
Restricted intersection type assignment systems

and object properties

Ugo de’Liguoro ∗

Università di Torino, Dipartimento di Informatica

C.so Svizzera 185, 10149 Torino (Italy)

e-mail: deligu@di.unito.it

December 2002

Abstract

In this note we consider a restricted version of the intersection types
for a λ-calculus with records as presented in [5, 6] w.r.t. principal typ-
ing property and expressivity. We sketch how the classical approach to
principal typing for intersection type assignment system can be adapted
to cope with record types. We then exemplify typings in our system of
self-application and recursive record interpretations of objects.

1 Introduction

When object-oriented languages are concerned, types are always meant to be
polymorphic. Here the basic source of polymorphism is subtyping, either linked
to inheritance or not. Further the presence of the self parameter naturally leads
to some form of quantification over types which shows up in the use of recursive
types, universal and existential types, several forms of bounded quantifications.

Polymorphic types are expressive and powerful tools in the theoretical in-
vestigation, but are quite cumbersome to use in practice. On the other hand
they are not feasible for an automatic treatment as they do not enjoy relevant
properties as the existence of principal types/principal typings and of related
algorithms. This motivates the search for systems of polymorphic types strong
enough to catch relevant properties of programs, but still allowing for automatic
search and reconstruction of types.

The approach we follow in this note is a development of what we propose
in [5, 6], which is basically to reconstruct typings from the semantics of object-
calculi, which is given in terms of interpretations in a type free λ-calculus with

∗Partially supported by MURST Cofin’01 COMETA Project, IST-2001-33477 DART
Project and IST-2001-322222 MIKADO Project. The funding bodies are not responsible
for any use that might be made of the results presented here.

1

records. More precisely types are seen as term properties, so that they are
formalized using extensions of Curry assignment systems known as intersection
types (see e.g. [7] and references there).

2 Intersection type assignment systems for a λ-
calculus with records

Define a type-free λ-calculus with records as follows:

the set of terms ΛR is inductively defined by:

M,N ::= x | λx.M | MN | 〈`i = Mi
i∈I〉 | M · `i | M · `i := N,

where I is a finite set of indexes, 〈`i = Mi
i∈I〉 is a record, M · `i is field

selection, M · `i := N either adds a new field `i initializing its value to N ,
or updates to N the value of an existing field `i in M ;

the intended meaning of record operators is formalized by adding to the defi-
nition of β-reduction the following rules:

(R1) 〈`i = Mi
i∈I〉· `j −→ Mj , if j ∈ I,

(R2) M −→ M ′ ⇒ M · li −→ M ′· li,
(R3) 〈`i = Mi

i∈I〉· `j := N −→ 〈`i = Mi
i∈I\{j}, `j = N〉,

(R4) M −→ M ′ ⇒ M · `i := N −→ M ′· `i := N .

Intersection types plus record types are defined according to the grammar:

σ, τ ::= α | ω | σ → τ | σ ∧ τ | 〈`i : σi
i∈I〉,

where α ranges over a denumerable set of type variables, ω is a constant, I
ranges over finite sets of indexes. Then it is easy to extend intersection type
systems to the λ-calculus with records. Here is the basic system:

Γ ` M : ω
(ω)

Γ, x : σ ` x : σ
(Var)

Γ, x : σ ` M : τ

Γ ` λx.M : σ → τ
(→ I) Γ ` M : σ → τ Γ ` N : σ

Γ ` MN : τ
(→ E)

Γ ` M : σ Γ ` M : τ
Γ ` M : σ ∧ τ

(∧I)
Γ ` M : σ1 ∧ σ2 i = 1, 2

Γ ` M : σi
(∧E)

Γ ` Mi : σi ∀i ∈ I J ⊆ I

Γ ` 〈`i = Mi
i∈I〉 : 〈`j : σj

i∈J〉
(〈〉I) Γ ` M : 〈`i : σi

i∈I〉 j ∈ I

Γ ` M · `j : σj
(〈〉E)

Γ ` M : 〈`i : σi
i∈I〉 Γ ` N : τ

Γ ` M · `j := N : 〈`i : σi
i∈I\{j}, `j : τ〉

(〈〉U)

2

This is the system considered in [5] but for rule (〈〉U), which has there the
restriction j ∈ I because the meaning of M · `j := N was field update only.
With slight changes in the proof we can establish the same result as in [5],
namely that a term is typeable by any σ essentially different from ω if and only
if it has a (weak) normal form under lazy reduction:

Theorem 2.1 Any closed term M ∈ ΛR reduces to a (weak) normal form if
and only if it is typable by some non trivial type; moreover M reduces to an
abstraction if and only if M is typable by ω → ω; M reduces to a record if and
only if M is typable by 〈`i : ω i∈I〉, for some I.

The present system is an extension of that named CDV in [11]. Let ≤ be
the least preorder over types including the subtyping relation of [3] and such
that (writing σ = τ for σ ≤ τ ≤ σ):

i) I ⊇ J ⇒ 〈`i : σi
i∈I〉 ≤ 〈`j : σj

j∈J〉;

ii) ∀i ∈ I. σi ≤ τi ⇒ 〈`i : σi
i∈I〉 ≤ 〈`i : τi

i∈I〉;

iii) 〈`i : σi
i∈I〉 =

∧
i∈I〈`i : σi〉;

iv) 〈`i : σ〉 ∧ 〈`i : τ〉 = 〈`i : σ ∧ τ〉.

Then the type assignment system for ΛR can be presented in the same style as
the BCD system [3, 11] by adding the subsumption rule:

Γ ` M : σ σ ≤ τ

Γ ` M : τ
(Sub)

(Now rule (∧I) becomes redundant). We call CDVR and BCDR the extensions
with record types and record subtyping of CDV and of BCD systems respec-
tively.

3 Principal typings

According to [12], the problem of principal typings is the following: given a term
M find a pair (Γ, σ) (if any) such that the judgment Γ ` M : σ represents all
possible typings for M in a given system. A system S has the principal typings
property if a principal typing exists for any term w.r.t. S.

Terms of the shape 〈`i = Mi
i∈I〉 are finite sets of fields; this causes technical

difficulties in the search of a typing so that we adopt a slightly different syntax
(see [10]):

P,Q ::= x | λx.P | PQ | emp | (seli P) | (lcondi P Q)

where i ranges over the same set of indexes used for labels `i. The intended
meaning of the new constants (which is the empty record, selection and field
add/update respectively) can be expressed via the rewriting rules:

3

a) (seli (lcondi P Q)) −→ Q

b) (seli (lcondj P Q)) −→ (seli P), if i 6= j.

There is an obvious translation [·]∗ from ΛR to the new syntax, which is the
compatible closure of the clauses:

1. [〈〉]∗ ≡ emp (where 〈〉 ≡ 〈`i = Mi
i∈∅〉);

2. [〈`i = Mi
i∈I〉]∗ ≡ (lcondik

(. . . (lcondi0emp [M]∗i0) . . .)[M]∗ik
), where I =

{i0, . . . , ik} (we suppose that the set of all indexes is linearly ordered);

3. [M · `i]∗ ≡ (seli [M]∗);

4. [M · `i := N]∗ ≡ (lcondi [M]∗ [N]∗).

The basic system CDVR is then adapted to the new syntax by replacing rules
(〈〉I), (〈〉E) and (〈〉U) by the following axiom schemata:

Γ ` emp : 〈〉
(emp)

Γ ` P : 〈`j : σj
j∈J〉 i ∈ J

Γ ` (seli P) : σi
(sel)

Γ ` P : 〈`j : σj
j∈J〉 Γ ` Q : τ

Γ ` (lcondi P Q) : 〈`j : σj
j∈J\{i}, `i : τ〉

(lcond)

We call CDVC the resulting assignment system. The correspondence between
the systems is established in the following lemma, whose proof is a simple in-
duction (only if part) and relies on a generation lemma for system CDVC which
we omit (if part).

Lemma 3.1 Let M ∈ ΛR: then Γ ` M : σ in system CDVR if and only if
Γ ` [M]∗ : σ in system CDVC .

Systems CDV and BCD have the principal typing property, where the prin-
cipal typing (Π, π) “represents” all possible typings of a given term M in the
sense that for every typing Γ ` M : σ there exists an operation O such that
O(Π, π) = (Γ, σ): now O is not just substitution, rather it is a sequence of
expansions and substitutions in case of CDV system, a sequence of expansions,
substitutions and rise in the case of BCD system (see [11] for details). A key
step in the construction is a syntax directed definition of ground typings for
approximants; the typings are then extended to the general case using the ap-
proximation theorem.

To follow this approach we first extend the notion of approximation (see [2]
definition 14.3.6):

i) α(x) = x

4

ii) α((λx.P)Q) = ⊥

iii) α(seli(lcondj P Q))) = ⊥

iv) α(λx.P) = λx.α(P)

v) α(PQ) = α(P)α(Q), if P 6= λx.P ′

Then ω(P) is the −→β,⊥ normal form of α(P), where −→⊥ is the compatible
closure of the relation defined by:

• ⊥ P −→⊥ ⊥

• (seli ⊥) −→⊥ ⊥

• (lcondi ⊥ Q) −→⊥ ⊥, (lcondi P ⊥) −→⊥ ⊥
(note that we do not have λx.⊥ −→⊥ ⊥). Now we are in place to define
inductively a mapping producing the principal typings of approximants (terms
of the form ω(P) for some P):

1. PPCDV C(⊥) = (∅, ω)

2. PPCDV C(emp) = (∅, 〈〉)

3. let PPCDV C(A) = (Π, π) and A 6= ⊥:

• if A = x then PPCDV C((seli A)) = (Π + {x : 〈`i : β〉}, β)
• else if π = 〈`j : σj

j∈J〉 and i ∈ J then PPCDV C((seli A)) = (Π, σi)
• else PPCDV C((seli A)) = (∅, ω)

4. let PPCDV C(Ak) = (Πk, πk) and Ak 6= ⊥ for k = 1, 2:

• if A1 = x then PPCDV C((lcondi A1 A2)) = (Π1 + Π2 + {x : 〈〉}, 〈`i :
π2〉)

• else if π1 = 〈`j : σj
j∈J〉 then PPCDV C((lcondi A1 A2)) = (Π1 +

Π2, 〈`j : σj
j∈J\{i}, `i : π2〉)

• else PPCDV C((lcondi A1 A2)) = (∅, ω)

5. PPCDV C(x) = ({x : α}, α)

6. let PPCDV C(A) = (Π, π):

• if x ∈ FV (A) then PPCDV C(λx.A) = (Π \ {x : Π(x)},Π(x) → π)
• if x 6∈ FV (A) then PPCDV C(λx.A) = (Π, ω → π)

7. let PPCDV C(Ai) = (Πi, πi) for 1 ≤ i ≤ n (supposed to be variants disjoint
in pairs w.r.t. names of type variables) and α a fresh type variable, then
PPCDV C(xA1 . . . An) = (Π1 + · · ·+ Πn + {x : π1 → · · · → πn → α}, α).

Note that, in particular, PPCDV C(λx.⊥) = (∅, ω → ω).
A lot of work remains: in particular a rise operation is in order since if

Γ ` M : 〈`i : σi
i∈I〉 is derivable in CDVR , then Γ ` M : 〈`i : σi

i∈I′〉
is derivable, for all I ′ ⊆ I. Eventually the approximation theorem must be
established.

5

Types:
A ::= α | Top | [li : Ai

i∈I]

Subtyping rules:

E ` A <: Top
(Sub Top)

I ⊇ J

E ` [li : Bi
i∈I] <: [li : Bi

i∈J]
(Sub Object)

E ` A <: A
(Sub Refl)

E ` A <: B E ` B <: C

E ` A <: C
(Sub Trans)

Figure 1: Subtyping rules for system OB1<:.

4 Typing interpretations of ς-calculus

We now turn to untyped interpretations of ς-terms into ΛR. Since we are also
interested in appreciating the closeness or the distance between our typing of
the interpretations and what can be deduced for typed versions of the same
ς-terms, we consider a type assignment version of Abadi and Cardelli system
OB1<:, which still we call OB1<:.

To make reading more comfortable, we report the definition of system OB1<:

in figures 1 and 2 (we omit both rules for kinds and premises concerning the
assumption that types and contexts are well formed, being first order types easily
defined by a grammar and supposing that in a context each term variable occurs
at most once). In the examples below we add term constants to make reading
easier: they are typed according to some obvious rules, which we collectively
name (Const) in both systems (OB1<: and ours).

4.1 Self-application interpretation of objects

Self-application interpretation has been introduced by [8]. In [1] the criticism
to this interpretation is that it is unsuitable w.r.t. subtyping, because the
abstractions in front of method bodies makes the type of the interpretation of
an object term contravariant in the self type.

Let us consider the ς-term:

a2
∆= [l1 = ς(x)3, l2 = ς(x)x.l1 ⇐ ς(y)x.l1 + 1].

In system OB1<: it can be typed by σ
∆= [l1 : int, l2 : []]:

x : σ ` 3 : int
(Const)

x : σ ` x : σ
(Var)

x : σ, y : σ ` x : σ
(Var)

x : σ, y : σ ` x.l1 : int
(Val Select)

x : σ, y : σ ` x.l1 + 1 : int
(Const)

x : σ ` x.l1 ⇐ ς(y)x.l1 + 1 : σ
(Val Update)

x : σ ` x.l1 ⇐ ς(y)x.l1 + 1 : []
(Val Sub)

` a2 : σ
(Type Object)

6

E, x : A ` x : A
(Var)

E, xi : [li : Bi
i∈I] ` bi : Bi ∀i ∈ I

E ` [li = ς(xi)bi
i∈I] : [li : Bi

i∈I]
(Type Object)

A ≡ [li : Bi
i∈I]

E ` a : [li : Bi
i∈I] j ∈ I

E ` a.lj : Bj
(Val Select)

E ` a : A E, y : A ` b : Bj j ∈ I

E ` a.lj ⇐ ς(y)b : A
(Val Update)

E ` a : A E ` A <: B

E ` a : B
(Val Sub)

Figure 2: Typing rules of type assignment system OB1<:.

Its interpretation is

[[a2]]S
∆= 〈l1 = λx.3, l2 = λx.x· l1 := λy.(x· l1)x + 1〉

In CDV R
ω we may assign to [[a2]]S the type σ1

∆= 〈l1 : ω → int, l2 : ω〉, which is
close to the original type of a2 in OB1<:; but we can also deduce

σ2
∆= 〈l1 : σ1 → int, l2 : σ1 → σ1〉.

In fact:

x : σ1 ` 3 : int
(Const)

` λx.3 : σ1 → int
(→I)

x : σ1 ` λy.(x· l1)x + 1 : ω → int
x : σ1 ` x· l1 := λy.(x· l1)x + 1 : σ1

(〈〉U)

` λx.x· l1 := λy.(x· l1)x + 1 : σ1 → σ1

(→I)

` [[a2]]S : σ2

(〈〉I)

since
x : σ1, y : ω ` x : σ

(Var)

x : σ1, y : ω ` x· l1 : ω → int
(〈〉E)

x : σ1, y : ω ` x : ω
(ω)

x : σ1, y : ω ` (x· l1)x : int
(→E)

x : σ1, y : ω ` (x· l1)x + 1 : int
(Const)

x : σ1 ` λy.(x· l1)x + 1 : ω → int
(→I)

These types are not that different from those which are derivable for a2 in
OB1<:; moreover the occurrence of ω seems to be connected to their recursive
nature. But [[a2]]S is a normal form (and a value): by analogy with untyped λ-
calculus and the characterization of strongly normalizing terms in system CDV
(see [7, 9]), we expect that it should be typable without any occurrence of ω,
both in the conclusion and in the derivation. This is actually the case. Let τ, ρ
be any types (possibly type variables) without occurrences of ω; define

σ3
∆= 〈l1 : τ → int, l2 : ρ〉.

7

Then:

x : σ3 ∧ τ, y : τ ` x : σ3 ∧ τ
(Var)

x : σ3 ∧ τ, y : τ ` x : σ3
(∧E)

x : σ3 ∧ τ, y : τ ` x· l1 : τ → int
(〈〉E)

x : σ3 ∧ τ, y : τ ` x : σ3 ∧ τ
(Var)

x : σ3 ∧ τ, y : τ ` x : τ
(∧E)

x : σ3 ∧ τ, y : τ ` (x· l1)x : int
(→E)

x : σ3 ∧ τ, y : τ ` (x· l1)x + 1 : int
(Const)

x : σ3 ∧ τ ` λy.(x· l1)x + 1 : τ → int
(→I)

Therefore, writing N
∆= (x· l1)x + 1, we have

x : τ ` 3 : int
(Const)

` λx.3 : τ → int
(→I)

x : σ3 ∧ τ ` x : σ3 ∧ τ
(Var)

x : σ3 ∧ τ ` x : σ3
(∧E)

x : σ3 ∧ τ ` λy.N : τ → int
x : σ3 ∧ τ ` x· l1 := λy.N : σ3

(〈〉U)

` λx.x· l1 := λy.N : σ3 ∧ τ → σ3
(→I)

` [[a2]]S : 〈l1 : τ → int, l2 : σ3 ∧ τ → σ3〉
(〈〉I)

As a matter of fact we conjecture the stronger statement: if CDV R is obtained
from CDV R

ω by deleting ω from the type definition, and eliminating rule (ω)
from the system, then M ∈ ΛR is typable in CDV R if and only if it is strongly
normalizing. If the full reduction of ς-calculus is considered, we also conjecture
that any term [[a]]S , such that a is typable in OB1<:, is typable in system CDV R

if and only if a is strongly normalizable in the ς-calculus.

As the last example shows, the interpretation of the self-variable can be
typed in a non uniform way. Indeed [[[li = ς(xi)bi

i∈I]]]S is typed (among many
other possibilities) by 〈li : σi → τi

i∈I〉, for some σi, τi, where the σi are not
necessarily equal.

This, which surely sounds odd to those familiar with typings of object calculi,
is sound in our perspective: in fact in the derivation of the type of object
interpretations the judgment xi : σi does not mean “the type of this object is
σi”, being the type we derive just a predicate of records. It is indeed clear that
the notion of self is not immediately translated into the interpretation of object
terms, rather it is implicit in the translation of method invocation.

We only observe that it is possible to collect all the assumptions made
about the self-variable into a uniform typing: indeed any derivation of [[[li =
ς(xi)bi

i∈I]]]S : 〈li : σi → τi
i∈I〉 can be transformed into a derivation of

[[[li = ς(xi)bi
i∈I]]]S : 〈li :

∧
j∈I σj → τi

i∈I〉.

4.2 The recursive record interpretation of objects

Under recursive-record interpretation, ς-terms are translated as follows:

[[x]]R ∆= x

[[[li = ς(xi)bi
i∈1..k]]]R ∆= Y(λx.〈li = [[bi]]R[x/xi] i∈1..k〉)

[[a.l]]R ∆= [[a]]R · l

8

where Y ≡ λf.(λx.f(xx))(λx.f(xx)) is Curry paradoxical combinator. This
interpretation is partial, as there is no clear way to translate overriding.

Let us consider the following untyped ς-term:

a1
∆= [l1 = ς(x)3, l2 = ς(x)x.l1].

In system OB1 this term can be typed by σ
∆= [l1 : int, l2 : int], with derivation:

x : σ ` 3 : int
(Const)

x : σ ` x : σ
(Var)

x : σ ` x.l1 : int
(Val Select)

` a1 : σ
(Type Object)

Its interpretation in ΛR is:

[[a1]]R
∆= Y(λx.〈l1 = 3, l2 = x · l1〉)

In system CDV R
ω we give [[a1]]R essentially the same type 〈l1 : int, l2 : int〉. First

consider the derivation:

x : ω ` 3 : int
(Const)

x : ω `: x · l1 : ω
(ω)

x : ω ` 〈l1 = 3, l2 = x · l1〉 : 〈l1 : int, l2 : ω〉
(〈〉I)

` λx.〈l1 = 3, l2 = x · l1〉 : ω → 〈l1 : int, l2 : ω〉
(→I)

Setting σ1
∆= 〈l1 : int, l2 : ω〉, we have that:

x : σ1 ` 3 : int
(Const)

x : σ1 ` x : σ1
(Var)

x : σ1 ` x · l1 : int
(〈〉E)

x : σ1 ` 〈l1 = 3, l2 = x · l1〉 : 〈l1 : int, l2 : int〉
(〈〉I)

` λx.〈l1 = 3, l2 = x · l1〉 : σ1 → 〈l1 : int, l2 : int〉
(→I)

Combining these two derivations by (∧I) rule, we get:

` λx.〈l1 = 3, l2 = x · l1〉 : (ω → σ1) ∧ (σ1 → σ2), σ2
∆= 〈l1 : int, l2 : int〉.

Since the combinator Y has type (ω → σ1)∧ (σ1 → σ2) → σ2 (among infinitely
many others), we conclude that, by (→ E):

`CDV R
ω

[[a1]]R ≡ Y(λx.〈l1 = 3, l2 = x · l1〉) : 〈l1 : int, l2 : int〉.

References

[1] M. Abadi, L. Cardelli, A Theory of Objects, Springer 1996.

[2] H.P. Barendregt, The Lambda Calculus, Its Syntax and Semantics,
2nd ed. North-Holland 1984.

9

[3] H.P. Barendregt, M. Coppo, M. Dezani, “A Filter Lambda Model
and the Completeness of Type Assignment”, JSL 48, 1983, 931-940.

[4] G. Boudol, “The recursive record semantics of object revised”, LNCS
2028, 2002, 269-283

[5] U. de’Liguoro, “Characterizing convergent terms in object calculi via
intersection types”, LNCS 2044, 2001.

[6] U. de’Liguoro, “Subtyping in logical form”, Proc. of ITRS’02,
ENTCS n. 70.

[7] M. Dezani, E. Giovannetti, U. de’ Liguoro, “Intersection types, λ-
models and Böhm trees”, in M. Takahashi, M. Okada, M. Dezani
eds., Theories of Types and Proofs, Mathematical Society of Japan,
vol. 2, 1998., 45-97.

[8] S. Kamin, “Inheritance in Smalltalk-80: a denotational approach”,
POPL’ 88, 1988, 80-87.

[9] J.L. Krivine, Lambda-calcul, types et modèles, Masson 1990.

[10] J.C. Mitchell, Foundations for Programming Languages, MIT Press,
1996.

[11] S. van Bakel, Intersection Type Disciplines in Lambda Calculus and
Applicative Term Rewriting Systems, PhD Thesis, University of Ni-
jmegen, 1993.

[12] J. Wells, “The essence of Principal Typings”, LNCS 2380, 2002, 913-
925.

10

