A Distributed Object-Oriented language
with Session types

Mariangiola Dezani-CiancaglihiNobuko Yoshid3,
Alexander AherA, and Sophia Drossopoul®u

1 Dipartimento di Informatica, Universita di Torino
2 Department of Computing, Imperial College London

Abstract. In the age of the world-wide web and mobile computing, progra
ming communication-centric software is essential. Thugg@ammers and pro-
gram designers are exposed to new levels of complexity, asabnsuring the
correct composition of communication behaviours and guesng deadlock-
freedom of their protocols.

This paper proposes the languagg,os a simple distributed object-oriented
language augmented with session communication primitires types.Lqoos
provides a flexible object-oriented programming style fiouctural interaction
protocols by prescribing channel usages within signatofesstributed classes.

We develop a typing system fatyo0s and prove its soundness with respect
to the operational semantics. We also show that in a webdyfyqos program,
there will never be a connection error, a communicationremor an incorrect
completion between server-client interactions. Theseltesiemonstrate that a
consistent integration of object-oriented language featand session types can
statically check the consistent composition of commuidcaprotocols.

1 Introduction

In distributed systems, physically separated (and pakytnobile) computational en-
tities cooperate or compete by passing code and data to otteearExisting theoretical
foundations, which have been successful in sequentiatanoging (as structured pro-
gramming [9] and type disciplines for programming langus@8]) require non-trivial
extensions for the distributed setting. Several new isatigs in this setting, including
how to structure communication-based software, how toantaee security concerns
such as confidentiality and integrity, and how to identifyreat behaviour of concur-
rent programs so that we can safely discuss (for examplé@higaition of distributed
software.

The scenario we are considering in the present paper is > at different lo-
cations interacting by means object-orientecdcode. Distributed objects are one of the
most popular programming paradigms in today’s computingrenments [20], natu-
rally extending the sequential message-passing-origateaiigm of objects. In current

* Work partially supported by the Royal Society, by EU withie tFET - Global Computing ini-
tiative, project DART IST-2001-33477, and by EPSRC Advahgellowship (GR/T03208/01)
and EPSRC GR/R33465/02, GR/S55538/01 and GR/T04724/01.

2 Dezani, Yoshida, Ahern and Drossopoulou

practice, however, code is often written in terms of bar&kebbased communications
[21]; it consists of isolated method invocations and resuand there is no way to as-
certain that the code conforms to the intended structunetefaction.

Therefore, the quest for frameworks to enable the expnesdistructured interac-
tion, and for ways to assure the safety of the resultirigraction protocolsbased on
that structure, are concerns of paramount importance.

Session typedirst introduced in [15], can specify protocols of commuation by
describing the sequence and types of entities read on aeh&onexample, the session
type lint.lint.?bool.end expresses that twiat-values will be sent, thenlaool-value is
expected as an input, and finally that the protocol is coragleThus, session types
provide a natural way to specify the communication behavida piece of software,
and allow verification that several pieces of software afelgaomposed.

Session types have been widely used to describe protocaldf@ment settings,
i.e. for Tecalculus-based formalisms [4,5, 13,15, 17, 25], for CORRA], for a A-
calculus with side-effects [14], for a multi-threaded ftinnal language [27], and re-
cently, for a W3C standard description language for webiceswcalled Choreography
Description Language (CDL) [29]. To our knowledge, the gntgion of session types
into an object-oriented language (even a small, core aad¢als in [3, 10, 18]) has not
been attempted so far.

In the present paper we argue that a seamless integratiolass-lcased object-
oriented programming and session types is possible, ahthieesulting combination
offers a powerful framework for writing safe, structuredtdbuted applications with
a formal foundation. We substantiate our proposal throhgHanguageqoes a Dis-
tributed Object-Oriented language with Session types

By extending class and method signatures to include thestgpesessions, we
achieved a clean integration of session types into the bls=d, object-oriented paradigm.
Through a combination of remote method invocation (RMI).tandard distributed
primitive in objects, session-based distributed prineiiy17, 25] and linear interactions
[16,19], we obtained a flexible high-level programming stftr remote communi-
cation. We also found that the functionality of branchingl aelection constructs in
session types [4, 5, 13-15, 17, 25-27] can be compensatedthypds, a natural notion
of branching in objects. Subtyping on the branching typ&s28] is, then, formalised
through a standard inheritance mechanism.

Although we did not include branching and selection coms$srin Lyo0s We did
include a more specialized construction: conditional aecative session types. For
example, the conditional session typet!!(?char,!float).!int.end expresses that an
integer will be sent followed by a boolean. If this booleartrige, then a character
will be received, otherwise a float will be sent. Finally, ateger will be sent and the
session will complete. Similarly, the iterative sessigmetyint.!(?char.!float)*.!int.end
expresses that an integer will be sent followed by a boolé#ris boolean igrue, then
a character will be received, and then a float will be sent,thedorocess will iterate
until a false is sent. An integer will then be sent, and the session will glete. Such
types allow us to express protocols that require condittooarepetition orthe same
channel

A Distributed Object-Oriented language with Session types 3

To focus on the introduction of session typegos does not include language
features such as exceptions [2], synchronisation, ssai#din [1], class (down)loading
[1,11], code or agent mobility [1, 7, 28], polymorphism [8,27], recursive types [26]
or correspondence assertions [4, 5]. We believe that thesion of such features into
Lgoosis possible, albeit not necessarily trivial.

A key point for the safety of session communication is chalinearity. To check
linearity by typing in an imperative object-oriented sedgtiwhere object fields can con-
tain channels requires sophisticated types, see for exafhp]. In Lyoos channel lin-
earity as in [4,5,13-15,17, 25, 27] comes from creating wapeifresh channel name
every time a session starts. Typing then ensures that alinzoritation in the current
session uses this new channel, and that after the sessiomjdeated there are no fur-
ther occurrences of this channel. In this way we also avadhted to deal with opening
and closing operations on channels [27].

Apart from guaranteeing that all communications have thpeeted types (sound-
ness), our type system guarantees that in a a well-tygegiprogram, there will never
be a connection error.€.request and accept on same channel will have the same type),
nor a communication error.€. never two simultaneous send or receive on same chan-
nel), nor an incorrect completion between server-clietgractions i(e. after a session
started, it will complete on each of the participants, usikbere is an exception, or di-
vergence, or an unsuccessful attempt to start a furtheios@s$hus, the type system
can statically check the consistent composition of comigation protocols.

The soundness of our system is weaker than that of all systémmsssion types
for t-calculus processes [4,5,13,15,17, 25]. In fact all thgseemss assure a perfect
pairing between processes willing to communicate. Thibtaioed simply by checking
the compatibility of type environments before putting prsses in parallel. Our system
instead, following the approach of [14,27], only ensures ¢ communication will
safely evolveafter starting there is no guarantee that processes ready to start arsessio
will ever find a companion. It is not difficult to add to our sgist a compatibility check
between environments to ensure the stronger soundnessskstabove, but we chose
to avoid it since our aim is to model an open distributed systdere new processes can
appear at run time, and so no global assumption on safetydagecan be guaranteed.

In the remainder, Section 2 illustrates the basic ideagg§sthrough an example.
Section 3 defines the syntax of the language. Section 4 pesthenoperational seman-
tics. Section 5 illustrates the typing system. Section Geigted to basic theorems on
type safety and communication safety. Section 7 concludes.

A preliminary version of this paper is [8].

2 Example

The following example demonstrates some of the featureg ;3 It describes a situ-
ation where a seller employs an agent to sell some item to boyer for the best price
possible:

3 Note that in order to write our example more naturally we wsegal constructs which are not
part of our minimum languagéqoes i-€. types float and void, methods without parameters,
local variables, and conditionals, which can easily be ddde s

4 Dezani, Yoshida, Ahern and Drossopoulou

The agent begins negotiations by asking the seller bothtise pnd by the min-
imum price. Then the agent sends the price to the buyer. Therpupon receipt of
this price, makes an offer which he sends to the agent. Th& agkeulates whether the
offer exceeds the minimum price and notifies the seller andbtiyer accordingly. If
the offer does not exceed the minimum price then the ageitegthe seller to lower
his minimum price and the negotiation iterates. Note howévat the agent may now
communicate with a different buyer, but will continue comruating with the same
seller.

The example consists of classkgent, Buyer, andSeller, each of which we shall
now discuss separately:

class Agentextends Object {
float price, minPrice; /I seller’s asking and minimum price
float offer; /I the offer made by the buyer

bool tryToSell () cl1: !float.?float .! bool.end {
/I connect with a buyer
request cl : !float.?float .! bool.end {
cl.sendprice); offer :=cl.receive cl.sendoffer<minPrice);
return (offer <minPrice); } }

void mediate () c2: Aloat.?float .! (?float)*.end {
/I connect with a seller
request c2 loat.?float .! (¥loat)*.end {
price := c2.receive minPrice :=c2.receive
c2.sendWhile(tryToSell())
/I if the value of tryToSell () is true
{ minPrice :=c2.receive } = }}

The clasAgent represents the agent, with fielpisce to store the asking price, and
minPrice to store the minimum price. The signature of the methgdoSell contains
the type of the channel , i.e. !float. ?”loat.!bool.end, thus indicating that1 will send
onefloat value, will then receive #oat value, and then sendtmol value.

Indeed, in the body of this method, the agent asks for a cdiomewith a buyer
through a channeatl by the statementequestcl ..., which must be matched by a
statemenacceptcl ... at another node in the network.

In generalacceptus{e} represents the creation of a new server-side socket as in

thejava.net.ServerSocket class. Hera can be either a public channel nam@s in line

6 of classBuyer) or a variablex whose value is a public channel namén both cases
the namec is analogous to the port used to instantiate SbeverSocket, which is the
port on which the server will listen for connections. Exéantproceeds when another
node in the network contains a statemestjuestu’s{e’} whereu’ is either the name
c or a variable whose value is The statementequest is similar to the creation of a
new client-side socket from thjeva.net.Socket class. Here the namecan be thought
of as corresponding to the hostname and port number of thrersswcket. When these
match, execution continues and a new private channel igectda connect the two

© ® N o O A W N B

A Distributed Object-Oriented language with Session types 5

nodes. Execution of ande’ proceeds concurrently, with all occurrencesioh e and

all occurrences of’ in ¢ replaced by the name of the just created channel. So both
public channel names and channel variables play the roldagEpolders in session
bodies, since they are replaced by restricted and fresmehaames.

In the methodryToSell, after the connection has been establishedin the body
of therequestcl ..., the agent sends the asking pricé.6endprice)), then receives
the buyer offer along the same channgfdr := c1.receive. Lastly he compares the
offer with the minimum price and then decides on behalf oftthger whether the offer
was successful, and tells the buyer througi{cl .sendoffer < minPrice)).

The signature of the methadediate contains the type of channe, i.e. c2 :
loat.?float.! (¥loat)*.end, which is aniterative session type, and which indicates that
c2 will receive twofloats and then send laool; it that boolean is true, it will iterate,
otherwise it will be the end of the session. The body of metinediate asks for a
connection through channe?, receives the asking and the minimum price along that
channel, and then attempts a sale using methgbSell (which returns a boolean). It
sends the value afyToSell along channet2 to the seller; if the value isrue, then it
iterates, by receiving a new asking price along chanel

class Buyerextends Object {
float price; // seller’s asking price
float offer; // offer made by the buyer

void buy() c1: !float.?float .! bool.end {
acceptcl !float.?float .! bool.end {
/I connect with an agent
price :=cl.receive offer :=....; cl.sendoffer);
if cl.receivethen ... else ... } }

The clasBuyer represents the buyer, with fieldsce, offer, with the obvious mean-
ing. In the methoduy, the buyer connects with some agent, receives the askiog, pri
calculates his offer and send it. He then receives a booledigating whether the
seller's agent accepted the bid, and proceeds with apptepaictions. The signature
of the methoduy contains the type of the chanr#l, i.e. !float. ?”float.!bool.end. No-
tice that this type describes the session from the viewpditite Agent, which is dual
to that of theBuyer.

The classSeller represents the seller, with fielggice andminPrice for the asking
and the minimum price. The type of the chana2lin methodsell is the same that in
mediate in Agent.

The methodsell starts by calculating the asking and minimum prices. After t
connection on channe? is established, the seller sends the asking and minimuragric
along the newly created channel. It then receives a boolalae indicating whether the
negotiations need to continue. If so, then the seller witlgeed with the body of the
receiveWhile. .. statement, and will calculate a new minimum price and sead the
same channel to the agent. This process is repeated ungiétlee receives false.e.
until no more negotiations are required.

6 Dezani, Yoshida, Ahern and Drossopoulou

Our example demonstrates session types and in particelarseéh of branching and
iterative session types to express repetition and comditiexecution over the same
channel?

class Seller {
float price ,minPrice; // asking price and minimum price

void sell () c2: ?loat.?float .! (*loat)*.end {
price:= ... ; minPrice:= ... ;
/I connect to an agent
accept c2 ?loat.?loat .! (loat)*.end {
c2.sendprice); c2.sendminPrice);
c2.receiveWhile
/I if the value received is true, then
{ minPrice:= ... ; c2.sendminPrice);} } }

The present example can be seen as a simplified object-edigatsion of the\uc-
tioneer example in [4]; the main difference is that the type systerfdblising corre-
spondence assertions can detect bad behaviours whichparedyrect in our system.

Our type system guarantees the consistent compositiomafemication protocols
of the various participants. Thus, it guarantees that:

— All communications have the expected typeg.in the methodbuy, in line 8 the
expressiorcl.receivewill return afloat, while in line 9 the same expression will
return abool.

— There will never be a connection errerg.when linel3 of methodmediate estab-
lishes a connection, it will only be with a channel of the agpiate type.

— There will never be a a communication errerg.when linel4 of methodmediate
performsc2 .receive, there will not be a simultaneousceiveon channet?.

— There will never be an incorrect completion between seclient interactionse.qg.
once the session in linE3 of mediate started, it will complete in each of the par-
ticipants, unless there is an exception, or divergenceahtiqular notice that all
iterations in linel5 will be successful.

3 A Distributed Object Oriented Language with Sessions

User syntax We distinguishuser syntaxfor programs at a local node, amdntime
syntax which occurs only at runtime as intermediate forms. Weohtice the user syn-
tax in Fig. 1. It is an extension of FJ [18], MJ [3] and DJ [1] (khomitting the new
distributed primitives introduced in [1]), augmented wjthimitives for session com-
munication [5, 15,17, 27].

4 In earlier work [8] we had shown sessions as first class valiges. objects containing ses-
sion channels), assigning session values to session hewia®@ssion types carrying session
types, and nesting of sessions. However these constrcteasufficient to enforce repeated
execution on theamechannel.

A Distributed Object-Oriented language with Session types 7

(type) t x=C| bool |s
(direction) Ti= 17
(part of session) o= g|tt|THmm | W |nn

(session) s mtend

(meth sig) methSig:=t m (t) X

(class sig) CSig ::= 0| CSig, class C extends C {field* methSig}
(session env) >u=0|Zc:s

(class table) CT ::= 0| CT, class

(class) class::= class C extends C {field" metH}

(field) field 1= ft

(method) meth:=tm (tx) £ {e}

(expression) e &= x| v | this| true| false

| e;e| newC| x:=e | efi=e| ef | e.m(e)
| u.receive | u.send(e)
| u.receivelf{e }{e } | u.sendlf(e){e}{e}
| u.receiveWhile{e } | u.sendWhile(e){e }
| requestu s {e} | acceptu s{e}
(identifier) uil=c]| x
(value) v i=null | c

Fig. 1. User Syntax

The metavariable ranges over types for channels and expressidomanges over class
namess ranges over session types. ? meapsit, while ! meanutput and T ranges
over{!,?}, while end indicates the end of the session.

The metavariabla describepartsof a session. Theonditionalsession party , 1o)
sends a boolean value and proceeds wjtif the value is true, ort, if the value is false.
Similarly % , 1,) receives a boolean value and proceeds wittif the value is true,

T, if it is false. Theiterative session part(fy)* sends a boolean value and if that value
is true, continues withr , iterating. If the value sent is false, this session part finishes.
The meaning of @t)* is similar. Note that, the closing of a sessiend, cannot ap-
pear within a conditional or iterative session part. Thipprrts the design principle
that sessions have to be closed at the level where they weredpin other words, the
responsibility of closing a session stays with the party tpeened it.

To prescribe the channel usage in a method, we introdession environments,
which map channels to session types. Method declaratiorstha shape

tm (tx) X {e}

which is standard, except for the addition>of
A Class signatureCSig, denotes a class’s interface [1]; it contains the types of
fields, its superclass name and method signatures. Thisdeoa lightweight mech-

8 Dezani, Yoshida, Ahern and Drossopoulou

(type) t u=...|chan(t)

(identifier) ui=...]o

(value) vi=...]o

(expression) e :=...| NullExc

(thread) P:=e| P|P

(store) 0 :=0]|0[x—v] |00 (CF:V)
(network) N ::=0[I[P,o,CT] [N|IN| (vu:t)N

Fig. 2. Runtime Syntax

anism for determining the type of remote methods. We assbat€fig is available
globally (this does not restrict generality, since in sttdimplementations unique-
ness of each class is maintained through its digital sigeatin contrast, class tables
(containing method bodies) are maintained on a per-locdtEsis.

The syntax of expressions, e’, is standard except for the four pairs of commu-
nication primitives. The first two lines express standandtay, i.e. parameter, value,
the receivetthis, the literalstrue andfalse, sequence of expressions, object creation,
assignment to parameters or fields, field access and mettiod'toa next four lines
describe the four communication pairs.

The first pair is for exchange of values or channelseceive receives a value or
a channel viar, while u.send(e) first evaluates the expressienthen sends its result
viau.

The second pair is foconditional communicationu.receivelf{e }{e’} receives
a value viau, and if it is true continues withe, otherwise withe’. The expression
u.sendlf(e){e’}{e"} first evaluates the boolean expressigihen sends its result via
u and if the result wasrue continues withe’, otherwise withe”.

The third pair is foiiterativecommunicationu .receiveWhile{e } receives a value
via u, and if it is true continues withe and iterates, otherwise ends. The expression
u.sendWhile(e){e’} first evaluates the boolean expressigithen sends its result via
u and if the result wasrue continues withe’ and iterates, otherwise ends.

The last pair is for establishing connectionsquestu s{e} is for use by clients,
andacceptu s{e} for use by servers. The channetienotes a shared interaction point
which is used for creating new channels. In bathuest...s{e}, andaccept...s{e},
the term{e } (calledsession bodydenotes the block of (a sequence of) expressions in
which the new channel is created at the beginning, and disdaat the end; the session
s prescribes the communication protocol, which is openerthuestor accept

Runtime Syntax The runtime syntax in Fig. 2 extends the user syntax and septs

a distributed state of multiple sites communicating witkbleather. The syntax uses

location names,im, ... which can be thought of as IP addresses in a network.
Metavariable is extended witlhruntime channel typeslenoting the channel types

used only for method invocations. ldentifiets,and valuesy, are extended to allow

for object identifiers ,0’, ..., which denote references to instances of classes. We shall

A Distributed Object-Oriented language with Session types 9

frequently write “o-id” for brevity, and we shall cal andc names We extend ex-
pressions wittNullExc, denoting a null-pointer errofhreadsare ranged over b, P/,
whereP| P’ says thaP andP’ are running in parallel.

A storeco contains local variables and objects, and is short-hand for a sequence
f1 ivi;...;fn 1 v . We apply similar abbreviations to other sequences [1 3&juences
contain no duplicate names.

Networks, writtenN, comprise zero or more located configurations executing in
parallel. We us® to denote the empty networkP, o, CT] to denote the thread exe-
cuting at locatiorl with storec and class tableT, N; | N, is the parallel composition
of two networks, andvu :t)N makes the identifieu local toN.

The binding is standard and we usée)/fv(e) to denote a set of free names/vari-
ables. We say that a class na@eccursfreein a expression if e containsnew C: the
functionfcl(e) returns the set of free class names of

4 Operational Semantics

This section presents the operational semanticss@fs which extends the standard
small step call-by-value reduction of [1, 3, 23]. The reduetelation is given modulo
the standard structural equivalence rules ofmtealculus [22], written=. We define

multi-stepreduction as—% (— U=)*. We only discuss the more interesting rules.
We start by listing the evaluation contexts.

E:= []|Ef|Eie|x:=E|Ef :=e|o.f:=E|Em(e)|o.m(E)|c.send(E)
| u.sendlf(E){e}{e} | u.sendWhile(E){e}

Notice thatrequestEs{e}, andacceptEs{e}, are not evaluation contextsheither
arerequestu s{E}, acceptu s{E}, u.sendlf(e){E}{e}, u.sendlf(e){e }{E},
u.sendWhile(e){E}, u.receivelf{E}{e}, u.receivelf{e }{E}, oru.receiveWhile{E}
evaluation contexts, because they would allow sessiorelsddirun before the start of
the session, or parts of a conditional or iterative sessioart before determining which
conditional branch should be selected, or whether thetiéerahould continue.

Local Expressions The rules for execution of expressions which correspondhéo t
sequential part of the language are standard [3, 10, 18Y. tDallocal store is modified,
and the rules involve only the local store and the local dakke. In Fig. 3 we give the
rules for object creation and method invocation.

5 Namely, ifrequestEs {e } were an evaluation context, it would replace the name of argla
in E without replacing it ine. For example, then, for some session tgpand some state; ,
wheread; (x) = ¢, and applying also rul&N-RegAcc we would have:

...requestx s{x.receive}...oy ... | ...acceptc s{c.send(3)}...02... —
...requestc s{x.receive}...oj ...||...acceptcs{c.send(3)}...02... —
(vc':s)(..xreceive...oq ... || ...c’.send(3)...0, ...), and execution would be stuck.

For similar reasonsacceptEs{e} is not a context.

10 Dezani, Yoshida, Ahern and Drossopoulou

RC-New .
fields(C) = ft

new C,0,CT — (vo:C)(0,0-[o — (C,f :null)],CT)

C € dom(CT)

RC-LocMeth
o(0)=(C,...) mbody(m,C,CT) = (x,e) mtype(m,C)=t —t’

o.m(v),0,CT — (vx:t)(e[o/this],0- [x — v],CT)

Fig. 3. Expression Reduction

Allocation of new objects, described RC-New, explicitly restricts identifiers, thus
representing “freshness” or “uniqueness” of the addresgistore. The functiofields(C)
examines the class signature and returns the field dedasdtrC.

The method invocation rule RC-LocMeth; the functionmbody(m,C,CT) looks
up m in the local class table, and returns a pair consisting ofnie¢hod code and
the formal parameter name. The functiatype(m,C) looks upm in the global class
signature and returns the type of the method [18]. The receiveplaceshis in the
method body and a new store entrys allocated for the formal parameter

Communication Lggoshas two kinds of communication rules: thoserfemote method
and field invocationand those fosession communicatipmhich are inspired byt
calculus rules [22]. Fig. 4 defines reduction for remote métand field invocation; the
first three rules are for congruence, the fourth rule is stmad.

Rule RN-FId allows reading at locatioh a field of an object stored atdifferent
location, I, . Similarly, RN-FIdAss allows the code in locatioly to assign a value to a
field stored in a different locatiof .

Rule RN-RemMeth describes remote method call; locatignexecutes a method
call where the receiver is an object stored in a differenafion I, : a new runtime
private channet, shared betweel andl,, is created; after that, & the method call
is executed by rul®C-LocMeth; the resultv is then safely sent back from to |; via
this new private channel by RN-CommMeth; sincec is only used oncei.g. it is a
linear channel in the sense of [1, 16, 19)), it is finally diste.

Session Communication The main session communication rules are formalised
Fig. 5. RuleRN-RegAccdescribes opening of sessions: if locatipmequires a session
onu; and locatiorl, accepts a session an and the values af; andu, are the same
channel name, then, a new private charnisl created and; andu, are replaced by
c in the session bodies in the standard way noting that

requestu’s{e}[c/u] =requestu’s{e|c/ul}
acceptu’s{e}[c/u] = acceptu’s{e[c/ul}

n

A Distributed Object-Oriented language with Session types 11

RN-Conf RN-Par
P,0,CT — (Vi :t)(P/,d’,CT) N— N
I[P,0,CT] — (Vi :t)(I[P',d’,CT]) N||Ng — N’||Ng
RN-Res RN-Str
N— N N=Np— Ny=N
(vu :t)N — (vu:t)N N— N
RN-Fld

I [E[OAfi”P?O'l,CTl} H|2[Q,O’27CT2} — |y [E[ViHP,C)j?CTl} ‘||2[Q7027CT2]
02(0) = (C.F 1)

RN-FldAss
l1 [Efo.f:=v]|P.01,CT1][|2[Q,02,CT2] — I1[E[v][P,01,CT1]|[12[Q,0%,CT2]
o edom(02) 02’ =02[0 — 02 (0)[f > v]]

RN-RemMeth
I1[E[o.m(v)]|Po1,CT]||12[Q,02,CT,]

—

(ve:chan(t))(l; [E[c.receive] |P,o1,CT1]]| 2 [c.send(o.m (v))|Q,02,CT2])
02(0)=(C,...) mtype(m,C)=t’' -t c fresh

RN-CommMeth
(ve:chan(t))(l1 [Ex[c.send(v)][Q1,01,CT1] |12 [Ez[c.receive]|Q2,02,CT2])

—

|1 [El[null] ‘ Q1 ,01 7CTl] H |2 [EQ[V} |Q2 ,02 7CTQ]

Fig. 4. Network Communication

but importantly

requestu s{e}[c/u] =requestus{e}
acceptus{e}[c/u] =acceptus{e}

i.e. substitutions of synchronisation channel names cannoerimside nested sessions
synchronising on the same name. The freshnessgfarantees privacy and linearity
of the session communication betwdgnandl,. Notice that stores associate values
with variables, so ifi; is a variable of type thena; (u;) will be a channel name, and
similarly foru,.

12 Dezani, Yoshida, Ahern and Drossopoulou

RuleRN-CommSesdormalises the session communication where sent wahges
the typet; after a series of applications of this rule, the sessionmetas and the
channek has typeend.

In rules RN-CommSesslf-trueand RN-CommSessif-falsefirst a boolean is ex-
changed, and then according to the value of this booleanxdbeugon proceeds with
the first or the second branches.

Rule RN-CommSessWhilesimply expresses the iteration by means of the condi-
tional.

RN-RegAcc
l1 [Eq[requestuy s{e1 }]|Q1,01,CT1]||l2 [Ex[acceptus s{es }][Q2,02,CT2]

—
(VCIS)(ll[El[el[c/ulﬂQl],Gl?CTl}H|2[E2[€2[C/UQ”|Q270'2,CT2]) c fresh
uj anduy are the same channel namemr(uy) =up oru; =02 (up)0roy (uy) =02 (uz)

RN-CommSess
(ve:tt.s)(l1[Erfc.send(v)]|Q1,01,CT1] |12 [Ez[c receive]|Q2,02,CT2])

—

(ve:s)(l1 [Ex[null]|Q1,01,CT1]][12[E2[v]|Q2,02,CT2])

RN-CommSesslf-true
(ve: T, m).s)
(|1 [El[clsendlf(true){el }{62 H |Q1 ,01 7CTl] H I [Ez[CAI'eCGiV8|f{63}{e4}] ‘ Q2,02,CT>])

—

(ve:my .s)(l1[Eele1]]Q1,01,CT1]|I2[Ez[es]| Q2,02,CT2])

RN-CommSessilf-false
(ve:t(m ,T).s)
(I1 [El[c.sendlf(false){el }{62 }] ‘ Q1,01 7CTl] H I [EQ[C.I’ECEiVG|f{€3}{e4}] ‘ Q2,02 7CTQD

—

(ve:1n.s)(l1[E1le2]|Q1,01,CT1] |12 [Ex[ea]| Q2,02 ,CT2])

RN-CommSessWhile
(Ve T(m*.s)
(11 [Ex[c.sendWhile(e){e1 }]|Q1,01,CT1] || I2 [E2[c.receiveWhile{es }]|Q2,02,CT2])
(ve:T(m T (m*,€).s)(l1 [Ex[c.sendlf(e){eq ;c.sendWhile(e){e1 } }{null}]|Q1,01,CT1] ||
I2 [Ez[c.receivelf{es;c.receiveWhile{es } }{null}]| Q2,02,CT>])

Fig. 5. Session Communication

A Distributed Object-Oriented language with Session types 13
5 Session Types and Typing System

The type system of 405 has three kinds of typing judgments. The judgments for
threads and nets are standard, they just tell us that und@ircassumptions on the
types of variables, o-idshis and channels, the thread and respectively the net is well-
formed. So the judgments have the shape:

M-P:thread and '+ N:net
where the environmenfitis defined by:
M:=0|rx:t|Mo:C|rl,this:C|INc:s|lc:chan(t)

When typing expressions we need to take into account hovosetypes are “con-
sumed”,i.e. when an input or an output communication prescribed by da®sesgoe
takes place througleceiveor sendinstruction. For this reason we add session environments
to both sides of typing judgments, giving them the shape

Mske:t;¥

whererl is the environment, is the type ok, ¥ and¥’ give the session types of channels
before and after the evaluationefWe call them thegre andpost session environment
respectively.

Notice that sinceequest andacceptinstructions contain the session types of the
connecting channels and method declarations contain #s@seenvironment (i.e. the
session types of the used channels), we could avoid globaifrgstions on session types
of channel names. The cost would be a run time check that #stosetypes in request
and accept coincide before starting sessions.

In the following subsections we will discuss the more inséirey rules. We only
mention here that there is a standard subtyping (denoted:ywhich we assume
causes no cycle as in [3, 18], and which is judged on the cigsatsire.

Well-formed class tables Methods, classes and class tables are well-formed with re-
spect to an environment which must contain all session enmients of methods. This
is prescribed by the rule checking that a method is ok:

M-ok
>, this:C,x :t1;0Fe:t;0 2CT
mtype(m,C) =t1 —t2
M this:CHt,m(t;x)2{e}:okinC t <ty

The environmenk is propagated in the rules for checking well-formednesdadses
and class tables.

Notice that both the pre and the post session environmentygong the method
body are empty. This ensures that all send and receive atistng are inside sessions
as we will see in discussing thread and network typing.

14 Dezani, Yoshida, Ahern and Drossopoulou

Expression typing The rule for typing expression composition illustrates st fise of
session environments:
TE-Seq
Mste:t;s ryre :t;5"
Mkee :t;3

The post session environmext of e typing is used as pre session environment for
typinge’. The typing rule for method calls:

TrEzl\ﬁeeth (o4 ke :t;5 mSignatureém;C)ﬁg r
MZrem(e):t;%" miype(m,C) =t7 —t
; . it t/ < t”

demands that the method signaturenofin C (determined by the method signature
look-up functionmsignature(m,C)) is contained in the environment Further, the
session environments efande’ must agree as in rul€e-Seq Finally the type ofe’
should conform to the method type returned by the look-ugtion mtype(m,C).

Session typing The importance of the session environments in expressigingyis
made clear by the rules for typirsgnd andreceive:

TE-SessSend TE-SessReceive
M>ke:t;¥ cilts

M2k c.sende): Object c:s IMZ,c?.skc.receive: t;X c:s

The key observation is that in both cases the typing consexasly the output or the
input type that heads the session type of the current chaniiéle typing ofsend also
takes into account that the typinge®tan modify the session environment.

The typing rules for opening sessions are:

TE-Req
Mu:s;Z,c:skelc/ul:t;¥,ciend c ¢fn(e) c ¢&dom(l)

Mu:s;ZFrequestus{e}:t;¥
TE-Acc
Mu:s;Z,c:skelc/ul:t;¥,c:end c &fn(e) c ¢dom(l)

Mu:s;ZFacceptus{e}:t;¥

wheres denotes thelual session type of defined inductively byend = end, 't s =
.5, %.s =!t .5, and the substitutioft /u] obeys the same conditions as given in Sec-
tion 48

6 Notice that the name of the channel, is replaced by a fresh channel name This is so,
because, a) may be a variable, bl contains only constant channels, and b) it allows us to
type nested session openings of the same nargeequestcs{...requestcs{...}...}.

A Distributed Object-Oriented language with Session types 15

The key point is that these rules enslinear use of runtime session channels; for
every new session, there should be exactly one receiveingait receive front, and
one sender waiting to send onThis is guaranteed by replacing the opening chaanel
in e by a fresh channel. The typeend of c in the post session environment of typing
ensures that the session is completed after evaluationNdtice that does not appear
in the conclusion.

The remaining rules give types for conditional and itemtbession types. Note
that within iterations depending on the value received/sera channet, rulesTE-
SessRecWhilandTE-SessSendWhildorbid communication on any other open chan-
nel except forc; e.g.for c.sendWhile(e’){e} andc.receiveWhile{e}, the typing
rules require for any communicati@n.receive or ¢’.send(...) within e thatc=c’, or
that the communication is enclosed within an inaeceptc’s{...} orrequestc’s{...}.
This constraint is clearly necessary in order to get soussloBcommunications (The-
orem 6.3).

TE-SessReclf
M>cmske;:t;¥ cis TZch.skes:t;T c:s

M %,c:2(m,).s c.receivelf{e; }{eo}: t;% c:s
TE-SessSendlf
2+ e:bool; X M c:m.skey:t;¥ c:s M>c:mhskey:t;Y c:s
M2 cl(m,m).sc.sendif(e){e; }{ea}: t;% c:s
TE-SessRecWhile
M c:mske:t;Z,c:s
M2, c:Xm".s Fc.receiveWhile{e}: t;,c:s

TE-SessSendWhile
MXke:bool;X T3 cimske’:t;3,c:s

M Z,c:1(m".s c.sendWhile(e){e’}: t;Z,c:s

Thread and Network typing RuleTT-Start promotes expressions to threads; all chan-
nels of the post session environment should be compleet¢ typed byend) and all
sessions in the pre session environment should conforneterthironment.

TT-Start
M{citsi|iel}re:t;{cicend|iel} VielciisielVei:isiel

[+ e:thread

Notice that when all send and receive operations are ingisigians, both the pre and
the post session environments for typingan be empty.

Rule TN-Conf states that a location is a well-typed network in an envirentif
its threadP is well-typed, its store and class tableT areok in the same environment,
and if all free classes iR as well as their superclasses (we denote this séti{ly)) are
locally available — the latter is guaranteed through theiirementfcl(P) C dom(CT)

16 Dezani, Yoshida, Ahern and Drossopoulou

and the last condition.

TN-Conf

N-P:thread THo:ok THCT:ok fcl(P) C dom(CT)
VC € dom(CT) .C<:D Vv D € fcl(C,CT) = D &€ dom(CT)

I +1[P,0,CT] :net

6 Type Safety and Communication Safety

As expected, the type system of Section 5 satisfies the dulgjgaction property.This
is formulated as follows.

Theorem 6.1 (Subject Reduction).

— IfI;SFe:t;¥, andl ook, andl + CT:ok ande,0,CT — (vii :T')(e’,0’,CT)
thenl, i :t';Se’:t/;3 witht’ <:t andl, i : t' F o’ ok.

— If I+ P:thread, andl + 0ok, andl - CT:ok and Ro,CT — (Vi :t')(P',d’,CT)
thenl, i : t' - P':thread andl, i : t' o’ : ok.

— If T = N:net, and N— N’ thenl™ - N’ :net.

The proof is based on generation lemmas, substitution lesvand a detailed analysis
of channel use.

Even more interesting than subject reduction, are theviatig properties of gqos

P1 no connection errorcan occurj.e. request and accept on the same channel must
have the same session type;
P2 no communication errocan occurj.e. in the same net there cannot be two sends
or two receives on the same channel;
P3 after a session has begthe required communications are always executed in the
expected order
P4 after a session has begalhthe required communications are executedess one
of the following situations occurs:
— a null pointer exception is thrown;
— the computation diverges; or
— there is a request or accept instruction waiting for the éhsdtuction.

These properties hold for a network obtained by reductiomfan initial network. We
say that a networll is initial if (writing [o<i <, Ni for No|[Ny || ... || Na—1):

— F N:net is derivable using rul@T-Start with empty session environments in the
premises;

— N = (vZ:5)([Mo<i<n li [€i,0,CT;]), where each; is a user expression; and

— Nis closed.

A Distributed Object-Oriented language with Session types 17

Notice that the condition on the use of rdlé-Start is satisfied whenever all send

and receive instructions are inside method bodies, a Hatuwae in the object-oriented
paradigm.

In order to formulate propertié3l andP2, we add a new consta@bnmErr (con-

nection or communication errdto the network and the following rule:

|1 [El[e] |Q1 ,01 ,CTl] || |2 [Eg[e/] |Q2 ,02 ,CTz] — ConmErr

if e clashesawith e/, wheree clashes witke’ when

e,e’ € {c.receive c.send(...),c.receivelf{...}{...},c.sendIf(...){...}{...},

c.receiveWhile{...},c.sendWhile(...){...},requestcs{...} ,acceptcs{...}}

and they do not occur both in the premise of one of the rulesgn3- In other words
whene ande’ belong both to the above set they do not clash i c.receive and

e’ = c.send(ep), or e = c.receivelf{ep}{e1} ande’ = c.sendlf(ep){e]}{e5}, or

e = c.receiveWhile{eo} ande’ = c.sendWhile(ep){e’}, ore =requestcs{eq} and

e’ = acceptcs{ey} or vice versa.

We can now prove that from initial nets, we never reach a cardigon containing
clashing expressions.

Theorem 6.2 ConmErr Freedom). Suppose that (Nis an initial net and N —— N.
Then N does not contaftonmErr, i.e. there does not exist Buch that N= N’ || ConmErr.

The proof of the above theorem is straightforward from thgestt reduction theorem.

For propertie®3 andP4 we formulate the following soundness theorem:

Theorem 6.3 (Soundness).et Ny be an initial net, N —— (vi :t)N, and(vi :t)N —

(ve:s)(vi:t)N & (vc:s)N; by ruleRN-ReqAccwiths =1 .1umR .end. If (ve:is)N;
does not

— produceNullExc or
— diverge or
— stop on a request or accept instruction waiting for the daatiuction

then

(vc:s)N; —— (vc:Ttmp.end)Ny, —— (ve:Th.end)Ns — (vc:end)Ng

with ¢ & fn(Na), where:

— if m= Tt then(vc: R .end)N, — (vc: T, .end)Nz with exactly one application

of rule RN-CommSes®n channet;

— if m= 1(1¢, ") then the first rule involving channelis

o eitherRN-CommSesslf-trueand the application of this rules givésc : 7.1, .end)N,
and(vc : 1.1y .end)N) —— (vc :Tp.end)Ns;

e or RN-CommSessli-falsend the application of this rules givésc :1'’. 1, .end) N,
and(vc:1".1p.end)N) —— (vc : T, .end)Ng;

18 Dezani, Yoshida, Ahern and Drossopoulou

— if T= ()" then the first rule involving channelis RN-CommSessWhileand
the application of this rules give&c : 3.1, .end)N5 with 13 € {(1')*, €} and
(Ve :Tg.Tp.end)N; —— (Ve : Tk .end)Ns.

The soundness proof requires careful analysis of the eafuarder and invariant prop-
erties of networks.

Finally we get:

Theorem 6.4 (Completion of Sessionspuppose plis an initial net, N — N = (vi:
t) Mo<i<n li [ei,0i,CT;] and N is irreducible. Then either ad}; are valueg0<i <n)
orthereisj (0 <j < n)suchthat; € {NullExc, E[requestcs{e'}],E[acceptc s{e'}]}.

7 Conclusions and Further Work

Session types have been successfully applied to thedrsgtiings such as the-
calculus [4,5, 13,15, 17, 25], a multi-threaded functidaafuage [27], to practical set-
tings such as CORBA [26] and a web-services descriptiondagg [29]. WithLgoos
we aimed to link language development to engineering andlatalisation practice.

To our knowledgeLyoos is the first application of session types to a distributed,
object-oriented class-based programming language. Qrigr@ims were to restrict
the number of novel features introduced into the objeatrddd language (we added
only four pairs of primitives for standard session commatian in the user syntax),
and to obtain a simple typing system by extending class aridadesignatures to con-
tain the usage of channels assigned by session types. Wavhittes several example
programs, demonstrating thag,escan express communication in a style that is natural
for programmers from the object-oriented community.

It is worthwhile to notice that our session types are regedgressions of a limited
shape, which can also be denoted by sum and recursion. Bngntgipes instead are
variant types, and therefore the recursive session typgé8pi4, 17, 26] are richer than
ours.

The subtyping relation on session types considered in @]3sZovariant for input,
contravariant for output as in [24] and moreover allow torafeathe number of branches
in branching types. As our session types are regular expresshe inclusion of regular
languages induces a natural notion of subtyping which igpkirbut not interesting,
because it lacks covariance and contravariance of inpatsatputs.

We plan to investigate extensions that would allow chantoetsrry channels, and
channels to be passed as parameters to methods. In partigalavant to allow the
passing of linear channels, through the usertfpes as parameter types; on the other
hand, in order to ensure linearity, we will forbidtypes as the types of local variables
or fields.

Furthermore, we will re-evaluate our design decision ofttng selection primi-
tives from theLyoogsS€SSiON types. While in traditional session types, fuumctiames
are included in typese(g.sell: float. Xloat. (!float)*.end would be the session type of
the seller), inLqo0sthey are not included(g. loat. ?float. (!float)*.endis the type of a
channelsed bysell). With this design decision the structure of the progranriisarily

A Distributed Object-Oriented language with Session types 19

reflected in the classes and their methods, and therefolreotheames were not a part
of the sessions types.

Finally, we wish to evaluate the various designs throughjasece of case studies

and to develop type checking algorithms following [4].

Acknowledgements We are grateful to the anonymous referees, to Kohei Hondh, an
to Simon Gay for pointing out some errors in the examples,somde weaknesses in
the presentation. We are indebted to Dimitris Mostrous fanyinsightful comments.
During and after the presentation at TGC-05 we had manydsterg questions and
suggestions from the participants, in particular from RoBe Nicola, Mark Miller,
Eugenio Moggi, and Davide Sangiorgi. Surely our future woinkthis subject will be
strongly influenced by this useful interaction.

References

1.

11.

12.

13.

14.

Alexander Ahern and Nobuko Yoshida. Formalising Java Rt Explicit Code Mobil-
ity. In OOPSLA '05 (to appear), the 20th Annual ACM SIGPLAN Confazern Object-
Oriented Programming, Systems, Languages and Applicathd®dM Press, 2005.

. Davide Ancona, Giovanni Lagorio, and Elena Zucca. Sifyiplj Types in a Calculus for

Java Exceptions. Technical report, DISI - Universita dn@®e, 2002.

. Gavin Bierman, Matthew Parkinson, and Andrew Pitts. Md:Ifperative Core Calculus

for Java and Java with Effects. Technical Report 563, Usitienf Cambridge Computer
Laboratory, April 2003.

. Eduardo Bonelli, Adriana Compagnoni, and Elsa Guntepethecking Safe Process Syn-

chronization. INFGUC 2004 ENTCS, 2004.

. Eduardo Bonelli, Adriana Compagnoni, and Elsa Gunterrrédpondence Assertions for

Process Synchronization in Concurrent Communicatidnsappear in JFR2005.

. Gilad Bracha, Martin Odersky, David Stoutamire, and iPhiVadler. Making the Future

Safe for the Past: Adding Genericity to the Java Programrhangguage. IMTDOPSLA'98
pages 183-200. ACM Press, 1998.

. Luca Cardelli and Andrew D. Gordon. Mobile Ambienf8heoretical Computer Science

240(1):177-213, 2000. Special Issue on Coordination, DMetyer Editor.

Mariangiola Dezani, Nobuko Yoshida, Alexander Aherrd &ophia Drossopoulou. A Dis-
tributed Object Oriented Language with Session Types.Preliminary Proceedings of
TGC’05 2005. http://www.cs.unibo.it/ sangio/TGCO05/.

Edsger W. DijkstraA Discipline of ProgrammingPrentice-Hall, 1976.

. Sophia Drossopoulou. Advanced Issues in Object Odeh#nguages Course Notes.

http://www.doc.ic.ac.uk/"scd/Teaching/AdvOO.html.

Sophia Drossopoulou, Giovanni Lagorio, and Susan B&sn Flexible Models for Dy-

namic Linking. INESOP’03 volume 2618 of. NCS pages 38-53. Springer-Verlag, 2003.

Manuel Fahndrich and Robert DeLine. Adoption and Fo&uactical Linear Types for
Imperative Programming. IRLDI '02, pages 13-24. ACM Press, 2002.

Simon Gay and Malcolm Hole. Types and Subtypes for Clgarver Interactions. In
ESOP’99 volume 1576 oL NCS pages 74-90. Springer-Verlag, 1999.

Simon Gay, Vasco T. Vasconcelos, and Antonio Ravarasi@e Types for Inter-process
Communication. TR 2003-133, Department of Computing, Esiity of Glasgow, March

2003.

20

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

20.

Dezani, Yoshida, Ahern and Drossopoulou

Kohei Honda. Types for Dyadic Interaction. @®NCUR’93 volume 715 ofLNCS pages
509-523. Springer-Verlag, 1993.

Kohei Honda. Composing ProcessesP®PL'96, pages 344-357. ACM Press, 1996.
Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Uagg Primitives and Type
Disciplines for Structured Communication-based Programgmin ESOP’98 volume 1381
of LNCS pages 22-138. Springer-Verlag, 1998.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadleeatherweight Java: a Minimal
Core Calculus for Java and GICM Transactions on Programming Languages and Systems
23(3):396-450, 2001.

Naoki Kobayashi, Benjamin Pierce, and David Turner. eainTypes andtcalculus. In
POPL’'96 pages 358-371. ACM Press, 1996.

Sun Microsystems Inc. Java home page. http://www.gdtasm/.

Sun Microsystems Inc. The Java Tutorial: Al About Sdske
http://java.sun.com/docs/books/tutorial/networksugkets/.

Robin Milner, Joachim Parrow, and David Walker. A Calsubf Mobile Processes, Parts |
and Il. Information and Computatiqri00(1), 1992.

Benjamin C. Piercelypes and Programming LanguagégIT Press, 2002.

Benjamin C. Pierce and Davide Sangiorgi. Typing and g for Mobile Processes. In
Logic in Computer Sciencd993. Full version inMathematical Structures in Computer
Science Vol. 6, No. 5, 1996.

Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An Intdmaebased Language and its
Typing System. IlPARLE’94 volume 817 oL NCS pages 398-413. Springer-Verlag, 1994.
Antonio Vallecillo, Vasco T. Vasconcelos, and Antoftavara. Typing the Behavior of
Objects and Components using Session Typed-otitasa 2002 volume 68(3) ofENTCS
Elsevier, 2002.

Vasco T. Vasconcelos, Antonio Ravara, and Simon Gagsi&e Types for Functional Mul-
tithreading. ICONCUR’04 volume 3170 of NCS pages 497-511. Springer-Verlag, 2004.
Jan Vitek and Giuseppe Castagna. Seal: A Framework far&&lobile Computations. In
Internet Programming Languagegolume 1686 oL NCS pages 47—77, 1999.

Web Services Choreography Working Group. Web Servitesgdgraphy Description Lan-
guage. http://www.w3.0rg/2002/ws/chor/.

