
A Distributed Object-Oriented language
with Session types?

Mariangiola Dezani-Ciancaglini1, Nobuko Yoshida2,
Alexander Ahern2, and Sophia Drossopoulou2

1 Dipartimento di Informatica, Università di Torino
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Abstract. In the age of the world-wide web and mobile computing, program-
ming communication-centric software is essential. Thus, programmers and pro-
gram designers are exposed to new levels of complexity, suchas ensuring the
correct composition of communication behaviours and guaranteeing deadlock-
freedom of their protocols.

This paper proposes the languageLdoos, a simple distributed object-oriented
language augmented with session communication primitivesand types.Ldoos
provides a flexible object-oriented programming style for structural interaction
protocols by prescribing channel usages within signaturesof distributed classes.

We develop a typing system forLdoos and prove its soundness with respect
to the operational semantics. We also show that in a well-typed Ldoos program,
there will never be a connection error, a communication error, nor an incorrect
completion between server-client interactions. These results demonstrate that a
consistent integration of object-oriented language features and session types can
statically check the consistent composition of communication protocols.

1 Introduction

In distributed systems, physically separated (and potentially mobile) computational en-
tities cooperate or compete by passing code and data to one another. Existing theoretical
foundations, which have been successful in sequential programming (as structured pro-
gramming [9] and type disciplines for programming languages [23]) require non-trivial
extensions for the distributed setting. Several new issuesarise in this setting, including
how to structure communication-based software, how to guarantee security concerns
such as confidentiality and integrity, and how to identify correct behaviour of concur-
rent programs so that we can safely discuss (for example) optimisation of distributed
software.

The scenario we are considering in the present paper is a set of users at different lo-
cations interacting by means ofobject-orientedcode. Distributed objects are one of the
most popular programming paradigms in today’s computing environments [20], natu-
rally extending the sequential message-passing-orientedparadigm of objects. In current
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practice, however, code is often written in terms of bare socket-based communications
[21]; it consists of isolated method invocations and returns, and there is no way to as-
certain that the code conforms to the intended structure of interaction.

Therefore, the quest for frameworks to enable the expression of structured interac-
tion, and for ways to assure the safety of the resultinginteraction protocolsbased on
that structure, are concerns of paramount importance.

Session types, first introduced in [15], can specify protocols of communication by
describing the sequence and types of entities read on a channel. For example, the session
type !int .!int .?bool.endexpresses that twoint -values will be sent, then abool-value is
expected as an input, and finally that the protocol is completed. Thus, session types
provide a natural way to specify the communication behaviour of a piece of software,
and allow verification that several pieces of software are safely composed.

Session types have been widely used to describe protocols indifferent settings,
i.e. for π-calculus-based formalisms [4, 5, 13, 15, 17, 25], for CORBA[26], for a λ-
calculus with side-effects [14], for a multi-threaded functional language [27], and re-
cently, for a W3C standard description language for web services called Choreography
Description Language (CDL) [29]. To our knowledge, the integration of session types
into an object-oriented language (even a small, core calculus, as in [3, 10, 18]) has not
been attempted so far.

In the present paper we argue that a seamless integration of class-based object-
oriented programming and session types is possible, and that the resulting combination
offers a powerful framework for writing safe, structured distributed applications with
a formal foundation. We substantiate our proposal through the languageLdoos, a Dis-
tributed Object-Oriented language with Session types.

By extending class and method signatures to include the types of sessions, we
achieved a clean integration of session types into the classbased, object-oriented paradigm.
Through a combination of remote method invocation (RMI), a standard distributed
primitive in objects, session-based distributed primitives [17, 25] and linear interactions
[16, 19], we obtained a flexible high-level programming style for remote communi-
cation. We also found that the functionality of branching and selection constructs in
session types [4, 5, 13–15,17, 25–27] can be compensated by methods, a natural notion
of branching in objects. Subtyping on the branching types [13, 26] is, then, formalised
through a standard inheritance mechanism.

Although we did not include branching and selection constructs in Ldoos, we did
include a more specialized construction: conditional and iterative session types. For
example, the conditional session type !int .!〈?char, !float〉.!int .end expresses that an
integer will be sent followed by a boolean. If this boolean istrue, then a character
will be received, otherwise a float will be sent. Finally, an integer will be sent and the
session will complete. Similarly, the iterative session type !int .!〈?char.!float〉∗.!int .end
expresses that an integer will be sent followed by a boolean.If this boolean istrue, then
a character will be received, and then a float will be sent, andthe process will iterate
until a false is sent. An integer will then be sent, and the session will complete. Such
types allow us to express protocols that require conditionals or repetition onthe same
channel.
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To focus on the introduction of session types,Ldoos does not include language
features such as exceptions [2], synchronisation, serialisation [1], class (down)loading
[1, 11], code or agent mobility [1, 7, 28], polymorphism [6, 18, 27], recursive types [26]
or correspondence assertions [4, 5]. We believe that the inclusion of such features into
Ldoos is possible, albeit not necessarily trivial.

A key point for the safety of session communication is channel linearity. To check
linearity by typing in an imperative object-oriented setting where object fields can con-
tain channels requires sophisticated types, see for example [12]. In Ldoos channel lin-
earity as in [4, 5, 13–15,17, 25, 27] comes from creating a private fresh channel name
every time a session starts. Typing then ensures that all communication in the current
session uses this new channel, and that after the session is completed there are no fur-
ther occurrences of this channel. In this way we also avoid the need to deal with opening
and closing operations on channels [27].

Apart from guaranteeing that all communications have the expected types (sound-
ness), our type system guarantees that in a a well-typedLdoosprogram, there will never
be a connection error (i.e. request and accept on same channel will have the same type),
nor a communication error (i.e. never two simultaneous send or receive on same chan-
nel), nor an incorrect completion between server-client interactions (i.e. after a session
started, it will complete on each of the participants, unless there is an exception, or di-
vergence, or an unsuccessful attempt to start a further session). Thus, the type system
can statically check the consistent composition of communication protocols.

The soundness of our system is weaker than that of all systemsof session types
for π-calculus processes [4, 5, 13, 15, 17, 25]. In fact all these systems assure a perfect
pairing between processes willing to communicate. This is obtained simply by checking
the compatibility of type environments before putting processes in parallel. Our system
instead, following the approach of [14, 27], only ensures that a communication will
safely evolveafter starting: there is no guarantee that processes ready to start a session
will ever find a companion. It is not difficult to add to our system a compatibility check
between environments to ensure the stronger soundness discussed above, but we chose
to avoid it since our aim is to model an open distributed system where new processes can
appear at run time, and so no global assumption on safety liveness can be guaranteed.

In the remainder, Section 2 illustrates the basic ideas ofLdoos through an example.
Section 3 defines the syntax of the language. Section 4 presents the operational seman-
tics. Section 5 illustrates the typing system. Section 6 is devoted to basic theorems on
type safety and communication safety. Section 7 concludes.

A preliminary version of this paper is [8].

2 Example

The following example demonstrates some of the features ofLdoos.3 It describes a situ-
ation where a seller employs an agent to sell some item to somebuyer for the best price
possible:

3 Note that in order to write our example more naturally we use several constructs which are not
part of our minimum languageLdoos, i.e. types float and void, methods without parameters,
local variables, and conditionals, which can easily be added to Ldoos.
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The agent begins negotiations by asking the seller both the price and by the min-
imum price. Then the agent sends the price to the buyer. The buyer, upon receipt of
this price, makes an offer which he sends to the agent. The agent calculates whether the
offer exceeds the minimum price and notifies the seller and the buyer accordingly. If
the offer does not exceed the minimum price then the agent invites the seller to lower
his minimum price and the negotiation iterates. Note however that the agent may now
communicate with a different buyer, but will continue communicating with the same
seller.

The example consists of classesAgent, Buyer, andSeller, each of which we shall
now discuss separately:

1 class AgentextendsObject {
2 float price , minPrice; // seller ’s asking and minimum price
3 float offer ; // the offer made by the buyer
4

5 bool tryToSell () c1 : !float.?float .! bool.end{
6 // connect with a buyer
7 request c1 : !float .?float .! bool.end{
8 c1 .send(price); offer := c1 .receive; c1 .send(offer<minPrice);
9 return ( offer<minPrice ); } }

10

11 void mediate() c2 : ?float.?float .! 〈?float〉∗.end{
12 // connect with a seller
13 request c2 ?float.?float .! 〈?float〉∗.end{
14 price := c2 .receive; minPrice := c2 .receive;
15 c2 .sendWhile( tryToSell () )
16 // if the value of tryToSell () is true
17 { minPrice := c2 .receive; } }}
18 }

The classAgent represents the agent, with fieldsprice to store the asking price, and
minPrice to store the minimum price. The signature of the methodtryToSell contains
the type of the channelc1 , i.e. !float.?float.!bool.end, thus indicating thatc1 will send
onefloat value, will then receive afloat value, and then send abool value.

Indeed, in the body of this method, the agent asks for a connection with a buyer
through a channelc1 by the statementrequest c1 . . ., which must be matched by a
statementacceptc1 . . . at another node in the network.

In general,acceptus{e} represents the creation of a new server-side socket as in
thejava.net.ServerSocket class. Hereu can be either a public channel namec (as in line
6 of classBuyer) or a variablex whose value is a public channel namec. In both cases
the namec is analogous to the port used to instantiate theServerSocket, which is the
port on which the server will listen for connections. Execution proceeds when another
node in the network contains a statementrequestu′ s{e′} whereu′ is either the name
c or a variable whose value isc. The statementrequest is similar to the creation of a
new client-side socket from thejava.net.Socket class. Here the namec can be thought
of as corresponding to the hostname and port number of the server socket. When these
match, execution continues and a new private channel is created to connect the two
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nodes. Execution ofe ande′ proceeds concurrently, with all occurrences ofu in e and
all occurrences ofu′ in e′ replaced by the name of the just created channel. So both
public channel names and channel variables play the role of placeholders in session
bodies, since they are replaced by restricted and fresh channel names.

In the methodtryToSell, after the connection has been established,i.e. in the body
of the request c1 . . ., the agent sends the asking price (c1 .send(price)), then receives
the buyer offer along the same channel (offer := c1 .receive). Lastly he compares the
offer with the minimum price and then decides on behalf of thebuyer whether the offer
was successful, and tells the buyer throughc1 (c1 .send(offer < minPrice)).

The signature of the methodmediate contains the type of channelc2 , i.e. c2 :
?float.?float.!〈?float〉∗.end, which is aniterativesession type, and which indicates that
c2 will receive twofloats and then send abool; it that boolean is true, it will iterate,
otherwise it will be the end of the session. The body of methodmediate asks for a
connection through channelc2 , receives the asking and the minimum price along that
channel, and then attempts a sale using methodtryToSell (which returns a boolean). It
sends the value oftryToSell along channelc2 to the seller; if the value istrue, then it
iterates, by receiving a new asking price along channelc2 .

1 class BuyerextendsObject {
2 float price ; // seller ’s asking price
3 float offer ; // offer made by the buyer
4

5 void buy() c1 : !float.?float .! bool.end{
6 accept c1 !float.?float .! bool.end{
7 // connect with an agent
8 price := c1 .receive; offer :=....; c1 .send(offer);
9 if c1 .receivethen .... else ... } }

10 }

The classBuyer represents the buyer, with fieldsprice, offer, with the obvious mean-
ing. In the methodbuy, the buyer connects with some agent, receives the asking price,
calculates his offer and send it. He then receives a boolean indicating whether the
seller’s agent accepted the bid, and proceeds with appropriate actions. The signature
of the methodbuy contains the type of the channelc1 , i.e. !float.?float.!bool.end. No-
tice that this type describes the session from the viewpointof theAgent, which is dual
to that of theBuyer.

The classSeller represents the seller, with fieldsprice andminPrice for the asking
and the minimum price. The type of the channelc2 in methodsell is the same that in
mediate in Agent.

The methodsell starts by calculating the asking and minimum prices. After the
connection on channelc2 is established, the seller sends the asking and minimum prices
along the newly created channel. It then receives a boolean value indicating whether the
negotiations need to continue. If so, then the seller will proceed with the body of the
receiveWhile. . . statement, and will calculate a new minimum price and send iton the
same channel to the agent. This process is repeated until theseller receives false,i.e.
until no more negotiations are required.
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Our example demonstrates session types and in particular the use of branching and
iterative session types to express repetition and conditional execution over the same
channel.4

1 class Seller {
2 float price ,minPrice; // asking price and minimum price
3

4 void sell ( ) c2 : ?float.?float .! 〈?float〉∗.end{
5 price := ... ; minPrice:= ... ;
6 // connect to an agent
7 accept c2 ?float.?float .! 〈?float〉∗.end{
8 c2 .send(price);c2 .send(minPrice);
9 c2 .receiveWhile

10 // if the value received is true , then
11 { minPrice:= ... ; c2 .send(minPrice);} } }
12 }

The present example can be seen as a simplified object-oriented version of theAuc-
tioneer example in [4]; the main difference is that the type system of[4] using corre-
spondence assertions can detect bad behaviours which are type correct in our system.

Our type system guarantees the consistent composition of communication protocols
of the various participants. Thus, it guarantees that:

– All communications have the expected types,e.g.in the methodbuy, in line 8 the
expressionc1 .receivewill return afloat, while in line9 the same expression will
return abool.

– There will never be a connection error,e.g.when line13 of methodmediate estab-
lishes a connection, it will only be with a channel of the appropriate type.

– There will never be a a communication error,e.g.when line14 of methodmediate

performsc2 .receive, there will not be a simultaneousreceiveon channelc2 .
– There will never be an incorrect completion between server-client interactions,e.g.

once the session in line13 of mediate started, it will complete in each of the par-
ticipants, unless there is an exception, or divergence. In particular notice that all
iterations in line15 will be successful.

3 A Distributed Object Oriented Language with Sessions

User syntax We distinguishuser syntax, for programs at a local node, andruntime
syntax, which occurs only at runtime as intermediate forms. We introduce the user syn-
tax in Fig. 1. It is an extension of FJ [18], MJ [3] and DJ [1] (while omitting the new
distributed primitives introduced in [1]), augmented withprimitives for session com-
munication [5, 15, 17, 27].

4 In earlier work [8] we had shown sessions as first class values, (e.g.objects containing ses-
sion channels), assigning session values to session variables, session types carrying session
types, and nesting of sessions. However these constructs are not sufficient to enforce repeated
execution on thesamechannel.
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(type) t ::= C | bool | s
(direction) † ::= ! | ?
(part of session) π ::= ε | †t | †〈π,π〉 | †〈π〉∗ | π.π
(session) s ::= π.end

(meth sig) methSig::= t m (t ) Σ
(class sig) CSig ::= /0 | CSig, class C extends C {field∗ methSig∗}
(session env) Σ ::= /0 | Σ,c :s
(class table) CT ::= /0 | CT, class

(class) class::= class C extends C {field∗ meth∗}
(field) field ::= f t

(method) meth::= t m (t x ) Σ { e }

(expression) e ::= x | v | this | true | false

| e ; e | new C | x := e | e .f := e | e .f | e .m ( e )
| u .receive | u .send(e)
| u .receiveIf{e }{e } | u .sendIf(e ){e }{e }
| u .receiveWhile{e } | u .sendWhile(e ){e }
| requestu s {e } | acceptu s {e }

(identifier) u ::= c | x

(value) v ::= null | c

Fig. 1. User Syntax

The metavariablet ranges over types for channels and expressions,C ranges over class
names,s ranges over session types. ? meansinput, while ! meansoutput, and † ranges
over{!,?}, while end indicates the end of the session.

The metavariableπ describespartsof a session. Theconditionalsession part !〈π1 ,π2 〉
sends a boolean value and proceeds withπ1 if the value is true, orπ2 if the value is false.
Similarly ?〈π1 ,π2 〉 receives a boolean value and proceeds withπ1 if the value is true,
π2 if it is false. Theiterativesession part !〈π1 〉

∗ sends a boolean value and if that value
is true, continues withπ1 , iterating. If the value sent is false, this session part finishes.
The meaning of ?〈π1 〉

∗ is similar. Note that, the closing of a session,end, cannot ap-
pear within a conditional or iterative session part. This supports the design principle
that sessions have to be closed at the level where they were opened; in other words, the
responsibility of closing a session stays with the party that opened it.

To prescribe the channel usage in a method, we introducesession environments, Σ,
which map channels to session types. Method declarations have the shape

tm (t x ) Σ {e}

which is standard, except for the addition ofΣ.
A Class signature, CSig, denotes a class’s interface [1]; it contains the types of

fields, its superclass name and method signatures. This provides a lightweight mech-
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(type) t ::= . . . | chan(t )
(identifier) u ::= . . . | o

(value) v ::= . . . | o

(expression) e ::= . . . | NullExc

(thread) P ::= e | P|P
(store) σ ::= /0 | σ·[x 7→ v ] | σ·[o 7→ (C,~f :~v )]
(network) N ::= 0 | l[P, σ,CT] | N‖N | (νu :t )N

Fig. 2.Runtime Syntax

anism for determining the type of remote methods. We assume thatCSig is available
globally (this does not restrict generality, since in standard implementations unique-
ness of each class is maintained through its digital signature). In contrast, class tables
(containing method bodies) are maintained on a per-location basis.

The syntax of expressions,e , e ′, is standard except for the four pairs of commu-
nication primitives. The first two lines express standard syntax, i.e. parameter, value,
the receiverthis, the literalstrue and false, sequence of expressions, object creation,
assignment to parameters or fields, field access and method call. The next four lines
describe the four communication pairs.

The first pair is for exchange of values or channels:u .receive receives a value or
a channel viau , while u .send(e) first evaluates the expressione , then sends its result
via u .

The second pair is forconditionalcommunication:u .receiveIf{e}{e ′} receives
a value viau , and if it is true continues withe , otherwise withe ′. The expression
u .sendIf(e){e ′}{e ′′} first evaluates the boolean expressione , then sends its result via
u and if the result wastrue continues withe ′, otherwise withe ′′.

The third pair is foriterativecommunication:u .receiveWhile{e} receives a value
via u , and if it is true continues withe and iterates, otherwise ends. The expression
u .sendWhile(e){e ′} first evaluates the boolean expressione , then sends its result via
u and if the result wastrue continues withe ′ and iterates, otherwise ends.

The last pair is for establishing connections:requestu s{e} is for use by clients,
andacceptu s{e} for use by servers. The channelu denotes a shared interaction point
which is used for creating new channels. In bothrequest...s{e}, andaccept...s{e},
the term{e} (calledsession body) denotes the block of (a sequence of) expressions in
which the new channel is created at the beginning, and discarded at the end; the session
s prescribes the communication protocol, which is opened byrequestor accept.

Runtime Syntax The runtime syntax in Fig. 2 extends the user syntax and represents
a distributed state of multiple sites communicating with each other. The syntax uses
location names l,m, . . . which can be thought of as IP addresses in a network.

Metavariablet is extended withruntime channel types, denoting the channel types
used only for method invocations. Identifiers,u , and values,v , are extended to allow
for object identifierso ,o ′, . . ., which denote references to instances of classes. We shall
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frequently write “o-id” for brevity, and we shall callo andc names. We extend ex-
pressions withNullExc , denoting a null-pointer error.Threadsare ranged over byP,P′,
whereP|P′ says thatP andP′ are running in parallel.

A storeσ contains local variables and objects, and~f :~v is short-hand for a sequence
f1 : v1 ; . . . ; fn : vn . We apply similar abbreviations to other sequences [1, 18].Sequences
contain no duplicate names.

Networks, writtenN, comprise zero or more located configurations executing in
parallel. We use0 to denote the empty network,l [P,σ,CT] to denote the threadP exe-
cuting at locationl with storeσ and class tableCT, N1 ‖N2 is the parallel composition
of two networks, and(νu :t )N makes the identifieru local toN.

The binding is standard and we usefn(e)/fv(e) to denote a set of free names/vari-
ables. We say that a class nameC occursfree in a expressione if e containsnew C: the
functionfcl(e) returns the set of free class names ofe .

4 Operational Semantics

This section presents the operational semantics ofLdoos, which extends the standard
small step call-by-value reduction of [1, 3, 23]. The reduction relation is given modulo
the standard structural equivalence rules of theπ-calculus [22], written≡. We define

multi-stepreduction as:→→
def
= (−→∪≡)∗ . We only discuss the more interesting rules.

We start by listing the evaluation contexts.

E ::= [ ] | E.f | E;e | x := E | E.f := e | o .f := E | E.m(e) | o .m(E) | c .send(E)
| u .sendIf(E){e}{e} | u .sendWhile(E){e}

Notice thatrequestE s{e}, andacceptE s{e}, are not evaluation contexts.5 Neither
arerequestu s{E}, acceptu s{E}, u .sendIf(e){E}{e}, u .sendIf(e){e}{E},
u .sendWhile(e){E}, u .receiveIf{E}{e}, u .receiveIf{e}{E}, oru .receiveWhile{E}
evaluation contexts, because they would allow session bodies to run before the start of
the session, or parts of a conditional or iterative session to run before determining which
conditional branch should be selected, or whether the iteration should continue.

Local Expressions The rules for execution of expressions which correspond to the
sequential part of the language are standard [3, 10, 18]. Only the local store is modified,
and the rules involve only the local store and the local classtable. In Fig. 3 we give the
rules for object creation and method invocation.

5 Namely, if requestE s{e} were an evaluation context, it would replace the name of a channel
in E without replacing it ine . For example, then, for some session types , and some stateσ1 ,
whereσ1 (x) = c , and applying also ruleRN-ReqAcc, we would have:

...requestx s{x .receive}...σ1 ...‖ ...acceptc s{c .send(3)}...σ2 ... −→

...requestc s{x .receive}...σ1 ...‖ ...acceptc s{c .send(3)}...σ2 ... −→
(νc ′ :s)(...x.receive...σ1 ...‖ ...c ′.send(3)...σ2 ...), and execution would be stuck.

For similar reasons,acceptE s{e} is not a context.
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RC-New
fields(C) =~f~t

new C,σ,CT−→ (νo :C)(o ,σ · [o 7→ (C,~f : ~null)],CT)
C∈ dom(CT)

RC-LocMeth
σ(o) = (C, . . .) mbody(m ,C,CT) = (x ,e) mtype(m ,C) = t → t ′

o .m(v),σ,CT−→ (νx :t )(e [o/this],σ · [x 7→ v ],CT)

Fig. 3.Expression Reduction

Allocation of new objects, described byRC-New, explicitly restricts identifiers, thus
representing “freshness” or “uniqueness” of the address inthe store. The functionfields(C)
examines the class signature and returns the field declarations forC.

The method invocation rule isRC-LocMeth; the functionmbody(m ,C,CT) looks
up m in the local class table, and returns a pair consisting of themethod code and
the formal parameter name. The functionmtype(m ,C) looks upm in the global class
signature and returns the type of the method [18]. The receivero replacesthis in the
method body and a new store entryx is allocated for the formal parameterv .

Communication Ldooshas two kinds of communication rules: those forremote method
and field invocation, and those forsession communication, which are inspired byπ-
calculus rules [22]. Fig. 4 defines reduction for remote method and field invocation; the
first three rules are for congruence, the fourth rule is structural.

RuleRN-Fld allows reading at locationl1 a field of an object stored at adifferent
location, l2 . Similarly,RN-FldAss allows the code in locationl1 to assign a value to a
field stored in a different location,l2 .

Rule RN-RemMeth describes remote method call; locationl1 executes a method
call where the receiver is an object stored in a different location l2 : a new runtime
private channelc , shared betweenl1 andl2 , is created; after that, atl2 the method call
is executed by ruleRC-LocMeth; the resultv is then safely sent back froml2 to l1 via
this new private channelc by RN-CommMeth; sincec is only used once (i.e. it is a
linear channel in the sense of [1, 16, 19]), it is finally discarded.

Session Communication The main session communication rules are formalised in
Fig. 5. RuleRN-ReqAccdescribes opening of sessions: if locationl1 requires a session
onu1 and locationl2 accepts a session onu2 and the values ofu1 andu2 are the same
channel name, then, a new private channelc is created andu1 andu2 are replaced by
c in the session bodies in the standard way noting that

requestu ′ s{e}[c/u ] = requestu ′ s{e [c/u ]}

acceptu ′ s{e}[c/u ] = acceptu ′ s{e [c/u ]}
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RN-Conf
P,σ,CT−→ (ν~u :~t )(P′,σ′,CT)

l [P,σ,CT] −→ (ν~u :~t )(l [P′,σ′,CT])

RN-Par
N −→ N′

N‖N0 −→ N′ ‖N0

RN-Res
N −→ N′

(νu :t )N −→ (νu :t )N′

RN-Str
N ≡ N0 −→ N′

0 ≡ N′

N −→ N′

RN-Fld

l1 [E[o . fi ] |P,σ1 ,CT1 ]‖ l2 [Q,σ2 ,CT2 ] −→ l1 [E[v i ] |P,σ1 ,CT1 ]‖ l2 [Q,σ2 ,CT2 ]

σ2 (o) = (C,~f :~v)

RN-FldAss

l1 [E[o . f :=v ] |P,σ1 ,CT1 ]‖ l2 [Q,σ2 ,CT2 ] −→ l1 [E[v ] |P,σ1 ,CT1 ]‖ l2 [Q,σ′
2 ,CT2 ]

o ∈ domo(σ2 ) σ2
′ = σ2 [o 7→ σ2 (o)[f 7→ v ]]

RN-RemMeth

l1 [E[o .m(v)] |P,σ1 ,CT1 ]‖ l2 [Q,σ2 ,CT2 ]
−→

(νc :chan(t ))(l1 [E[c .receive] |P,σ1 ,CT1 ]‖ l2 [c .send(o .m(v)) |Q,σ2 ,CT2 ])

σ2 (o) = (C, . . .) mtype(m ,C) = t ′ → t c fresh

RN-CommMeth

(νc :chan(t ))(l1 [E1[c .send(v)] |Q1 ,σ1 ,CT1 ]‖ l2 [E2[c .receive] |Q2 ,σ2 ,CT2 ])
−→

l1 [E1[null] |Q1 ,σ1 ,CT1 ]‖ l2 [E2[v ] |Q2 ,σ2 ,CT2 ]

Fig. 4. Network Communication

but importantly

requestu s{e}[c/u ] = requestu s{e}

acceptu s{e}[c/u ] = acceptu s{e}

i.e.substitutions of synchronisation channel names cannot move inside nested sessions
synchronising on the same name. The freshness ofc guarantees privacy and linearity
of the session communication betweenl1 and l2 . Notice that stores associate values
with variables, so ifu1 is a variable of types thenσ1 (u1 ) will be a channel name, and
similarly for u2 .
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RuleRN-CommSessformalises the session communication where sent valuev has
the typet ; after a series of applications of this rule, the session completes and the
channelc has typeend.

In rulesRN-CommSessIf-trueandRN-CommSessIf-falsefirst a boolean is ex-
changed, and then according to the value of this boolean the execution proceeds with
the first or the second branches.

RuleRN-CommSessWhilesimply expresses the iteration by means of the condi-
tional.

RN-ReqAcc

l1 [E1[requestu1 s{e1 }] |Q1 ,σ1 ,CT1 ]‖ l2 [E2[acceptu2 s{e2 }] |Q2 ,σ2 ,CT2 ]
−→

(νc :s)(l1 [E1[e1 [c/u1 ] |Q1 ],σ1 ,CT1 ]‖ l2 [E2[e2 [c/u2 ]] |Q2 ,σ2 ,CT2 ]) c fresh
u1 andu2 are the same channel name orσ1 (u1 ) = u2 or u1 = σ2 (u2 ) or σ1 (u1 ) = σ2 (u2 )

RN-CommSess

(νc :†t .s)(l1 [E1[c .send(v)] |Q1 ,σ1 ,CT1 ]‖ l2 [E2[c .receive] |Q2 ,σ2 ,CT2 ])
−→

(νc :s)(l1 [E1[null] |Q1 ,σ1 ,CT1 ]‖ l2 [E2[v ] |Q2 ,σ2 ,CT2 ])

RN-CommSessIf-true
(νc :†〈π1 ,π2 〉.s)
(l1 [E1[c .sendIf(true){e1 }{e2 }] |Q1 ,σ1 ,CT1 ] ‖ l2 [E2[c .receiveIf{e3}{e4}] |Q2 ,σ2 ,CT2 ])

−→
(νc :π1 .s)(l1 [E1[e1 ] |Q1 ,σ1 ,CT1 ]‖ l2 [E2[e3] |Q2 ,σ2 ,CT2 ])

RN-CommSessIf-false
(νc :†〈π1 ,π2 〉.s)
(l1 [E1[c .sendIf(false){e1 }{e2 }] |Q1 ,σ1 ,CT1 ] ‖ l2 [E2[c .receiveIf{e3}{e4}] |Q2 ,σ2 ,CT2 ])

−→
(νc :π2 .s)(l1 [E1[e2 ] |Q1 ,σ1 ,CT1 ]‖ l2 [E2[e4] |Q2 ,σ2 ,CT2 ])

RN-CommSessWhile
(νc :†〈π〉∗.s)
(l1 [E1[c .sendWhile(e){e1 }] |Q1 ,σ1 ,CT1 ] ‖ l2 [E2[c .receiveWhile{e2 }] |Q2 ,σ2 ,CT2 ])

−→
(νc :†〈π.†〈π〉∗,ε〉.s)(l1 [E1[c .sendIf(e){e1 ;c .sendWhile(e ){e1 }}{null}] |Q1 ,σ1 ,CT1 ] ‖

l2 [E2[c .receiveIf{e2 ;c .receiveWhile{e2 }}{null}] |Q2 ,σ2 ,CT2 ])

Fig. 5. Session Communication
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5 Session Types and Typing System

The type system ofLdoos has three kinds of typing judgments. The judgments for
threads and nets are standard, they just tell us that under certain assumptions on the
types of variables, o-ids,this and channels, the thread and respectively the net is well-
formed. So the judgments have the shape:

Γ ` P : thread and Γ ` N : net

where the environmentΓ is defined by:

Γ := /0 | Γ,x :t | Γ,o :C | Γ,this :C | Γ,c :s | Γ,c :chan(t )

When typing expressions we need to take into account how session types are “con-
sumed”,i.e. when an input or an output communication prescribed by a session type
takes place throughreceiveorsendinstruction. For this reason we add session environments
to both sides of typing judgments, giving them the shape

Γ;Σ ` e : t ;Σ′

whereΓ is the environment,t is the type ofe , Σ andΣ′ give the session types of channels
before and after the evaluation ofe . We call them thepreandpost session environment
respectively.

Notice that sincerequest andaccept instructions contain the session types of the
connecting channels and method declarations contain the session environment (i.e. the
session types of the used channels), we could avoid global assumptions on session types
of channel names. The cost would be a run time check that the session types in request
and accept coincide before starting sessions.

In the following subsections we will discuss the more interesting rules. We only
mention here that there is a standard subtyping (denoted by<:), which we assume
causes no cycle as in [3, 18], and which is judged on the class signature.

Well-formed class tables Methods, classes and class tables are well-formed with re-
spect to an environment which must contain all session environments of methods. This
is prescribed by the rule checking that a method is ok:

M-ok
Σ,this : C,x : t1; /0 ` e : t ; /0

Γ,this : C ` t 2m(t 1x)Σ{e} : ok inC

Σ ⊆ Γ
mtype(m,C) = t1 → t2

t <: t2

The environmentΓ is propagated in the rules for checking well-formedness of classes
and class tables.

Notice that both the pre and the post session environments for typing the method
body are empty. This ensures that all send and receive instructions are inside sessions
as we will see in discussing thread and network typing.
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Expression typing The rule for typing expression composition illustrates a first use of
session environments:

TE-Seq
Γ;Σ ` e : t ;Σ′ Γ;Σ′ ` e ′ : t ′;Σ′′

Γ;Σ ` e ;e ′ : t ′;Σ′′

The post session environmentΣ′ of e typing is used as pre session environment for
typinge ′. The typing rule for method calls:

TE-Meth
Γ;Σ ` e : C;Σ′ Γ;Σ′ ` e ′ : t ′;Σ′′

Γ;Σ ` e .m(e ′) : t ;Σ′′

msignature(m ,C) ⊆ Γ
mtype(m ,C) = t ′′ → t

t ′ <: t ′′

demands that the method signature ofm in C (determined by the method signature
look-up functionmsignature(m ,C)) is contained in the environmentΓ. Further, the
session environments ofe ande ′ must agree as in ruleTE-Seq. Finally the type ofe ′

should conform to the method type returned by the look-up functionmtype(m ,C).

Session typing The importance of the session environments in expression typing is
made clear by the rules for typingsend andreceive:

TE-SessSend
Γ;Σ ` e :t ;Σ′,c :!t .s

Γ;Σ ` c .send(e) : Object;Σ′,c :s

TE-SessReceive

Γ;Σ,c :?t .s ` c .receive: t ;Σ,c :s

The key observation is that in both cases the typing consumesexactly the output or the
input type that heads the session type of the current channelc . The typing ofsendalso
takes into account that the typing ofe can modify the session environment.

The typing rules for opening sessions are:

TE-Req

Γ,u :s ;Σ,c :s ` e [c/u ] :t ;Σ′,c :end c 6∈ fn(e) c 6∈ dom(Γ)

Γ,u :s ;Σ ` requestu s{e} :t ;Σ′

TE-Acc

Γ,u :s ;Σ,c :s ` e [c/u ] :t ;Σ′,c :end c 6∈ fn(e) c 6∈ dom(Γ)

Γ,u :s ;Σ ` acceptu s{e} :t ;Σ′

wheres denotes thedual session type ofs defined inductively byend = end, !t .s =
?t .s , ?t .s =!t .s , and the substitution[c/u ] obeys the same conditions as given in Sec-
tion 4.6

6 Notice that the name of the channel,u , is replaced by a fresh channel name,c . This is so,
because, a)u may be a variable, butΣ contains only constant channels, and b) it allows us to
type nested session openings of the same name,e.g.requestc s{...requestc s{...}...}.



A Distributed Object-Oriented language with Session types 15

The key point is that these rules ensurelinear use of runtime session channels; for
every new session, there should be exactly one receiver waiting to receive fromc , and
one sender waiting to send onc . This is guaranteed by replacing the opening channelu

in e by a fresh channelc . The typeend of c in the post session environment of typinge

ensures that the session is completed after evaluation ofe . Notice thatc does not appear
in the conclusion.

The remaining rules give types for conditional and iterative session types. Note
that within iterations depending on the value received/sent on a channelc , rulesTE-
SessRecWhileandTE-SessSendWhileforbid communication on any other open chan-
nel except forc ; e.g. for c .sendWhile(e ′){e} and c .receiveWhile{e}, the typing
rules require for any communicationc ′.receive or c ′.send(...) within e thatc =c ′, or
that the communication is enclosed within an inneracceptc ′ s{...} or requestc ′ s{...}.
This constraint is clearly necessary in order to get soundness of communications (The-
orem 6.3).

TE-SessRecIf
Γ;Σ,c :π1 .s ` e1 :t ;Σ′,c :s Γ;Σ,c :π2 .s ` e2 :t ;Σ′,c :s

Γ;Σ,c :?〈π1 ,π2 〉.s ` c .receiveIf{e1 }{e2} : t ;Σ′,c :s

TE-SessSendIf
Γ;Σ ` e :bool;Σ Γ;Σ,c :π1 .s ` e1 :t ;Σ′,c :s Γ;Σ,c :π2 .s ` e2 :t ;Σ′,c :s

Γ;Σ,c :!〈π1 ,π2 〉.s ` c .sendIf(e){e1 }{e2 } : t ;Σ′,c :s

TE-SessRecWhile
Γ;Σ,c :π.s ` e :t ;Σ,c :s

Γ;Σ,c :?〈π〉∗.s ` c .receiveWhile{e} : t ;Σ,c :s

TE-SessSendWhile
Γ;Σ ` e :bool;Σ Γ;Σ,c :π.s ` e ′ :t ;Σ,c :s

Γ;Σ,c :!〈π〉∗.s ` c .sendWhile(e ){e ′} : t ;Σ,c :s

Thread and Network typing RuleTT-Start promotes expressions to threads; all chan-
nels of the post session environment should be completed (i.e.be typed byend) and all
sessions in the pre session environment should conform to the environment.

TT-Start

Γ;{c i :s i | i ∈ I} ` e :t ;{c i :end | i ∈ I} ∀i ∈ I .c i :s i ∈ Γ∨ c i :s i ∈ Γ

Γ ` e : thread

Notice that when all send and receive operations are inside sessions, both the pre and
the post session environments for typinge can be empty.

Rule TN-Conf states that a location is a well-typed network in an environment if
its threadP is well-typed, its storeσ and class tableCT areok in the same environment,
and if all free classes inP as well as their superclasses (we denote this set byfcl(P)) are
locally available – the latter is guaranteed through the requirementfcl(P) ⊆ dom(CT)
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and the last condition.

TN-Conf

Γ ` P: thread Γ ` σ :ok Γ ` CT : ok fcl(P) ⊆ dom(CT)
∀C∈ dom(CT) . C <: D ∨ D ∈ fcl(C,CT) =⇒ D ∈ dom(CT)

Γ ` l [P,σ,CT] :net

6 Type Safety and Communication Safety

As expected, the type system of Section 5 satisfies the subject reduction property.This
is formulated as follows.

Theorem 6.1 (Subject Reduction).

– If Γ;Σ ` e :t ;Σ′, andΓ ` σ :ok, andΓ ` CT :ok ande ,σ,CT−→ (ν~u :~t
′
)(e ′,σ′,CT)

thenΓ,~u :~t
′
;Σ ` e ′ :t ′;Σ′ with t ′ <: t andΓ,~u :~t

′
` σ′ :ok.

– If Γ ` P: thread , andΓ ` σ :ok, andΓ ` CT:ok and P,σ,CT−→ (ν~u :~t ′)(P′,σ′,CT)

thenΓ,~u :~t ′ ` P′ : thread andΓ,~u :~t ′ ` σ′ :ok.
– If Γ ` N :net, and N−→ N′ thenΓ ` N′ :net.

The proof is based on generation lemmas, substitution lemmas and a detailed analysis
of channel use.

Even more interesting than subject reduction, are the following properties ofLdoos:

P1 no connection errorcan occur,i.e. request and accept on the same channel must
have the same session type;

P2 no communication errorcan occur,i.e. in the same net there cannot be two sends
or two receives on the same channel;

P3 after a session has begunthe required communications are always executed in the
expected order;

P4 after a session has begunall the required communications are executedunless one
of the following situations occurs:

– a null pointer exception is thrown;
– the computation diverges; or
– there is a request or accept instruction waiting for the dualinstruction.

These properties hold for a network obtained by reduction from an initial network. We
say that a networkN is initial if (writing ∏0≤i<n Ni for N0‖N1 ‖ ...‖Nn−1 ):

– ` N :net is derivable using ruleTT-Start with empty session environments in the
premises;

– N ≡ (ν~c :~s)(∏0≤i<n l i [e i , /0,CTi ]), where eache i is a user expression; and
– N is closed.
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Notice that the condition on the use of ruleTT-Start is satisfied whenever all send
and receive instructions are inside method bodies, a natural choice in the object-oriented
paradigm.

In order to formulate propertiesP1 andP2, we add a new constantConmErr (con-
nection or communication error) to the network and the following rule:

l1 [E1[e ] |Q1 ,σ1 ,CT1 ]‖ l2 [E2[e
′] |Q2 ,σ2 ,CT2 ] −→ ConmErr

if e clasheswith e ′, wheree clashes withe ′ when

e ,e ′ ∈ {c .receive,c .send(. . .),c .receiveIf{. . .}{. . .},c .sendIf(. . .){. . .}{. . .},
c .receiveWhile{. . .},c .sendWhile(. . .){. . .}, requestc s{. . .},acceptc s{. . .}}

and they do not occur both in the premise of one of the rules in Fig. 5. In other words
whene ande ′ belong both to the above set they do not clash ife = c .receive and
e ′ = c .send(e ′

0), or e = c .receiveIf{e0}{e1} and e ′ = c .sendIf(e ′
0){e

′
1}{e

′
2}, or

e = c .receiveWhile{e0} ande ′ = c .sendWhile(e ′
0){e

′
1}, or e = requestc s{e0} and

e ′ = acceptc s{e ′
0} or vice versa.

We can now prove that from initial nets, we never reach a configuration containing
clashing expressions.

Theorem 6.2 (ConmErr Freedom).Suppose that N0 is an initial net and N0 →→ N.
Then N does not containConmErr , i.e. there does not exist N′ such that N≡N′ ‖ConmErr .

The proof of the above theorem is straightforward from the subject reduction theorem.

For propertiesP3andP4we formulate the following soundness theorem:

Theorem 6.3 (Soundness).Let N0 be an initial net, N0 →→ (ν~u :~t )N, and(ν~u :~t )N−→

(νc :s)(ν~u :~t )N′ def
= (νc :s)N1 by ruleRN-ReqAccwith s = π1 .π.π2 .end. If (νc :s)N1

does not

– produceNullExc or
– diverge or
– stop on a request or accept instruction waiting for the dual instruction

then

(νc :s)N1 →→ (νc :π.π2 .end)N2 →→ (νc :π2 .end)N3 →→ (νc :end)N4

with c 6∈ fn(N4), where:

– if π = †t then(νc :π.π2 .end)N2 →→ (νc :π2 .end)N3 with exactly one application
of ruleRN-CommSesson channelc ;

– if π = †〈π′,π′′〉 then the first rule involving channelc is
• eitherRN-CommSessIf-trueand the application of this rules gives(νc :π′.π2 .end)N′

2

and(νc :π′.π2 .end)N′
2 →→ (νc :π2 .end)N3;

• or RN-CommSessIf-falseand the application of this rules gives(νc :π′′.π2 .end)N′
2

and(νc :π′′.π2 .end)N′
2 →→ (νc :π2 .end)N3;
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– if π = †〈π′〉∗ then the first rule involving channelc is RN-CommSessWhileand
the application of this rules gives(νc : π3.π2 .end)N′

2 with π3 ∈ {†〈π′〉∗,ε} and
(νc :π3.π2 .end)N′

2 →→ (νc :π2 .end)N3.

The soundness proof requires careful analysis of the evaluation order and invariant prop-
erties of networks.

Finally we get:

Theorem 6.4 (Completion of Sessions).Suppose N0 is an initial net, N0 →→N≡ (ν~u :
~t )∏0≤i<n l i [e i ,σi ,CTi ] and N is irreducible. Then either alle i are values(0≤ i < n)
or there isj (0≤ j < n) such thate j ∈{NullExc ,E[requestc s{e ′}],E[acceptc s{e ′}]}.

7 Conclusions and Further Work

Session types have been successfully applied to theoretical settings such as theπ-
calculus [4, 5, 13, 15, 17, 25], a multi-threaded functionallanguage [27], to practical set-
tings such as CORBA [26] and a web-services description language [29]. WithLdoos

we aimed to link language development to engineering and standardisation practice.
To our knowledgeLdoos is the first application of session types to a distributed,

object-oriented class-based programming language. Our design aims were to restrict
the number of novel features introduced into the object-oriented language (we added
only four pairs of primitives for standard session communication in the user syntax),
and to obtain a simple typing system by extending class and method signatures to con-
tain the usage of channels assigned by session types. We havewritten several example
programs, demonstrating thatLdooscan express communication in a style that is natural
for programmers from the object-oriented community.

It is worthwhile to notice that our session types are regularexpressions of a limited
shape, which can also be denoted by sum and recursion. Branching types instead are
variant types, and therefore the recursive session types of[13, 14, 17, 26] are richer than
ours.

The subtyping relation on session types considered in [13, 26] is covariant for input,
contravariant for output as in [24] and moreover allow to change the number of branches
in branching types. As our session types are regular expressions, the inclusion of regular
languages induces a natural notion of subtyping which is simple but not interesting,
because it lacks covariance and contravariance of inputs and outputs.

We plan to investigate extensions that would allow channelsto carry channels, and
channels to be passed as parameters to methods. In particular, we want to allow the
passing of linear channels, through the use ofπ-types as parameter types; on the other
hand, in order to ensure linearity, we will forbidπ-types as the types of local variables
or fields.

Furthermore, we will re-evaluate our design decision of omitting selection primi-
tives from theLdoos-session types. While in traditional session types, function names
are included in types (e.g.sell:?float.?float.〈!float〉∗.end would be the session type of
the seller), inLdoosthey are not included (e.g.?float.?float.〈!float〉∗.end is the type of a
channelused bysell). With this design decision the structure of the program is primarily
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reflected in the classes and their methods, and therefore method names were not a part
of the sessions types.

Finally, we wish to evaluate the various designs through a sequence of case studies
and to develop type checking algorithms following [4].
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