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Abstract. We give a simple characterization of convergent terms in
Abadi and Cardelli untyped Object Calculus (&-calculus) via intersec-
tion types. We consider a �-calculus with records and its intersection
type assignment system. We prove that convergent �-terms are char-
acterized by their types. The characterization is then inherited by the
object calculus via self-application interpretation.

1 Introduction

Concerning type systems for object oriented languages, theoretical research over
the last decades has focused on subtyping, having as correctness criterion that
typed programs will never rice \message not understood" exception at run time.
Undoubtedly these are central issues in the �eld; nevertheless there are questions
for which a di�erent understanding of typing could be useful.

We move from the remark that, at least in case of major theoretical models,
like the Objects Calculus of [1], or the Lambda Calculus of Objects of [18],
typed terms do not normalize, in general. This is not surprising, since objects
are essentially recursive, and these calculi are Turing complete; but this has the
unpleasant consequence that types are completely insensitive with respect to
termination. For example, the &-term [l = &(x)x:l]:l, which diverges, has type
[] in the basic �rst order type system OB1; but an inspection of the derivation
shows that it has any type A, since the object term [l = &(x)x:l] may be typed
by [l:A], for any A (more precisely, for any A there exists a typed version [l =
&(x:[l:A])x:l]:l of the diverging term, which has type A). Exactly the same remark
applies to the Lambda Calculus of Objects, where a coding of the paradoxical

combinator (following notation of [18]) Y
�
= �f:hrec = �x:f(x ( rec)i ( rec is

typable by (� ! �)! �, for any �: then Y(�x:x) : � for all �.
Should we care about termination in OO systems? If one's focus is on event

driven systems, modularization, encapsulation or software reusability, as much
as these features are supported by OO languages, probably not. But, after all,
object orientation is a programming paradigm: if a program enters some in�nite
loop, without exhibiting any communication capability, it is true that no system
inconsistency is responsible for this fact; it might also be clear that, due to some



clever typing, one knows in advance that no object will receive some unexpected
message; nevertheless such a program is hardly useful.

In the present paper we show that a simple characterization of converging
terms in the &-calculus is achievable via a combination of (untyped) interpre-
tations of object calculi and type assignment systems. We consider untyped
�-calculus with records as target language in which object terms from &-calculus
are translated, according to interpretations which have been proposed in the lit-
erature. We restrict attention to self-application interpretation (see [1], chapter
18), since it is easily proved that convergency in the &-calculus (see [1], chapter
6) and in the �-calculus with records are equivalent under such interpretation.
We provide a characterization of convergency in the �-calculus with records via
an intersection type assignment system; the characterization is then inherited
by the (untyped) &-calculus.

Intersection types are better understood as \functional characters" (namely
computational properties), than as sets of values: this is in accordance with the
fact that in such systems any term has a (possibly trivial) type, and, moreover,
that each term is typable by in�nitely many types. On the other hand the set of
types that can be given to a term describes its functional behaviour, that is its
meaning (see e.g. [12, 6, 22, 14]). That convergency is characterized by typability
within the system by types of some speci�c shape is basic with respect to the
construction of denotational models using types (see [6, 3, 4]).

As a matter of fact, we consider the study of reduction properties via type
assignment systems a preliminary step toward a theory of equivalence and of
models for object calculi, based on domain logic and type assignment, which is
left for further research.

1.1 Related work

The use of intersection types as a tool for the study of computational properties
of the untyped �-calculus begins with [25] and [12], and it is an established
theory: see [22] for an exposition. These technique has been recently applied to
the study of lazy �-calculus [4], of parallel extension of �-calculus [7, 16], and
of call-by-value �-calculus [17, 20]. Further studies of reduction properties via
intersection types are reported in [15].

Intersection types have been also used by Reynolds in the design of his
FORSYTHE language (see among many others [26,24]). Although intersection
semantics is the same as that in the literature quoted above, the meaning of types
is close to the standard interpretation of polymorphism, and does not provide a
tool for characterizing properties of reduction. However, the typing of records is
strikingly similar to that one we have used here.

The source of the �-calculus of records is [1], chapter 8, where it is contrasted
to the &-calculus. Interpretations have a long story, both as formalizations of the
informal notion of object, and as translation of formal calculi: in particular the
self-application interpretation originates from Kamin work [21]. Sources of fur-
ther information on the subject of interpretations are [8,2, 9], as well as [1],
chapter 18. More recently Crary [10] advocated a use of intersection types for



object encoding, together with existential and recursive types. The paper dis-
cusses encoding into typed calculi, and is in the line of Reynolds and Pierce
understanding of intersection types.

2 A �-calculus with records

The syntax of terms is obtained from that of untyped �-terms by adding records,
equipped with selection and update operators:

M ::= x j �x:M jMN j hli = Mi
i2Ii jM � l jM � l := N;

where I varies over �nite sets of indexes, and li 6= lj if i 6= j. Note that M � l is
not a subterm of M � l := N (much as a:l is not a subterm of a:l ( &(x)b in the
&-calculus). We call �R the resulting set of terms. The set of closed terms in �R
is denoted by �0

R.

To give semantics to the calculus we �rst de�ne a notion of reduction, and
then choose a suitable subset of normal forms to be considered as values.

De�nition 1. The weak reduction relation, �!w, over �R is de�ned by the
following axioms and rules:

(�) (�x:M )N �!w M [N=x],

(�) M �!w M 0 ) MN �!w M 0N ,

(R1) hli = Mi
i2Ii� lj �!w Mj , if j 2 I,

(R2) M �!w M 0 ) M � l �!w M 0� l,

(R3) hli = Mi
i2Ii� lj := N �!w hli = Mi

i2Infjg; lj = N i, if j 2 I,

(R4) M �!w M 0 ) M � l := N �!w M 0� l := N .

This is lazy reduction of the �-calculus plus extra reduction rules for record
terms.

De�nition 2. The set of values V is the union of the set R = fhli = Mi
i2Ii j

8i 2 I: Mi 2 �0
Rg and the set F of closed abstractions. Then we de�ne a

convergency predicate w.r.t. weak-reduction by:

i) M + V
�
, V 2 V ^M

�
�!w V ,

ii) M +
�
, 9V: M + V .

De�nition 2 rules out closed normal forms like (�x:x)� l := (�x:x). Any value
is a normal form w.r.t. �!w, but not viceversa: in particular any term repre-
senting a selection or an update over a label which is not de�ned in its operand
in normal form, results in a blocked term which is not a value.



Terms:
a ::= x j [li = &(xi)bi

i2I ] j a:l j a:l ( &(x)b

Values:
v ::= [li : &(xi)bi

i2I]

Evaluation Rules:

v # v

a # [li : &(xi)bi
i2I ] bjf[li : &(xi)bi

i2I ]=xjg # v j 2 I

a:lj # v

a # [li : &(xi)bi
i2I ] j 2 I

a:lj ( &(y)b # [li : &(xi)bi
i2Infjg; lj = &(y)b]

Fig. 1. The untyped &-calculus and its operational semantics.

3 Self-application interpretation and convergency

Syntax and operational semantics of the untyped &-calculus are from [1], chapter
6; they are reported in �gure 1. Note that substitution is written afb=xg, instead
of using square braces, to avoid confusion with notation of object terms.

We then introduce the self-application interpretation [[ ]]S, which is a map-
ping sending &-terms into �R. We take this de�nition from [1], chapter 18.

De�nition 3. Under self-application interpretation, &-terms are translated ac-
cording to the following rules:

[[x]]S
�
= x

[[[li = &(xi)bi i2I ]]]S
�
= hli = �xi:[[bi]]S i2Ii

[[a:l]]S
�
= ([[a]]S� l)[[a]]S

[[a:l( &(y)b]]S
�
= [[a]]S� l := �y:[[b]]S

For the sake of relating convergency predicates via self-application inter-
pretation, we give a one-step operational semantics of the &-calculus which is
equivalent to the big-step one.

De�nition 4. The reduction relation �!& over &-terms is de�ned by :

i) [li = &(xi)bi i2I ]:lj �!& bjf[li = &(xi)bi i2I ]=xjg, if j 2 I,
ii) [li = &(xi)bi

i2I ]:lj ( &(y)b �!& [li = &(xi)bi
i2Infjg; lj = &(y)b], if j 2 I,

iii) a �!& b) a:l �!& b:l,
iv) a �!& b) a:l ( &(y)c �!& b:l( &(y)c.

This reduction relation is weaker than the one-step reduction de�ned in [1]
6.2-1; on the other hand the subsequent lemma does not hold for that relation.

Lemma 1. For any &-term a and value v:

a # v , a
�
�!& v:



Proof. By induction over the de�nition of a
�
�!& v (if part), and over the de�ni-

tion of a # v (only if part).
�

The next theorem states that operational semantics is faithfully mirrored
under self-application interpretation. We write a # if there exists some v such
that a # v.

Theorem 1. For any &-term a, a # if and only if [[a]]S +, that is the self-
application interpretation preserves and respects the convergency predicate.

Proof. We observe that:

a) if a �!& b, then [[a]]S
+
�!w [[b]]S (proof by induction over �!&);

b) if [[a]]S �!w M , then, for some N and b,

M
�
�!w N � [[b]]S and a �!& b;

(proof by induction over a);
c) v is a value in the &-calculus if and only if [[v]]S is such in �R (immediate

from the shape of [[v]]S);
d) if V 2 V and V � [[a]]S for some a, then a is a value (by inspection of the

de�nition of [[� ]]S).

If a # then a
�
�!& v for some value v, by lemma 1; hence [[a]]S

�
�!w [[v]]S, by

(a), and [[v]]S 2 V by (c); therefore [[a]]S +.

Viceversa, if [[a]]S +, then [[a]]S
�
�!w V for some V 2 V; since V is a normal

form, by (b) we know that V � [[b]]S, with a
�
�!& b; it follows that b is a value,

by (d), so that a # by lemma 1.
�

4 A type assignment system

In this section we introduce the basic tool we use for analyzing the computational
behaviour of �-terms. It is a type assignment system, which is an extension of
system CDV! (see [12,5, 14]), also called D
 in [22]. To arrow and intersection
type constructors we add a constructor for record types, which is from [1].

Types are de�ned according to the grammar:

� ::= � j ! j � ! � j � ^ � j hli : �i
i2Ii;

where � ranges over a denumerable set of type variables, ! is a constant, � and
� are types, I ranges over �nite sets of indexes.

De�nition 5. The type assignment system CDV R
! is de�ned in �gure 2. Judg-

ments take the usual form � ` M : � , with M 2 �R. The context � is a �nite
set of assumptions x : �, where each variable occurs at most once; the writing
�; x : � is an abbreviation of � [ fx : �g, for x 62 � . We write � `CDV R

!
M : �

to abbreviate \� `M : � is derivable in system CDV R
! ".



�; x : � ` x : �
(Var)

�; x : � `M : �

� ` �x:M : � ! �
(! I)

� `M : � ! � � ` N : �
� `MN : �

(! E)

� `M : !
(!) � `M : � � `M : �

� `M : � ^ �
(^I)

� `M : �1 ^ �2 i = 1; 2

� `M : �i
(^E)

� `Mi : �i 8i 2 I J � I

� ` hli = Mi
i2Ii : hlj : �j

i2Ji
(hiI)

� ` M : hli : �i
i2Ii j 2 I

� `M � lj : �j
(hiE)

� ` M : hli : �i
i2Ii � ` N : � j 2 I

� `M � lj := N : hli : �i
i2Infjg; lj : �i

(hiU)

Fig. 2. CDV R
! , intersection type assignment system for �R.

Adding rules (!), (^I) and (^E) to Curry rules (Var), (! I) and (! E)
yields system CDV!. Rules (hiE) and (hiU ) are from [1]; rule (hiI) is slightly
more liberal than usual record type introduction rule: it is however a good ex-
ample of the distinctive feature of intersection types. In fact, in ordinary typed
systems, records are elements of some cartesian product; with respect to such in-
terpretation rule (hiI) is unsound. But the meaning of the record type hli : �i i2Ii
in our system (as it is formally de�ned below) is the property to reduce to some
record such that, if some li is selected, for i 2 I, then something having property
�i is returned. Hence the extension of the property hl1 : �1; l2 : �2i is included
in the extension of hli : �ii, for any i = 1; 2. Finally, rule (hiU ) is sound both
w.r.t. the standard interpretation of record types and w.r.t. our interpretation:
in fact, if the component types have to express properties of record components,
and some of these is changed by an update, then it is reasonable that its type
changes too. It would be unsound, instead, in system OB1<: (see �gure 4), as
this rule immediately conicts with the self type.

The essential reason for using intersection types and ! is type invariance
under subject reduction and expansion, as stated in the next theorem; its proof
follows a standard pattern and it is omitted.

Theorem 2 (Subject reduction and expansion). Let M;N 2 �R and � be
any type:

i) if � `CDV R
!
M : � and M �!w N then � `CDV R

!
N : �;

ii) if � `CDV R
!
N : � and M �!w N then � `CDV R

!
M : �.

�

We observe that a restrictive rule for update, closer to rule (Val Update) of
system OB1<:, such as

� ` M : hli : �i i2Ii � ` N : �j j 2 I

� ` M � lj := N : hli : �i i2Ii
(hiU 0)



would break (ii) of theorem 2. Indeed, if 

�
= (�x:xx)(�x:xx) and I

�
= �x:x, then

hl = 
i� l := I �!w hl = Ii; now hl = Ii has type hl : � ! �i, for any �, but,
with (hiU 0) in place of (hiU ), hl = 
i� l := I has type hl : !i at best.

That types are \functional characters" is formalized by the following type
interpretation, which associates to each type its extension. Note that it is a
closed interpretation, namely extensions of types are subsets of �0

R.

For X;Y;Xi � �0
R let us set (by overloading ! and hi):

X ! Y = fM 2 �0
R j 9F 2 F : M + F ^ 8N 2 X: FN 2 Y g;

hli : Xiii2I = fM 2 �0
R j 9R 2 R: M + R ^ 8i 2 I: R� li 2 Xig:

We are now in place to de�ne type interpretation, by associating to each type
a subset of �0

R, given an interpretation of type variables.

De�nition 6 (Type interpretation). A closed interpretation I is any map
from type variables to subsets of �0

R. It extends to a closed type interpretation
(type interpretation for short) [[�]]I � �0

R as follows:

[[�]]I = I(�);
[[!]]I = �0

R;
[[�! � ]]I = [[�]]I ! [[� ]]I;
[[hli : �i i2Ii]]I = hli : [[�i]]

i2I
I i;

[[� ^ � ]]I = [[�]]I \ [[� ]]I:

With this de�nition of type interpretation there may be empty types, and
even types which are empty under any interpretation I, e.g. (! ! !) ^ hl : !i,
which also shows that the problem would not be solved neither by some clever
de�nition of interpretation of type variables, nor by eliminating type variables
at all.

On the other hand one could weaken the de�nition of arrow and record type
interpretations, by asking only thatM + V , for some V , and observing that both
(�x:M )� l and hl =M iN are in the interpretation of !, for any closed M;N . But
all this results into unnecessary weakening of the theorem below, and contradicts
the philosophy of types as functional characters.

As a �nal remark about type interpretation let us de�ne:

� � �
�
= 8I: [[�]]I � [[� ]]I; and � = �

�
= � � � � �:

Then we have some expected inequations: among them note (i) and (ii), which
are subtyping in width and in depth respectively.

Proposition 1. The following (in)equations hold:

i) I � J ) hli : �i i2Ii � hlj : �j j2J i;
ii) 8i 2 I: �i � �i ) hli : �i i2Ii � hli : �i i2Ii;
iii) hli : �i i2I i =

V
i2Ihli : �ii;

iv) hl : �i ^ hl : � i = hl : � ^ � i.

�



Types:
A ::= � j Top j [li : Ai

i2I ]

Subtyping rules:

E ` A <: Top
(Sub Top)

I � J

E ` [li : Bi
i2I] <: [li : Bi

i2J ]
(Sub Object)

E ` A <: A
(Sub Re)

E ` A <: B E ` B <: C
E ` A <: C

(Sub Trans)

Fig. 3. Subtyping rules for system OB1<:.

5 Typing interpretations of &-calculus

We now turn to untyped interpretations of &-terms into �R. Since we are also
interested in appreciating the closeness or the distance between our typing of
the interpretations and what can be deduced for typed versions of the same
&-terms, we consider a type assignment version of Abadi and Cardelli system
OB1<:, which still we call OB1<:.

To make reading more comfortable, we report the de�nition of system OB1<:

in �gures 3 and 4 (we omit both rules for kinds and premises concerning the
assumption that types and contexts are well formed, being �rst order types easily
de�ned by a grammar and supposing that in a context each term variable occurs
at most once). In the examples below we add term constants to make reading
easier: they are typed according to some obvious rules, which we collectively
name (Const) in both systems (OB1<: and ours).

Self-application interpretation has been introduced in de�nition 3 of section
3. In [1] the criticism to this interpretation is that it is unsuitable w.r.t. subtyp-
ing, because the abstractions in front of method bodies makes the type of the
interpretation of an object term contravariant in the self type.

Let us consider the &-term:

a2
�
= [l1 = &(x)3; l2 = &(x)x:l1 ( &(y)x:l1 + 1]:

In system OB1<: it can be typed by �
�
= [l1 : int; l2 : []]:

x : � ` 3 : int
(Const)

x : � ` x : �
(Var)

x : �; y : � ` x : �
(Var)

x : �; y : � ` x:l1 : int
(Val Select)

x : �; y : � ` x:l1 + 1 : int
(Const)

x : � ` x:l1 ( &(y)x:l1 + 1 : �
(Val Update)

x : � ` x:l1 ( &(y)x:l1 + 1 : []
(Val Sub)

` a2 : �
(Type Object)



E; x : A ` x : A
(Var)

E;xi : [li : Bi
i2I] ` bi : Bi 8i 2 I

E ` [li = &(xi)bi i2I] : [li : Bi
i2I ]

(Type Object)

A � [li : Bi
i2I ]

E ` a : [li : Bi
i2I ] j 2 I

E ` a:lj : Bj

(Val Select)
E ` a : A E; y : A ` b : Bj j 2 I

E ` a:lj ( &(y)b : A
(Val Update)

E ` a : A E ` A <: B
E ` a : B

(Val Sub)

Fig. 4. Typing rules of type assignment system OB1<:.

Its interpretation is

[[a2]]
S �
= hl1 = �x:3; l2 = �x:x� l1 := �y:(x� l1)x+ 1i

In CDV R
! we may assign to [[a2]]S the type �1

�
= hl1 : ! ! int; l2 : !i, which is

close to the original type of a2 in OB1<:; but we can also deduce

�2
�
= hl1 : �1 ! int; l2 : �1 ! �1i:

In fact:

x : �1 ` 3 : int
(Const)

` �x:3 : �1 ! int
(!I)

x : �1 ` �y:(x� l1)x+ 1 : !! int

x : �1 ` x� l1 := �y:(x� l1)x+ 1 : �1
(hiU)

` �x:x� l1 := �y:(x� l1)x+ 1 : �1 ! �1
(!I)

` [[a2]]S : �2
(hiI)

since

x : �1; y : ! ` x : �
(Var)

x : �1; y : ! ` x� l1 : !! int
(hiE)

x : �1; y : ! ` x : !
(!)

x : �1; y : ! ` (x� l1)x : int
(!E)

x : �1; y : ! ` (x� l1)x+ 1 : int
(Const)

x : �1 ` �y:(x� l1)x+ 1 : !! int
(!I)

These types are not that di�erent from those which are derivable for a2 in
OB1<:; moreover the occurrence of ! seems to be connected to their recursive
nature. But [[a2]]

S is a normal form (and a value): by analogy with untyped �-
calculus and the characterization of strongly normalizing terms in system CDV
(see [14, 22]), we expect that it should be typable without any occurrence of !,
both in the conclusion and in the derivation. This is actually the case. Let �; �
be any types (possibly type variables) without occurrences of !; de�ne

�3
�
= hl1 : � ! int; l2 : �i:



Then:

x : �3 ^ �; y : � ` x : �3 ^ �
(Var)

x : �3 ^ �; y : � ` x : �3
(^E)

x : �3 ^ �; y : � ` x� l1 : � ! int
(hiE)

x : �3 ^ �; y : � ` x : �3 ^ �
(Var)

x : �3 ^ �; y : � ` x : �
(^E)

x : �3 ^ �; y : � ` (x� l1)x : int
(!E)

x : �3 ^ �; y : � ` (x� l1)x+ 1 : int
(Const)

x : �3 ^ � ` �y:(x� l1)x+ 1 : � ! int
(!I)

Therefore, writing N
�
= (x� l1)x+ 1, we have

x : � ` 3 : int
(Const)

` �x:3 : � ! int
(!I)

x : �3 ^ � ` x : �3 ^ �
(Var)

x : �3 ^ � ` x : �3
(^E)

x : �3 ^ � ` �y:N : � ! int

x : �3 ^ � ` x� l1 := �y:N : �3
(hiU)

` �x:x� l1 := �y:N : �3 ^ � ! �3
(!I)

` [[a2]]S : hl1 : � ! int; l2 : �3 ^ � ! �3i
(hiI)

As a matter of fact we conjecture the stronger statement: if CDV R is obtained
from CDV R

! by deleting ! from the type de�nition, and eliminating rule (!)
from the system, then M 2 �R is typable in CDV R if and only if it is strongly
normalizing. If the full reduction of &-calculus is considered, we also conjecture
that any term [[a]]S, such that a is typable in OB1<:, is typable in system CDV R

if and only if a is strongly normalizable in the &-calculus.

As the last example shows, the interpretation of the self-variable can be typed
in a non uniform way. Indeed [[[li = &(xi)bi i2I ]]]S is typed (among many other
possibilities) by hli : �i ! �i

i2Ii, for some �i; �i, where the �i are not necessarily
equal.

This, which surely sounds odd to those familiar with typings of object cal-
culi, is sound in our perspective: in fact in the derivation of the type of object
interpretations the judgment xi : �i does not mean \the type of this object is
�i", being the type we derive just a predicate of records. It is indeed clear that
the notion of self is not immediately translated into the interpretation of object
terms, rather it is implicit in the translation of method invocation.

We only observe that it is possible to collect all the assumptions made
about the self-variable into a uniform typing: indeed any derivation of [[[li =
&(xi)bi

i2I ]]]S : hli : �i ! �i
i2I i can be transformed into a derivation of

[[[li = &(xi)bi
i2I ]]]S : hli :

V
j2I �j ! �i

i2I i.

6 The characterization theorem

In this section we provide a characterization of convergent �-terms with records
using the type assignment system of section 4. Combining this with theorem 1,
we obtain a characterization of convergent &-terms, which is the main result of



the paper. Henceforth by types we mean intersection types for �R. This char-
acterization has a strict analogy with the characterization of those terms from
the (classical) �-calculus which are reducible to some head normal form (see e.g.
[22]).

A type is trivial if its interpretation is �0
R for any I: then a trivial type is

either ! or an intersection of trivial types. A subset X � �0
R is saturated if it

is closed under closed expansions (M is a closed expansion of N if M �!w N
and M 2 �0

R); we also say that I is a saturated interpretation if I(�) is a
saturated set, for all type variable �. A straightforward induction shows that, if
I is saturated then [[�]]I is saturated, for all �.

A closed substitution is some mapping # : TermVar! �0
R; M# denotes the

result of substituting all free occurrences of x in M by #(x). We say that #
respects �; I if for all x : � 2 � it is the case that #(x) 2 [[�]]I. Observe that, if
# respects �; I then [[�]]I 6= ;, for all � occurring in � .

Lemma 2 (Soundness of Type Interpretation). Let � `CDV R
!
M : � and

suppose that I is a saturated interpretation. If # is some closed substitution
respecting �; I, then M# 2 [[� ]]I.

Proof. By induction over the derivation of � ` M : � . Cases (Var) and (!) are
immediate by the hypothesis. Cases (^I); (^E) and (! E) follow by induction
hypothesis. The fact that the interpretation of some types may be empty is
relevant just in case the derivation ends with an application of rule (! I).

Case (! I): the derivation ends by

�; x : � `M : �

� ` �x:M : � ! �
(! I)

Clearly (�x:M )# + (�x:M )#. If [[�]]I = ;, then (�x:M )# 2 [[� ! � ]]I vac-
uously. Else, for any N 2 [[�]]I let #0 be such that #0(x) = N , #0(y) =
#(y), if y 6� x. Since #0 respects �; x : �; I, by induction we have M#0 �
(M [N=x])# 2 [[� ]]I; now ((�x:M )N )# �!w (M [N=x])#, and the thesis fol-
lows being [[� ]]I a saturated set.

Case (hiI): the derivation ends by

� `Mi : �i 8i 2 I J � I

� ` hli = Mi
i2Ii : hlj : �j j2J i

(hiI)

Since hli = Mi
i2Ii# � hli = Mi#i, we have, for all j 2 J � I,

hli = Mi#
i2Ii� lj �!w Mj# 2 [[�j]]I

by induction; the thesis now follows since [[�j]]I is saturated.
Case (hiE): the derivation ends by

� `M : hli : �i i2Ii j 2 I

� `M � lj : �j
(hiE)



By induction M# 2 [[hli : �i i2Ii]]I, hence for some R 2 R, M# + R and

R� li 2 [[�i]]I, for all i 2 I. M#
�
�!w R implies M#� li

�
�!w R� li, and

therefore M#� li 2 [[�i]]I, being [[�i]]I saturated.

Case (hiU ): the derivation ends by

� `M : hli : �i i2Ii � ` L : � j 2 I

� `M � lj := L : hli : �i i2Infjg; lj : �i
(hiU )

By induction there exists some R 2 R such that M#
�
�!w R and R� li 2

[[�i]]I, for all i 2 I. By de�nition R has the shape hli :Mi
i2Ii; therefore

(M � lj := L)# � M#� lj := L#
�
�!w hli :Mi

i2Ii� lj := L#

�!w hli :Mi
i2Infjg; lj = L#i

and hli : Mi
i2Infjg; lj = L#i 2 [[hli : �i i2Infjg; lj : �i]]I by the above and

the induction hypothesis. The thesis follows since [[hli : �i i2Infjg; lj : �i]]I
is saturated.

�

Given the soundness of type interpretation we use it, together with type
invariance under reduction and expansion, to characterize convergent �-terms
with records:

Theorem 3. For any closed term M , M + if and only if it is typable by some
non trivial type in CDV R

! ; moreover M + F for some F 2 F if and only if M
is typable by ! ! !, and M + R, for some R 2 R, if and only if M is typable
by hli : ! i2Ii, for some I.

Proof. The only if part follows by theorem 2 (ii) and the fact that `CDV R
!
�x:M :

! ! ! and `CDV R
!
hli = Mi

i2ii : hli : ! i2Ii, for all �x:M 2 F and hli =

Mi
i2ii 2 R. The if part is consequence of lemma 2.

�

A further consequence of this theorem is that terms reducing to a selection
M � l or an update M � l := N over some label l which is unde�ned in M have
only trivial types; in particular ill-formed terms like I� l are only typable by
conjunctions of !.

We are eventually in place to state the main result of the paper.

Corollary 1. For all pure (i.e. constant free) untyped &-term a, a # if and only
if [[a]]S + if and only if, for some � and l, � `CDV R

!
[[a]]S : hl : !i.

Proof. By theorems 1 and 3.

�



7 Conclusion and further work

We have shown that a piece of theory of type assignment nicely yields a charac-
terization of convergent &-terms, up to the modest overhead of self-application
interpretation. But it seems that we have just scratched the surface of a subject
which deserves further investigation.

First, a suitable extension of the notion of saturated sets should give the tool
to settle the conjecture in section 5 that exactly the interpretations of strongly
normalizing objects (w.r.t. the full reduction relation) are typable in system
CDV R. In the same vein one may also consider the problem of characterizing
other properties of reduction in object calculi that have been studied for the
�-calculus [15].

A further step is to build �lter models of object calculi using �R and its
typings as an auxiliary tool. This opens the question of the structure of the
model, namely its theory; conversely one may investigate whether, given a theory
such as bisimulation theory of objects [19], a �lter model can be devised such
that the theory is complete w.r.t. that model.

An obvious task is investigation of subtyping: if we consider the containment
induced by type interpretation in section 4, this is subtyping in depth and width;
but a simple and direct correspondence with subtyping in object calculi is un-
likely. If instead of containment semantics one consider the coercion semantics of
subtyping (see e.g. [23], chapter 10), however, our framework looks more promis-
ing: it is also tempting to consider the retraction as types proposal by Scott [27],
and see what happens.

Finally, looking for some practical application, it should not be di�cult to
�nd out a type reconstruction method based on the notion of principal types,
even if, of course, the typability of normalizing objects is undecidable in our
system. Also it is worthy to see whether certain abstract interpretation and
static analysis techniques based on type systems (see e.g. [24, 13,11]) carry over
to object calculi using our approach.
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