in particular, if � is limit, then 1+ � = �

so that players are exchanged also at limit points); therefore, if p is a P -view
of a play of type �i, then p(i) is an O-view of a play of type � . Finally, if s is a
strategy of type �i then we set s(i) = fp(i) j p 2 sg.

Proposition11. Let � = (�1; : : :; �k !
) and s1; : : :; sk be P -strategies of type
�1; : : :; �k. Then

(s1; : : :; sk)
O =

k[
i=1

s
(i)
i

is an O-strategy of type � , and any such a strategy arises in this way.

Because of this proposition there is no theoretical loss in concentrating on
P -strategies, henceforth called simply strategies. An immediate consequence of
this and of 8 is that given some P -strategy s of type (�1; : : :; �k !
) and
the P -strategies s1; : : :; sk of type �1; : : :; �k it is uniquely determined the play
p = s�(s1; : : :; sk)O of maximal length in which P andO follow s and (s1; : : :; sk)

O

respectively.
A functional play is terminated if it has a move answering to the �rst move

?". This move is necessarily the last one, by (F1). If such s � (s1; : : :; sk)O is
terminated by the move !v then write

s[s1; : : :; sk] = v:

s[s1; : : :; sk] is unde�ned otherwise. By s[s1; : : :; sk] ' t[t1; : : :; th] we mean they
are either both de�ned and equal, or both unde�ned.

The functional interpretation of strategies depends on the following fact. For
each type � de�ne the binary relation �� among strategies of type � inductively
as follows:

{ s �
 s
0 , s = s0;

{ s �(�1;:::;�k!
) s
0 ,

8s1; s01; : : :; sk; s
0
k:
Vk

i=1 si ��i s
0
i) s[s1; : : :; sk] ' s0[s01; : : :; s

0
k].

Then, if si ��i s
0
i for 1 � i � k and s is a strategy of type (�1; : : :; �k !
),

s[s1; : : :; sk] ' s[s01; : : :; s
0
k].

The type structure of the Hereditarily Sequential Functionals1, HSF, is de-
�ned as follows. To each type � it is associated a set HSF

� of functionals,
and to each strategy s of type � a functional Fs 2 HSF

� . Set Fh?"i = ? and
F~v = v, where ~v = h?"; !vi. If s is a strategy of type � = (�1; : : :; �k !
) then
Fs : HSF

�1v � � �HSF�k ! HSF

 is the functional

Fs(Fs1 ; : : :; Fsk) = s[s1; : : :; sk] if de�ned; F inally

HSF� = fFs j s is a strategy of type �g, in particular HSF
 = (V
)?.

The structure HSF is a type frame. To see this we need a de�nition of appli-
cation between strategies of higher type, namely an operation App(s; t) = s[t]
where, if s is some strategy of type � ! � and t of type �, s[t] is a strategy of
type � .

Let p be a play of type (�1; : : :; �k !
): q is the subplay of p on the i-th
component if it is the maximal subplay of p such that any question of q but the
�rst one has the shape ?i:a.

If p is a play of type � = (�1; : : :; �k !
), then we may construct a play
pj� of type � = (�2; : : :; �k !
), by restricting p to the moves not in the �rst
component. Take I = f� < length(p) j 8a; b: p� 6=?1:a^ pr(�) 6=?1:bg: then pdI is
a subplay of p and there exists a play q of type � and a play morphism ' such
that '[q] = pdI, q� =?(j � 1):a whenever p'0(�) =?j:a, q� = p'0(�) else, and '1

is the identity. rq is fully determined by ' and rp.

Proposition12. Let s be a strategy of type � = (�1; : : :; �k !
). Consider
� = (�2; : : :; �k !
) and some strategy t of type �1. De�ne s[t] as the set of all
P -cut free plays p0 such that for some play p of type � :

1. p0 is a P -view of pj�;
2. P follows s on p;
3. if q is the subplay of p on the �rst component then O follows t(1) on q.

1 We give to this structure the same name as in [11], but they are di�erent since our
HSF properly includes the structure considered by Nickau.

Then s[t] is a strategy of type � = (�2; : : :; �k !
), such that, for all strategies
t2; : : :; tk of type �2; : : :; �k

s[t][t2; : : :; tk] ' s[t; t2; : : :; tk]:

By this the functional application is simply de�ned by: Fs(Ft) = Fs[t].

4 Well-founded total functionals

In this section and in the next one we restrict our attention to type structures
over T(N) = T(fNg), namely to simple types with ground type N . We also �x
VN = !.

A P -strategy s is winning if P always wins against any O-strategy, by fol-
lowing s. It is strongly winning if any p 2 s has some extension q 2 s won by
P . A strongly winning strategy is winning, but not vice versa: indeed a winning
strategy may include plays lost by P which simply cannot be a P - view of any
play against some O-strategy. Strongly winning strategies are complete: by The-
orem 4 any play of limit length can be extended; on the other hand in a P -cut
free play just P may play at limit points; therefore if s is a winning strategy and
p is a P -cut free play of limit length �, then p 2 s if and only if pd� 2 s for all
� < �.

Winning strategies are related to total functionals: Fs 2 HSF
(�1;:::;�k!
) is

total if for all total Fs1; : : :; Fsk there exists n 2 VN such that

Fs(Fs1 ; : : :; Fsk) ' n:

Theorem13. Fs is total if and only if s is strongly winning.

The proof of the last theorem depends on the fact that any strategy s is
included in some strongly winning strategy (possibly of trans�nite height). This
implies that any partial object in HSF has a total extension within HSF: this
should be contrasted with the Scott continuous functionals, where e.g. Plotkin
continuous existential quanti�er is maximal (w.r.t. the pointwise ordering) but
not total (see [12]). The same remark applies to the PCF de�nable functionals:
indeed (our) HSF is a larger model than the extensional collapse of innocent
strategies.

Because of the existence of trans�nite plays and of strategies of trans�nite
height, any functional in the type frame HTF of the Hereditarily Total Function-
als (the full type hierarchy over VN = !) is an object of HSF2.

Theorem14. For all type � and F 2 HTF there exists a winning strategy s of
the same type such that F = Fs.

2 Strictly speaking any object of HTF turns out to be the restriction to total functionals
of some object of HSF, as the latter may have partial functionals in its domain. In the
sequel we shall not enter into such details, and we will consider HTF as a subframe
of HSF

If � is an in�nite regular ordinal and s is a strategy of height � � (recall that
the height of a tree T is the �rst ordinal � such that for all sequence x 2 T ,
length(x) < �), we say that it is a �-strategy: an !-strategy is then a well-founded
tree. A functional Fs 2 HSF

� is well-founded if there exists an !-strategy s such
that F = Fs. The following Corollary is an immediate consequence of the Cut-
Elimination Theorem 8 and of the de�nition of totality.

Corollary 15. Total well-founded functionals from HSF are closed under appli-
cation.

Let TWF be the type frame of Total Well-founded Functionals.

Theorem16. TWF is a model of simply typed �-calculus.

Well-founded functionals embody the idea of functionals determined by �nite
amounts of information about their arguments: the same idea at the basis of
Kleene-Kreisel countable functionals and of Scott continuous functionals. In the
�nal part of this section we characterize the well-founded total functionals using
a generalization to all types, due to Tait, of Brouwer's notion of continuity for
type 2 functionals.

De�nition17. The Tait Continuous Functionals, TCF, is the least type frame
over T(N) such that:

1. TCFN is the set of natural numbers;

2. TCF contains the combinators S;K; I at all (suitable) types;

3. if fFn j n 2 !g � TCF
� then the functional F (n) = Fn (also denoted by

�n: Fn) is in TCF
(N!�) (the !-rule).

Recursive Tait-continuous functionals, which are obtained from De�nition
17 by asking in the third clause that the set fFn j n 2 !g is recursive, are
total functionals (this is a consequence of Tait cut-elimination theorem for the
!-logic). That TCF is a subframe of HTF will be a consequence of the proof that
TCF and TWF actually coincide.

It is not di�cult to show that TCF � TWF, since by Theorem 16 it su�ces
to prove the closure of TWF under the !-rule. Suppose that Fn = Fsn for all
n and take s as the pre�x closure of the set of all P -cut free plays p of type
(N ! �) such that p = h?"; ?1; !ni � q, and q is obtained from some q0 2 sn by
substituting each move of the form ?i:a by ?(i + 1):a. Then s is a strategy of
type (N ! �), and Fs = �n: Fn.

To prove that TCF � TWF the following lemma is needed (compare with [11]
Theorem 3.3.6). If T is a tree then Thxi = fy j hxi � y 2 Tg is an immediate
subtree of T ; a proper subtree of T is either an immediate subtree or a proper
subtree of some immediate subtree of T . Recall that well-founded trees admit an
inductive de�nition: T is well-founded if all immediate subtrees of T are such.

Lemma18. Let s be an !-strategy of type (�1; : : :; �k ! N) such that s 6= ~n
for any n. Then there exist 1 � i � k and the !-strategies s1; : : :; sni (where
�i = (�1; : : :; �ni ! N)) and a family of !-strategies fs0mgm2! such that, for
all strategies t1; : : :; tk of type �1; : : :; �k, if ti[s1[t1; : : :; tk]; : : :; sni [t1; : : :; tk]] ' m

then s[t1; : : :; tk] ' s0m[t1; : : :; tk]. Moreover s1; : : :; sni and each s0m are isomor-
phic to proper subtrees of s.

Theorem19. The well-founded functionals are exactly the Tait-continuous func-
tionals, namely TWF = TCF.

Proof. Let F = Fs be a well-founded functional of type (�1; : : :; �k ! N).
If s = ~n then Fs = �x1 � � �xk:n and it is trivially Tait-continuous. Other-
wise, by induction over the well founded tree s and by Lemma 18, there exist
G1 = Fs1; : : :; Gni = Fsni and G0

m = Fs0

m
for each m 2 ! which are Tait-

continuous and such that, if Fi(G1(F1; : : :; Fk); : : :; Gni(F1; : : :; Fk)) = m then
F (F1; : : :; Fk) = G0

m(F1; : : :; Fk). Therefore

F (F1; : : :; Fk) =

(�m:G0
m(F1; : : :; Fk))(Fi(G1(F1; : : :; Fk); : : :; Gni(F1; : : :; Fk)))

is Tait-continuous as it is obtained applying the !-rule to a combination of
F1; : : :; Fk and of constants for Tait-continuous functionals.

2

5 Computable non well-founded functionals

Given any F 2 HTF
((N!N)!N), there exists f; g 2 HTF

(N!N) such that

f(F (f)) 6= g(F (g)) (1)

F (f) = F (g) (2)

Indeed for any ordinal � let h� be the characteristic function of X� = fF (h�) j
� < �g. By a cardinality reasoning there exists a minimal � < !1 such that
X�+1 = X�; therefore h�(F (h�)) = h�+1(F (h�)) = 1. Since F (h�) 2 X�+1 =
X� there exists a (unique) � < � such that F (h�) = F (h�). If h�(F (h�)) = 1
then X� = X�+1 = X� contradicting the minimality of �, so that h�(F (h�)) 6=
h�(F (h�)): now set f = h� and g = h� .

The construction of f; g is uniform in F , so that there exist two total func-
tionals �; 	 of type (((N ! N) ! N); N ! N) such that f = �(F) and
g = 	 (F) satisfy (1), (2). If F is continuous (w.r.t. the product topology over

HTF
(N!N) = !!) then � < !. In this case it is easily proved that �(F)(n) = m

and 	 (F)(n) = m are predicates recursive in F . In this sense � and 	 are
\computable" type 3 functionals.

By Theorem 14 �; 	 are objects of HSF. More explicitly a strategy for � is
the least pre�x closed set of P -cut free plays of type (((N ! N)! N); N ! N)

including plays of the following two forms (using the symbolic notation):

h�(F; x) =?; F (f) =?; F (f) = n0; : : :; F (f) =?; F (f) = n�; (for all � < �)

F (f) =?; f(y) =?; y =?; y = m; f(y) = h�(m)i

which accounts for the computation of F (h�), and

h�(F; x) =?; F (f) =?; F (f) = n0; : : :; F (f) =?; F (f) = n�;

x =?; x = n; �(F; x) = h�(n)i:

which yields the value of �(F; x). In the second line, as in the informal de�nition
of �, � is the minimum ordinal such that n� = n� for a (unique) � < �. The
de�nition of a strategy for 	 is similar, but the last move in the second case is
	 (F; x) = h�(n).

These strategies are both !1-strategies, where !1 is the �rst uncountable
ordinal. Next we prove that �; 	 have no !-strategy.

Theorem20. � and 	 are not well-founded functionals.

The proof uses two Lemmas. By F � G it is meant graph inclusion.

Lemma21. Let F 2 HSF
((N!N)!N) be partial injective, X be the range of F ,

x 62 X and f 2 HTF
(N!N) � HSF

(N!N): then there exists G 2 HSF
((N!N)!N)

partial injective such that Rng(G) � X [fxg, F � G and f 2 Dom(G).

Lemma22. Let fsn j n 2 !g be a family of winning !-strategies of type
(((N ! N) ! N) ! N), and X � ! an in�nite set. Then there exists

F 2 HSF
((N!N)!N) partial injective with range X s.t. Fsn(F) is de�ned for

all n.

Proof of Theorem 20. Toward a contradiction suppose that � = Fs and 	 = Ft,
for some (winning) !-strategies s; t. Then there exist winning !-strategies sn and
tm associated to �n = �F: �(F; n) and 	m = �F: �(F;m) respectively. Let us

abbreviate by �hn;mi a strategy for the functional �hn;mi 2 HSF
(((N!N)!N)!N

such that
�hn;mi(G) = h�(G)(n); 	 (G)(m)i;

where h ; i is a surjective pairing function over the natural numbers. Of course
�hn;mi can be constructed from sn and tm in such a way that it is an !-strategy.
Being �hn;mi a total functional, �hn;mi is winning by 13.

By Lemma 22, given any in�nite X � ! and hi; ji 62 X we can �nd F 2

HSF
((N!N)!N) partial injective with range � X such that �hn;mi(F) is de�ned

for all n;m, which implies that f = �(F) and g = 	 (F) are total functions,
since hf(n); g(m)i ' �hn;mi(F) for all n;m.

Applying Lemma 21 twice we �nd U partial injective such that F � G,
X [fi; jg is the range of U and f; g 2 Dom(G). Let H be any total extension of
U : then �(F) � �(G) � �(H), and, as f = �(F) is total, �(H) = f . Similarly
	 (H) = g.

By the absurd hypothesis f(H(f)) 6= g(H(g)) and H(f) = H(g). From
H(f) = G(f) and H(g) = G(g) it follows G(f) = G(g), hence f = g since U is
injective: a contradiction.

2

6 Concluding remarks

Although well-founded functionals are a natural structure, they do not capture
the idea of (relative) computable functionals at type 3 and higher. This may
be of minor interest as soon as one is concerned with �-calculus models, but
becomes relevant when dealing with the constructive analysis of classical proofs,
and with program extraction. Indeed the functionals �; 	 can be shown to be
natural realizers of the no-counterexample of the comprehension axiom scheme
for classical second order arithmetic, and have been found following methods
introduced in [4].

The fact that they are not well-founded may appear not surprising as they
are set theoretic functionals, de�ned also on discontinuous type 2 arguments (i.e.
non continuous w.r.t. the product topology on type 1 objects), as it is needed
if they have to build \no-counterexamples" against any possible candidate as a
counterexample. However they have the robust property, as argued in the previ-
ous section, to yield �nite plays on continuous (namely well-founded) arguments,
which are e�ectively computable if the arguments are recursive. Actually �; 	

are examples of a large class of functionals enjoying this property, which, we
think, deserves further investigation.

References

1. S. Abramsky, \Semantics of Interaction", in Semantics and Logics of Computa-

tion, A. Pitts and p. Dybjer eds., Cambridge University Press 1997, 1-31.
2. S. Abramsky, R. Jagadeesan, \Games and full completeness for multiplicative

linear logic", Journal of Symbolic Logic 59 (2), 1994, 543-574.
3. S. Abramsky, R. Jagadeesan, P. Malacaria, \Full abstraction for PCF", Proceed-

ings of TACS'94, Springer Lecture Notes in Computer Science 789, 1994, 1-15.
4. S. Berardi, M. Bezem, T. Coquand, \On the Constructive Content of the Axiom

of Choice", Journal of Symbolic Logic, to appear.
5. S. Berardi, T. Coquand, \Trans�nite Games", September 1996.
6. A. Blass, \A game semantics for linear logic", Annals of Pure and Applied Logic

56, 183-220.
7. T. Coquand, \A Semantics of Evidence for Classical Arithmetic", Journal of

Symbolic Logic 60, 1995, 325-337.
8. H. Herbelin. S�equents qu'on calcule. Ph.D. thesis, Univeristy of Paris VII, 1995.
9. J.M.E. Hyland, \Game Semantics", in Semantics and Logics of Computation, A.

Pitts and p. Dybjer eds., Cambridge University Press 1997, 131-184.
10. J.M.E. Hyland, C.-H.L. Ong, \On full abstraction for PCF", available by ftp at

ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Luke.Ong/ as pcf.ps.gz,
1994.

11. H. Nickau, Hereditarily Sequential Functionals: A Game- Theoretic Approach to

Sequentiality, Shaker Verlag, Achen 1996.
12. G. Plotkin, \Full Abstraction, Totality and PCF", available by ftp at

ftp://ftp.lfcs.ed.ac.uk/pub/gdp/ as Totality.ps.gz, 1997.

This article was processed using the LATEX macro package with LLNCS style

