
Structured Communications with
Concurrent Constraints

Mario Coppo and Mariangiola Dezani-Ciancaglini

Dipartimento di Informatica, Università di Torino

Abstract. We propose a calculus which combinesconcurrent constraints, name pass-
ing andsessions. In this way we get enough expressivity to represent both quality of
services and safety of interaction between clients and servers. Central for the sound-
ness of our calculus is a type assignment system whose main novelty is the assurance
of channel bilinearityin presence of channel constraints, channel delegations and pro-
cesses recursions.

1 Introduction

Service Level Agreements are expected to specify, in Service Oriented Computing,
both the client requirements, the service guarantees and the quality of services (cost,
availability, etc..). Moreover after the client and the server have started to communicate
it is essential to assure that both behave as expected, in order to guarantee the safety of
the interaction. A case in point is delegation of activitiesto third parties, which often
occurs transparently to the client.

This paper proposes a calculus to describe contracts which combines different pro-
gramming paradigms to achieve these goals. We use the notionof concurrent constraint
programming[8], enriched with aname-passing(aliasing) mechanism [7], in order to
explicitly represent, through the notion of constraint, relations involving private and
public names (see [3, 4]). In this calculus data communication is symmetric in input
and output and is achieved via the introduction of constraints between channel names.
Public and private constraints specify the requirements, from both the customer and the
provider side, to open new interactions and to conduct them.

Moreover we exploit the notion of session and session type [9, 6] to design commu-
nication protocols which assure safe and reliable communication sequences. Asession
is an abstraction of a series of communications between two processes. In our calculus
the opening of sessions is controlled by a set of constraintsthat specify the require-
ments imposed by both the server and the client to start the communication. Standard
tell, check andask primitives allow further control and conditional branching while
sessions are carried on. A branching primitive based on label exchange is also included
in the language.

The resulting calculus combines the flexibility and the expressive power of con-
straint and name-passing programming with the safeness of communications guaran-
teed by session types. A relevant feature of our approach is the primitive for opening
sessions, which allows to specify a set of constraints whosesatisfaction is necessary
for starting the session interaction. Usually in sessions the privacy of communications
is assured by creating a new fresh channel restricted to the participants. In our calcu-
lus instead we obtain this through a constraint that explicitly associates the client and

the server channels making them private and exclusively reserved to carry on the com-
munication prescribed by the session. As usual in the literature on session types this
condition is calledbilinearity. To increase the expressive power of the calculus we also
introduce a delegation primitive which allows to involve other agents in a communi-
cation protocol transferring in a safe way the communication sequence to appropriate
partners.

A type assignment system assures both the well formedness ofprocesses and con-
straints and the correctness and bilinearity of the communication protocols. Being all
communications defined in terms of constraints we need a particular care in the defi-
nition of typing rules to assure the bilinearity condition in presence of delegation and
recursive processes. In fact we cannot simply state that each channel name must oc-
cur exactly once, since channel delegation and process recursion need propagation of
constraints. Our solution is to control via the type system the number of possible occur-
rences of channel names in constraints. In particular we allow channel names to occur
at most twice in constraints, but we assure at the same time that all channels which
can communicate appear at most once in constraints. This is possible since constraints
between channel names can only be generated by the reductionrules. The programmer
is only allowed to tell, check and ask constraints between ground expressions.

A subject reduction theorem proves that the property of being well typed is pre-
served along reduction, showing the consistency and reliability of the system.

Related work Our calculus is an enrichment ofπ-calculus [7] with primitives for han-
dling communication protocols whose execution can start only if the conditions re-
quired by the participants can be satisfied. Fromπ-calculus we inherit the possibility of
communicating and restricting names.

For describing communication protocols we essentially follow [9, 6], the main dif-
ference being that a session opening is conditioned by a set of constraints and that the
communication of data is realised by means of name fusion [10].

Our primitives for testing and adding constraints are a subset of those proposed
in [3, 4]. We consider only a simple notion of constraint including equalities of names,
equalities and order relations between ground expressions. More general notions of con-
straints, like in [3] or [1], could also be considered, but weleave this for future work.
One novelty of our approach is that we have also constraints between channels which
need to be used bilinearly in order to guarantee the safety ofsessions. Channel bilinear-
ity in presence of delegation needs a careful treatment in order to preserve types under
reduction as discussed in [11]. Instead for data different from channels our constraints
are a particular case of the general treatment of [3, 4]. Our choice is motivated by the de-
sire of modelling the interaction between constraints and sessions without introducing
orthogonal features.

A related paper is also [2], where traditional sessions are made more robust by
adding correspondence assertions.

Paper Structure Section 2 describes the syntax and the operational semantics of our
calculus, illustrating them also by means of an example. Section 3 discusses the type
assignment system and Section 4 the features of well-typed processes. Section 5 draws
some future work directions. For referee’s convenience only the appendix contains the
proofs.

2

2 The Calculus

2.1 Syntax

constraints
c ::= e= e′ | e≤ e′ simple
C ::= c |C |C composed

pure processes
P,Q ::= x{C}(y).P session opening

| y〈(x)〉.P data communication
| y〈z〉.P channel delegation
| y(z).P channel reception
| y⊕ l .P label selection

| y&
−−−→
{l : P} label branching

| 0 inaction
| P | Q parallel composition
| (x)P data name restriction
| def D in P recursive definition
| X〈e,z〉 process call
| tell(c).P tell
| check(c).P check

| ask
−−−→
(c : P) alternative ask

constrained processes
S,R ::= P pure process

| c constraint
| S | R parallel composition
| (v) S restriction
| def D in S recursive definition

auxiliary definitions
v ::= x | y | z | . . . names
e ::= v | true | false | 0 | 1 | . . . | e+ e | e∗ e | . . . expressions

D ::= X(x,y) = P declaration for recursion

Table 1.Syntax

Our calculus is an extension of theπ-calculus [7] inspired by the session calculus
of [6] and by the concurrent constraint calculus of [3].

Table 1 gives the syntax of the calculus. Thesimple constraintswe consider are
only equalities between names and equalities and order relations between expressions of
ground types (boolean and natural). Meaningful constraints can only equate expressions
of the same type and compare naturals with respect to their order. This will be assured
by the type system of next section. Clearly there is no problem in changing or extending
the set of expressions and the kinds of constraints, provided that a suitable notion of
provability and consistency (see Subsection 2.2) can be defined on them.Composed
constraintsare parallels of simple constraints.

In this tablex, y, z,.. denote names which can be free (public) or restricted (private).
We convene thatx ranges over data names, i.e. session names or names of groundex-
pressions, whiley, z range over communication channels names. We usev to denote

3

both kinds of names. An overlined namev is meaningful only ifv does not stand for a
ground expression. In this casev represents the dual session name or the dual channel
name ofv. Unless explicitly stated, a namev is used to denote bothv andv. The duality
is an involution, i.e.v = v.

The pure processescontain constraints only inside prefixes. In the prefixx{C}(y)
for session opening,x is the session name andy is the associated private channel. The
setC is the set of constraints controlling the opening of sessions. The following five
prefixed processes denote different kinds of communicationon the channely, called
the subjectof the communication. Communication of data names (realised by name
fusion) does not require to distinguish between input and output, so we have an unique
prefix. Instead, as we will see in Section 3, to preserve the bilinearity of communications
we need to distinguish channel delegation (in whichz is not restricted) from channel
reception (in whichz is restricted). In label selection and branchingl ranges over a
distinguished set of labels. The selection chooses an alternative and the branching offers
different alternatives, as in [6].

The last three prefixed processes are take from [3, 1] and dealt with constraints. Both
tell andcheck test the consistency of a constraint with the current set of constraints,
and if the test is successfultell adds the constraint. Insteadask allows different al-
ternatives controlled by the corresponding constraints. The remaining constructors for
pure processes are standard inπ-calculus [7].

The syntax ofconstrained processesput in parallel pure processes and constraints.
Free and restricted names for constraints and processes aredefined as usual, con-

vening that:

– a namev occurs in a constrained processSwhenv or v occurs inS;
– a restriction forv bounds bothv andv;
– x andy are restricted in the declarationX(x,y) = P.

We denote byfn(S) the set of names which occur free inS, and similarly forD. Process
variables are bound by recursive definitions: we definedpv(D)=X if D is X(x,y) = P
and we denote byfpv(S) the set of process variables which occur free inS.

A channely is activein a constrained processSif y occurs inSinside a pure process.

We use the
−→
ξ to denote a sequenceξ1, ...,ξn. We also writeξ ∈

−→
ξ to denote that

ξ = ξi for some(1≤ i ≤ n). We will use8 to separates alternatives in branching and

ask. So, for instance,{
−→
l ;T} stands for{l1 : T1 8 . . .8 ln : Tn}.

2.2 Operational Semantics

Since processes contain constraints which determine reduction, the semantics is
given in three steps: structural equivalence, provability/consistency of constraints and
reduction rules.

Structural equivalence Constrained processes are considered moduloα-conversion
of restricted names and the structural rules of Table 2, which are standard.

Owing to structural equivalence each constrained process can be written incanon-
ical form, i.e. as the parallel composition of a set of constraints with a pure process
restricted with respect to the common names:

−→
(v)(C | P).

4

S | 0≡ S S| R≡ R | S (S | R) | R′ ≡ S | (R | R′) (v)S | R≡ (v)(S | R) if v /∈ fn(R)

(v)(v′)S≡ (v′)(v)S (v)0≡ 0 def D in 0≡ 0 def D in (v)S≡ (v)def D in S if v /∈ fn(D)

(def D in S) | R≡ def D in (S| R) if dpv(D) /∈ fpv(R)

def D in (def D′ in S) ≡ def D′ in (def D in S) if dpv(D) 6= dpv(D′)

Table 2.Structural equivalence

[Axiom]
C | c ⊢c c

[Ident]
C ⊢c e= e

[Invol]
C ⊢c x = x

C ⊢c x = y
[Dual]

C ⊢c x = y

C ⊢c e1 = e2
[Simm]

C ⊢c e2 = e1

C ⊢c e1 = e2 C ⊢c e2 = e3
[Trans]

C ⊢c e1 = e3

Table 3.Constraint inference

Provability and consistency of constraints Table 3 gives the interesting rules for
proving that a constraintc is a logical consequence of a set of constraintsC (notation
C ⊢c c). To prove constraints about boolean and arithmetic expressions we assume to
have also a set of rules for standard elementary boolean and arithmetic reasoning, which
are omitted here.

The rules of Table 3 are complete for proving equality and duality of names. The
rules [Invol] and [Dual] give the desired meaning to overlined names. In all cases both
C ⊢c c and its negationC 6⊢c c are easily shown to be decidable.

A set of constraint isconsistent(notationcons(C)) if no contradiction can be derived
from it by the rules of Table 3 plus those for boolean and arithmetic expressions. So also
consistency is decidable.

Reduction rules The reduction rules for the operational semantics are givenin Table
4. We can assume, by rule [Str], that each process is in canonical form. This allows us
to require that the collectionC of constraints occurring in the reduction rules represent
all the constraints in the system. This condition is enforced by rule [Par], which allows
to put redexes and contracta in parallel with pure processes, but not with constraints.
Via the structural rules [Defin], [Scop] and [Par] we can extend the reduction relation
to all reducible contexts.

Rule [Link] describes the initialization of a new session between two participants
with dual session names, provided both the constraintsC1 andC2 required to activate the
respective participants are consistent with the global constraintsC. Note that the duality
of session names could have been obtained via some previous communication. When
the session starts, the constraintsC1 andC2 are added to the set of global constraints:
in this way we assure they will be true for the execution of thewhole session. The
participants will communicate through the private channelsy1, y2. The constrainty1 =
y2 declares that the two channels are dual.

Rule [Comm] allows communication via fusion on two dual channels for data ex-
change. Note that there is no distinction between input and output, but a constraint
forcing equality betweenx1 andx2, if it is consistent withC, is generated.

5

C | x1{C1}(y1)P1 | x2{C2}(y2)P2 −→ C | C1 |C2 | (y1)(y2)(y1 = y2 | P1 | P2)

if C ⊢c x1 = x2 andcons(C |C1 | C2) andy1 6∈ f n(P2) and y2 6∈ f n(P1) [Link]

C | y1〈(x1)〉.P1 | y2〈(x2)〉.P2 −→ C | x1 = x2 | P1 | P2
if C ⊢c y1 = y2 andcons(C | x1 = x2) [Comm]

C | y1〈z1〉.P1 | y2(z2).P2 −→ C | P1 | (z2)(z1 = z2 | P2) if C ⊢c y1 = y2 [Deleg]

C | y1&
−−−→
{l : P} | y2⊕ l i .P′ −→ C | Pi | P′ if C ⊢c y1 = y2 andl i ∈

−→
l [Branch]

C | tell(c).P −→ C | c | P if cons(C | c) [Tell]

C | check(c).P −→ C | P if cons(C | c) [Check]

C | ask
−−−→
(c : P) −→ C | Pi if C ⊢c ci and for all 1≤ j < i C 6⊢c c j [Ask]

C | def X(x,y) = P in X(e,z) −→ C | def X(x,y) = P in (x)(y)(x=e | y=z | P) [Rec]

S −→ S′ ⇒ def D in S −→ def D in S′ [Defin]

S −→ S′ ⇒ (v)S −→ (v)S′ S −→ S′ ⇒ S| P −→ S′ | P [Scop,Par]

S1 ≡ S2 andS2 −→ S3 andS3 ≡ S4 ⇒ S1 −→ S4 [Str]

Table 4.Reduction rules

In a channel delegation (rule [Deleg]) there is instead an explicit distinction be-
tween input and output represented by two different constructs. This is necessary since
we want to preserve bilinearity, i.e. that each active channel has only one dual active
channel. This is also the reason why we need to restrict the name accepting the delegated
channel, in order to prevent the introduction of other constraints on it, thus leaving only
the original channel visible from the outside. The type system will play an essential role
in assuring safety of delegation.

Rule [Branch] selects the continuation process in the branch according to the label
l i as usual.

Constraints on channels are created by session opening, delegation, recursion, and
tested in all communication rules. To assure channel bilinearity the type assignment
system does not allow processes to add or check constraints involving channels. So in
the following rules only constraints between data are considered. Rule [Tell] adds a
new constraint provided that it is consistent with the set ofglobal constraints and rule
[Check] tests the consistency of a constraint against the set of global constraints. In
rule [Ask] the continuation processPi is the one associated with the first constraintci

derivable from the set of global constraints.
The rule for evaluation of (recursive) definition is standard. Note that also the asso-

ciation of actual to formal parameters is realised via constraints.

2.3 Example

We illustrate our calculus through an example, which shows the interaction between
constraints and sessions. The overall scenario involves a book Seller (S), two customers
Alice (A) and Bob (B), and as global constraint the dollar/euro rate.

6

S = (stitle)(sprice)(saddress)(sordnum)

(ā{time= 3}(y1).y1〈(stitle)〉.tell(sprice= book-price-$).y1〈(sprice)〉.

y1&{ok.y1〈(saddress)〉.tell(sordnum= order-number).y1〈(sordnum)〉.08

quit.0}) |

a{time= 15}(y1)...“similar but with cheaper book price”)

A = (atitle)(aprice)(aaddress)(aordnum)

(a{time≤ 5}(y2).tell(atitle = Hamlet).y2〈(atitle)〉.y2〈(aprice)〉.

ask((aprice∗ rate< 100e) : y2⊕ok.tell(aaddress= Alice-address).
y2〈(aaddress)〉.y2〈(aordnum)〉.08

(true) : (acontrib)

(b{title = atitle}(z1).z1〈(acontrib)〉.
ask{(acontrib≥ aprice∗ rate div2) : z1⊕ok.z1〈y2〉.08

(true) : z1⊕quit.y2⊕quit.0}))

B = (bcontrib)(baddress)(bordnum)

(b̄{title = Hamlet}(z2).
tell(bcontrib= offered-contrib).z2〈(bcontrib)〉.

z2&{ok.z2(t).t ⊕ok.tell(baddress= Bob-address).t〈(baddress)〉.t〈(bordnum)〉.08

quit.0})

Table 5.Bookseller example

The Seller provides a price list in dollars, and offers two delivery options via the
session name ¯a: one assures reception of the book in 3 days and the other in 15days.
The former one is obviously more expensive. We have then two sessions offered by the
Seller, with the same name, but with different initial constraints.

The buyer Alice chooses the first option but she is not sure to have enough euros
to buy the book alone. So if the price is too high she asks Bob toparticipate in the
business. The negotiation proceeds as follows:

– Alice and the Seller open a session usinga and ā and then Alice communicates
the book title to the Seller. The Seller privately communicates to Alice the price in
dollars of the book, which is converted in euro by Alice usingthe dollar/euro rate.

– If the price is within Alice’s budget, she notifies the Seller(sending anok label)
that she accepts to buy the book. Then she communicates her address and receives
the order number (via private constraints).

– If the price exceeds Alice’s budget, she asks (through session b) for someone will-
ing to contribute to buy the book. Her intention is expressedvia a global constraint.

– Bob accepts to open the session onb̄ (since he want to share the cost to buy the
same book) and communicates to Alice how much he can contribute.

– If Bob’contribution covers at least half of the cost of the book, then Alice sends
to Bob theok label and delegates to him to conclude the session with the Seller as
if he were Alice. Otherwise she communicates to both Bob and the Seller that she
gives up (sending aquit label).

Notice that the delegation of Alice to Bob is transparent to the Seller.

7

The system is represented by the constrained process

(rate= 0.7) | S | A | B

where S, A and B are defined in Table 5. It would be easy using process definition to
modify the process S in such a way that the Seller offers his service in a permanent way.

3 Type System

3.1 Types

Sort B ::= 〈T〉 | Bool | Nat | . . .
Channel T ::= B;T fusion

| !ch(T);T channel delegation
| ?ch(T);T channel reception

| ⊕
−−−−→
{l : T} selection

| &
−−−−→
{l : T} branching

| µt.T recursive
| t variable
| end end

General U ::= B | T

Table 6.Syntax of Types

General types(given in Table 6) classify expressions in two disjoint kinds: data and
channels. Data havesort types, i.e.,session types〈T〉 andground typesBool, Nat,
Session types associate channel types to session names.

Channel typesdescribe the sequences of communications that take place during a
session. Thefusion type B;T expresses that a names of typeB is ready to be fused and
then the session goes on according toT. Thechannel delegation type!ch(T′);T and the
channel reception type?ch(T ′);T express the sending and the receiving of a channel of

typeT ′, respectively. Theselection type⊕
−−−−→
{l : T} represents the transmission of a label

l i chosen in the set
−→
l followed by the communications described inTi . Thebranching

type&
−−−−→
{l : T} represents the reception of a labell i chosen in the set

−→
l followed by the

communications described inTi . Recursive types have the standard meaning and they
are considered modulo fold/unfold, i.e.µ t.T = T[µ t.T/t]. Theend type signals the end
of communications.

Each channel typeT has adual channel type, denoted byT, which offers the com-
plementary communications. The duality relation on channel types is defined by the
following clauses, where †∈ {!,?} and! =?. Note thatT=T.

B;T = B;T †ch(T ′);T = †ch(T ′);T µ t.T = µ t.T t = t end = end

⊕
−−−−→
{l : T} = &(

−−−−→
{l : T}) &

−−−−→
{l : T} = ⊕(

−−−−→
{l : T}).

3.2 Typing rules for expressions

Expressions can be both data names and channel names. For this reason we need
type environments assigning types to both kinds of names. A crucial observation is that

8

⌊DATA⌋
Γ ,x : B; /0⊢ x : B

⌊SESSDUAL⌋
Γ ,x : 〈T〉; /0⊢ x : 〈T〉

⌊CHANN⌋
Γ ; {y : T} ⊢ y : T

⌊CHANNDUAL⌋
Γ ; {y : T} ⊢ y : T

⌊TRUE⌋
Γ ; /0⊢ true : Bool

⌊FALSE⌋
Γ ; /0⊢ false : Bool

⌊ZERO⌋
Γ ; /0⊢ 0 : Nat

. . .

Γ ; /0⊢ e : Nat Γ ; /0⊢ e′ : Nat
⌊PLUS⌋

Γ ; /0⊢ e+e′ : Nat
. . .

Table 7.Typing rules for expressions

in order to preserve the bilinearity of channel names in pureprocesses each channel
name can appear at most twice in well-typed constraints. We achieve this by taking
two disjoint environments in the typing judgements for expressions. More precisely we
define:

– standard environments(ranged over byΓ) which associate data names to sort types
and process variables to pairs of sort types and channel types (the types of their
parameters);

– constraint session environments(ranged over byΣ) which associate channel names
to channel types and to⊥.

Formally:

Γ ::= /0 | Γ ,x : B | Γ ,X : BT Σ ::= /0 | Σ ,y : T | Σ ,y : ⊥

where we assume that we can writeΓ ,x : B only if x does not occur inΓ , briefly x 6∈
dom(Γ) (we denote bydom(Γ) the domain ofΓ , i.e. the set of identifiers which occur
in Γ) and similarly forΣ .

Note thatenvironments only contain assumptions for names without overline: this
is a key choice in order to guarantee that overlined names have dual types (see rules
⌊SESSDUAL⌋ and⌊CHANNDUAL⌋ in Table 7). Session environments are relevant, i.e.
they contain only the assumptions really used to prove the associated judgements (see
rules⌊CHANN⌋, ⌊CHANNDUAL ⌋).

The judgements for expressions are then of the shape:

Γ ;Σ ⊢ e : U.

Table 7 gives the typing rules, which are as expected. Most standard typing rules for
boolean and arithmetic expressions are omitted. Note that we can derive the dual types
for overlined names by rules⌊SESSDUAL⌋ and⌊CHANNDUAL⌋.

3.3 Typing rules for constraints

The judgements for constraints only say that they are well typed from a standard
and a constraint session environments:

Γ ;Σ ⊢C ok.

9

Γ ; Σ1 ⊢ e1 : U Γ ; Σ2 ⊢ e2 : U Σ1 ≍ Σ2
⌊OK-=⌋

Γ ;Σ1 ⋒Σ2 ⊢ e1 = e2 ok

Γ ; /0⊢ e1 : Nat Γ ; /0⊢ e2 : Nat
⌊OK-≤⌋

Γ ; /0⊢ e1 ≤ e2 ok

Γ ;Σ1 ⊢C1 ok Γ ;Σ2 ⊢C2 ok Σ1 ≍ Σ2
⌊CONC-C⌋

Γ ;Σ1 ⋒Σ2 ⊢C1 |C2 ok

Table 8.Typing rules for constraints

The typing rules are given in Table 8. A single constraint isok when it relates expres-
sions of the same type (rules⌊OK-=⌋ and⌊OK-≤⌋).

To get bilinearity of communication we want that each activechannel has at most
one dual active channel. We introduce an assumptiony : ⊥ to represent the fact that the
channel namey, occurring in two constraints, has been used to prove duality between
two other channel names (by means of rule [Trans]) but it cannot occur in pure pro-
cesses. This mechanism is needed to correctly type channel delegation and process re-
cursion. We must also guarantee that in putting together twoexpressions (rule⌊OK-=⌋)
or two sets of constraints (rule⌊CONC-C⌋) a channel name occurring twice has been
used with the same type. This is assured by:

1. the condition that the constraint session environments of the premises agree, where
agreement≍ between constraint session environmentsΣ andΣ ′ is given by:

Σ ≍ Σ ′ if y∈ dom(Σ)∩dom(Σ ′) impliesΣ(y) = Σ ′(y) 6= ⊥;

2. taking as constraint session environment of the conclusion theconstraint union⋒
of the constraint session environments in the premises defined by:

Σ ⋒Σ ′ = {y : ⊥ | y : T ∈ Σ ∩Σ ′}∪{y : T | y : T ∈ Σ & y 6∈ dom(Σ ′)}∪
{y : T | y : T ∈ Σ ′ & y 6∈ dom(Σ)}.

In this way ifΓ ;Σ ⊢C ok then:

– each channel name which occurs once inC gets a channel type inΣ ;
– each channel name which occurs twice inC gets⊥ in Σ ;
– no channel name occurs more than twice inC.

3.4 Typing rules for pure processes

In order to take into account the communications a pure process can offer, the typ-
ing judgements for pure processes derive finite mappings between channel names and
channel types. More precisely we define apure session environment∆ as a set of as-
sumptions on channel names:

∆ ::= /0 | ∆ ,y : T

and then the judgements for pure processes are of the shape:

Γ ⊢ P⊲ ∆ .

10

Γ ; /0⊢ x : 〈T〉 Γ ⊢ P⊲∆ ,y : T Γ ; /0⊢C ok
⌊SESS⌋

Γ ⊢ x{C}(y).P⊲∆

Γ ,x : B⊢ P⊲∆ ,y : T
⌊COMM⌋

Γ ,x : B⊢ y〈(x)〉.P⊲∆ ,y : B;T

Γ ⊢ P⊲∆ ,y : T z 6∈ dom(∆)
⌊CHDEL⌋

Γ ⊢ y〈z〉.P⊲∆ ,y :!ch(T ′);T,z : T ′

Γ ⊢ P⊲∆ ,y : T,z : T ′

⌊CHREC⌋
Γ ⊢ y(z).P⊲∆ ,y :?ch(T ′);T

Γ ⊢ P⊲∆ ,y : Ti l i : Ti ∈
−−→
l : T

⌊SEL⌋
Γ ⊢ y⊕ l i .P⊲∆ ,y : ⊕

−−−−→
{l : T}

Γ ⊢ Pi ⊲∆ ,y : Ti (1≤ i ≤ n)
⌊BRANCH⌋

Γ ⊢ y&
−−−→
{l : P}⊲∆ ,y : &

−−−−→
{l : T}

Γ ⊢ P⊲∆ Γ ; /0⊢ c ok
⌊TELL⌋

Γ ⊢ tell(c);P⊲∆

Γ ⊢ P⊲∆ Γ ; /0⊢ c ok
⌊CHECK⌋

Γ ⊢ check(c).P⊲∆

Γ ⊢ Pi ⊲∆ Γ ; /0⊢ ci ok (1≤ i ≤ n)
⌊ASK⌋

Γ ⊢ ask
−−−→
(c : P)⊲∆

Γ ,x : B⊢ P⊲∆
⌊RES⌋

Γ ⊢ (x)P⊲∆

dom(Γ)∩−→y = /0
⌊INACT⌋

Γ ⊢ 0⊲
−−−−−→
{y : end}

Γ ⊢ P⊲∆ Γ ⊢ Q⊲∆ ′ dom(∆)∩dom(∆ ′) = /0
⌊CONC⌋

Γ ⊢ P | Q⊲∆ ∪∆ ′

Γ ; /0⊢ e : B
⌊VAR⌋

Γ ,X : BT ⊢ X〈e,z〉⊲{z : T}

Γ ,X : BT,x : B⊢ P⊲{y : T} Γ ,X : BT ⊢ Q⊲∆
⌊DEF⌋

Γ ⊢ def X(x,y) = P in Q⊲∆

Table 9.Typing rules for pure processes

Table 9 presents the typing rules for pure processes.
Rule⌊SESS⌋ allows to initialise a session which asks for the constraintsC and uses

the session namex and the channel namey. It requires that:

– the constraintsC areok and do not contain channel names;
– the channel typeT of y is associated by the standard environment tox.

Note that the assumptiony : T is discharged in the pure session environment of the
conclusion since the session initialisation restricts thenamey.

A fusion is typed by rule⌊COMM⌋ which adds to the channel typeT of y the sort
typeB of x.

After being delegated, a channel cannot be used any more by the delegating process:
for this reason the channelz is added with its typeT ′ to the pure session environment
in the conclusion of rule⌊CHDEL⌋. The reception of a channelz is a binding forz
and therefore the assumptionz : T ′ is discharged in the conclusion of rule⌊CHREC⌋.
In both rules⌊CHDEL⌋ and⌊CHREC⌋ the type of the channely is decorated with the
information on the type of the exchanged channel.

Rules⌊SEL⌋ and⌊BRANCH⌋ associate to each label the type of the corresponding
process.

Rules⌊TELL⌋, ⌊CHECK⌋ and⌊ASK⌋ guarantee that the involved conditions are well
typed. Rule⌊ASK⌋ requires that the different alternatives offer compatiblesequence of
communications representable with the same pure session environment.

11

Γ ;Σ ⊢C ok
⌊START-C⌋

Γ ;Σ ⊢C⊲ /0

Γ ⊢ P⊲∆
⌊START-P⌋

Γ ; /0⊢ P⊲∆

Γ ;Σ ⊢ S⊲∆ Γ ;Σ ′ ⊢ R⊲∆ ′ dom(∆)∩dom(∆ ′) = /0 Σ ≍ Σ ′ Σ ⊲⊳ ∆ ′ Σ ′ ⊲⊳ ∆
⌊CONC-S⌋

Γ ;Σ ⋒Σ ′ ⊢ S | R⊲∆ ∪∆ ′

Γ ,x : B;Σ ⊢ S⊲∆
⌊RES-S⌋

Γ ;Σ ⊢ (x)S⊲∆

Γ ;Σ ⊢ S⊲∆
⌊RESCH⌋

Γ ;Σ \y⊢ (y)S⊲∆ \y

Γ ,X : BT,x : B⊢ P⊲{y : T} Γ ,X : BT;Σ ⊢ S⊲∆
⌊DEF-S⌋

Γ ;Σ ⊢ def X(x,y) = P in S⊲∆

Table 10.Typing rules for constrained processes

When putting two processes in parallel, to assure that the same channel does not
occur in both, we put the conditiondom(∆)∩dom(∆ ′)= /0 as a premise of rule⌊CONC⌋.

Rule ⌊INACT⌋ says that0 cannot offer communications. The remaining rules are
standard.

3.5 Typing rules for constrained processes

Constrained processes contain constraints in parallel with pure processes: so their
typing requires both constraint and pure session environments. We have then for con-
strained processes judgements of the shape:

Γ ;Σ ⊢ S⊲ ∆ .

Table 10 gives the rules to type constrained processes.
The start rules⌊START-C⌋ and⌊START-P⌋ promote constraints and pure processes

to constrained processes, respectively.
The parallel of two constrained processes is well typed onlyif the constraint and

pure session environments have crosswise the same assumptions for the common chan-
nels. This is checked by the conditionsΣ ⊲⊳ ∆ ′ andΣ ′ ⊲⊳ ∆ in the premises of rule
⌊CONC-S⌋, where we define

Σ ⊲⊳ ∆ if for all y∈ dom(Σ)∩dom(∆) we haveΣ(y) = ∆(y).

In rule⌊RESCH⌋ Σ \ y (∆ \ y) is the environmentΣ (∆) in which an assumption on
y, if any, has been erased.

For instance the bookseller example of Section 2.3 can be thetyped in a standard
environment containingrate: Real and the following assumptions for the session names
a andb:

a: 〈String;Real;⊕{ok : String;Nat;end8quit : end}〉
b: 〈Real;⊕{ok :!ch(⊕{ok : String;Nat;end8quit : end});end8quit : end}〉

where we use8 to separate the different alternatives in selection types.The type ofb
shows that the communication ona can be delegated after the fusions of one string and
one real.

12

4 Main properties

A first basic and expected property is that structurally equivalent constrained pro-
cesses have the same type, as stated in the following theorem.

Theorem 1. Let S≡ R andΓ ;Σ ⊢ S⊲ ∆ . ThenΓ : Σ ⊢ R⊲ ∆ .

As remarked before our type system assures bilinearity, i.e. that each active channel
has at most one dual active channel. Moreover it assuressafety of communications, in
the sense that whenever an active channel and its dual channel are ready to communicate
they offer communication actions which have the shapes required by rules [Comm],
[Deleg] or [Branch], and the types of the data to be exchangedmatch. Therefore these
actions can reduce, unless in rule [Comm] the fusion of data names would generate an
inconsistent set of global constraints. An example of this fact is the well-typed process:

y1 = y2 | x1 = 3 | x2 = 5 | y1〈(x1)〉.0 | y2〈(x2)〉.0.
In order to formalize the above properties we need some preliminary definitions.

Let’s denote byφ a communication action (of the formy〈(x)〉, y〈z〉, y(z), y⊕ l , or

y&
−−−→
{l : P}). We say that a communication actionφ is readyin a pure processP if P≡

P′ | φ .P′′ for someP′,P′′.
Let Γ ;Σ ⊢ P⊲ ∆ . We say that a ready communication actionφ in P agreeswith a

channel typeT underΓ , Σ if we have that:

– φ = y〈(x)〉 impliesT = B;T ′ andΓ ;Σ ⊢ x : B;
– φ = y〈z〉 impliesT =!ch(T′′);T ′ andΓ ;Σ ⊢ z : T ′′;
– φ = y(z) impliesT =?ch(T′′);T ′;

– φ = y⊕ l impliesT = ⊕
−−−−→
{l : T} andl ∈

−→
l ;

– φ = y&
−−−→
{l : P} impliesT = &

−−−−→
{l : T}.

Theorem 2 (Bilinearity and Communication Safety).LetΓ ;Σ ⊢S⊲∆ and
−→
(v)(C |P)

be the canonical form of S, then there areΓ ′ ⊇ Γ , Σ ′ ⊇ Σ , ∆ ′ ⊇ ∆ such thatΓ ′;Σ ′ ⊢
C | P⊲ ∆ ′ and:

1. for each channel name y free in P there are:
(a) an assumption y: T ∈ ∆ ′ for some channel type T ;
(b) at most one channel name z occurring free in P such that C⊢c y= z and in this

case z: T ∈ ∆ ′ and y: T,z : T ∈ Σ ′;
2. if y : T ∈ ∆ ′ and φ is a ready communication action with subject y in P, thenφ

agrees with T underΓ ′,Σ ′ and there cannot be any other ready communication
action with subject y in P.

As an immediate consequence of the above theorem if two communication actions
with dual subjectsy, z are both ready, then they can communicate (communication
safety). Moreover no other ready communication action can have a subject which is
dual ofy or z (bilinearity).

Theorem 2 can be proved by induction onP by using the following facts:

1. typing allows at most two occurrences of a channel name in constraints,
2. Σ ′ and∆ ′ must give the same types to channel names which occur both inP and in

C.

13

Our type system does not guarantee progress, i.e. that in a pure process with open
sessions there is always at least a possible communication.The process given at the
beginning of this section is well-typed and stuck. Another example is the process:

y1 = y2 | z1 = z2 | y1〈(x1)〉.z1〈(x2)〉.0 | z2〈(x3)〉.y2〈(x4)〉.0
where the communications on the channelsy andz are crossed. Note that the majority
of type systems for session types do not assure progress, see[11] and the references
there.

We state subject reduction, namely the invariance of typingjudgements by reduc-
tion, under the hypothesis that the pure session environment is contained in the con-
straint session environment. This is not directly implied by the typing rules. A counter
example is:

y1 = y2 | y1〈z1〉.0 | y2(z2).0 −→ y1 = y2 | 0 | (z2)(z1 = z2 | 0)

in which the lhs can be typed withΣ ,∆ such thatdom(Σ) = {y1,y2} anddom(∆) =
{y1,y2,z1}, while the rhs requires an assumption forz1 in the constraint session envi-
ronment. This hypothesis is sensible since a channel can communicate only if the set
of constraints proves that it is dual of another channel, seethe reduction rules [Comm],

[Deleg], and [Branch]. Note that one can easily prove thatΓ ;Σ ⊢
−→
(v)(C | P) ⊲ ∆ im-

pliesfcn(
−→
(v)C) = dom(Σ) andfcn(

−→
(v)P) ⊆ dom(∆), wherefcn(S) is the set of channel

names which occur free inS. Then∆ ⊆ Σ guarantees also the bilinearity condition of
the active channels, since all channels which occur twice inconstraints get⊥ in Σ . It is
easy to verify that the condition∆ ⊆ Σ is preserved by reduction.

As usual in calculi involving sessions (e.g. [5]) subject reduction does not hold liter-
ally, since channel types are shortened by reduction. The partial order between pairs of
session environments defined next reflects the difference between channel types before
and after one step reduction. Remark that the domain of constraint session environments
does not change under reduction, while the domain of pure session environments may
decrease.

Definition 1 (Evaluation Order).

1. ⊑ is defined as the smallest partial order on channel types and⊥ such that:

⊥⊑ T T ⊑ B;T T ⊑ †ch(T′);T Ti ⊑⊕
−−−−→
{l : T} Ti ⊑ &

−−−−→
{l : T}.

2. ⊑ is extended to session environments as follows:
– Σ ⊑ Σ ′ if dom(Σ) = dom(Σ ′) and for all y∈ dom(Σ) we haveΣ(y) ⊑ Σ ′(y).
– ∆ ⊑ ∆ ′ if for all y ∈ dom(∆) we have y∈ dom(∆ ′) and∆(y) ⊑ ∆ ′(y).

We are now able to state the subject reduction theorem.

Theorem 3 (Subject Reduction).Let Γ ;Σ ⊢ S⊲ ∆ and∆ ⊆ Σ . Then S−→ S′ imply
Γ ;Σ ′ ⊢ S′ ⊲ ∆ ′ and∆ ′ ⊆ Σ ′ for someΣ ′ ⊑ Σ , ∆ ′ ⊑ ∆ .

5 Conclusion and Future Works

This paper presents the first integration of sessions and concurrent constraints pro-
viding a calculus which allows to express both client/service requirements for opening
an interaction and the interaction protocol, i.e. the sequence of communications which
are expected to happen in the interaction itself.

14

We plan to develop our calculus in several different directions.
We will study the addition of a retract operator which allowsto erase constraints [3],

but we want to limit its use in such a way only the participantsto a session can erase
the constraints they put at the session start.

We would like to introduce a mechanism which makes the constraints required for
opening a session local to the session itself.

It is interesting to enrich the type assignment system in order to assure progress
inside sessions, i.e. that once a sessions has been initiated, processes will never starve at
communication prefixes. The presence of constraints does not allow a simple adaptation
of the tools developed for standard sessions [5].

Usability of our calculus will be enhanced by a type inference system which allows
to automatically derive types for untyped constrained processes whenever possible.

References

1. S. Bistarelli, U. Montanari, and F. Rossi. Soft Concurrent Constraint Programming.ACM
Transactions on Computational Logic, 7(3):1–27, 2006.

2. E. Bonelli, A. Compagnoni, and E. Gunter. CorrespondenceAssertions for Process Synchro-
nization in Concurrent Communications.Journal of Functional Programming, 15(2):219–
248, 2005.

3. M. Buscemi and U. Montanari. CC-Pi: A Constraint-Based Language for Specifying Service
Level Agreements. In R. De Nicola, editor,ESOP’07, volume 4421 ofLNCS, pages 18 –32.
Springer, 2007.

4. M. Buscemi and U. Montanari. Open Bisimulation for the Concurrent Constraint Pi-
Calculus. In S. Drossopoulou, editor,ESOP’08, volume 4960 ofLNCS, pages 254–268.
Springer, 2008.

5. M. Dezani-Ciancaglini, U. de’ Liguoro, and N. Yoshida. OnProgress for Structured Com-
munications. In G. Barthe and C. Fournet, editors,TGC’07, volume 4912 ofLNCS, pages
257–275, 2008.

6. K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Disciplines for
Structured Communication-based Programming. In C. Hankin, editor, ESOP’98, volume
1381 ofLNCS, pages 22–138. Springer, 1998.

7. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Parts I and II.Infor-
mation and Computation, 100(1), 1992.

8. V. Saraswat and M. Rinard. Concurrent Constraint Programming. In F. E. Allen, editor,
POPL’90, pages 232–245. ACM Press, 1990.

9. K. Takeuchi, K. Honda, and M. Kubo. An Interaction-based Language and its Typing Sys-
tem. In C. Halatsis, D. Maritsas, G. Philokyprou, and S. Theodoridis, editors,PARLE’94,
volume 817 ofLNCS, pages 398–413. Springer, 1994.

10. L. Wischik and P. Gardner. Explicit Fusion.Theoretical Computer Science, 340(3):606–630,
2005.

11. N. Yoshida and V. T. Vasconcelos. Language Primitives and Type Disciplines for Structured
Communication-based Programming Revisited. In M. Fernández and C. Kirchner, editors,
SecRet’06, volume 171 ofENTCS, pages 73–93. Elsevier, 2007.

15

A Appendix

A.1 Type preservation under structural equivalence

As usual we first prove that the well typing of an expression isinvariant under
structural equivalence. We start with some basic lemmas which can be easily shown by
induction on deductions.

Lemma 1 (Weakening).

1. If Γ ;Σ ⊢C ok and x6∈ dom(Γ)∪dom(Σ), thenΓ ,x : B;Σ ⊢C ok.
2. If Γ ;Σ ⊢C ok and X6∈ dom(Γ), thenΓ ,X : BT;Σ ⊢C ok.
3. If Γ ⊢ P⊲ ∆ and x 6∈ dom(Γ)∪dom(∆), thenΓ ,x : B⊢ P⊲ ∆ .
4. If Γ ⊢ P⊲ ∆ and X 6∈ dom(Γ), thenΓ ,X : BT ⊢ P⊲ ∆ .
5. If Γ ;Σ ⊢ S⊲ ∆ and x6∈ dom(Γ)∪dom(Σ)∪dom(∆), thenΓ ,x : B;Σ ⊢ S⊲ ∆ .
6. If Γ ;Σ ⊢ S⊲ ∆ and X 6∈ dom(Γ), thenΓ ,X : BT;Σ ⊢ S⊲ ∆ .

Lemma 2 (Strengthening).

1. If Γ ,x : B;Σ ⊢C ok and x6∈ fn(C), thenΓ ;Σ ⊢C ok.
2. If Γ ,X : BT;Σ ⊢C ok, thenΓ ;Σ ⊢C ok.
3. If Γ ,x : B⊢ P⊲ ∆ and x 6∈ fn(P) thenΓ ⊢ P⊲ ∆ .
4. If Γ ,X : BT ⊢ P⊲ ∆ and X 6∈ fpv(P) thenΓ ⊢ P⊲ ∆ .
5. If Γ ,x : B;Σ ⊢ S⊲ ∆ and x6∈ fn(S) thenΓ ;Σ ⊢ S⊲ ∆ .
6. If Γ ,X : BT;Σ ⊢ S⊲ ∆ and X 6∈ fpv(S) thenΓ ;Σ ⊢ S⊲ ∆ .

Lemma 3. LetΓ ;Σ ⊢ S⊲ ∆ , then

1. dom(Γ)∩dom(Σ) = dom(Γ)∩dom(∆) = /0;
2. dom(Σ)∪dom(∆) ⊆ fn(S);
3. Σ ⊲⊳ ∆ ;
4. y: ⊥ ∈ Σ implies y/∈ dom(∆).

Proof. By induction on derivations. Point (4) easily follows from (3).

Let ⊑0 be the relation defined by⊥ ⊑0 T. We extend⊑0 to constraint session en-
vironments as in Definition 1. IfY is a set of channel names, we denote byΣ ↾ Y the
restriction ofΣ to the names inY, i.e.Σ ↾ Y = {y : T ∈ Σ | y∈Y}.

Lemma 4. Let C⊢c c andΓ ;Σ ⊢C ok. Then for someΣ ′ such thatΣ ↾ fn(c) ⊑0 Σ ′ we
haveΓ ;Σ ′ ⊢ c ok.

The last lemma shows that≍ and⋒ agree.

Lemma 5. 1. Σ1 ≍ Σ2 and(Σ1 ⋒Σ2) ≍ Σ3 iff Σ1 ≍ (Σ2 ⋒Σ3) andΣ2 ≍ Σ3.
2. If Σ1 ≍ Σ2 and(Σ1 ⋒Σ2) ≍ Σ3 then(Σ1 ⋒Σ2)⋒Σ3 = Σ1 ⋒ (Σ2 ⋒Σ3).

Theorem 1 Let S≡ R andΓ ;Σ ⊢ S⊲ ∆ . ThenΓ : Σ ⊢ R⊲ ∆ .

Proof. By induction on the proof thatS≡ R. We discuss some interesting cases.

- Case(v)S | R≡ (v)(S | R) wherev /∈ fn(R).
Note that, according to the fact thatS andR are pure or constrained processes a

typing for (v)S | Rcan have been typed in different ways:

16

1. applying⌊RES⌋ to S and then⌊CONC⌋ to (v)S and R if both S and R are pure
processes. After that an application of rule⌊START-P⌋ could also be possible.

2. applying⌊RES⌋ and⌊START-P⌋to Sand then rule⌊CONC-S⌋ if S is a pure process
andRa constraint process.

3. Applying rules⌊RES-S⌋ or ⌊RESCH⌋ to S and then rule⌊CONC-S⌋ if both Sand
R are constrained processes.

Let’s consider case (3) in which the restriction has been obtained by rule⌊RESCH⌋.

Γ ;Σ ⊢ S⊲ ∆
⌊RESCH⌋

Γ ;Σ ′ ⊢ (y)S⊲ ∆ ′ Γ ;Σ1 ⊢ R⊲ ∆1

dom(∆ ′)∩dom(∆1) = /0 Σ ≍ Σ1 Σ ′ ⊲⊳ ∆1 Σ1 ⊲⊳ ∆ ′

⌊CONC-S⌋
Γ ;Σ ′ ⋒Σ1 ⊢ (y)S | R⊲ ∆ ′∪∆1

whereΣ ′ = Σ \ y and∆ ′ = ∆ \ y. By Lemma 3(1) we have thaty does not occur in
Γ . Sincey /∈ fn(R) by Lemma 3(2) we have thaty /∈ dom(Σ1) andy /∈ dom(∆1). So
dom(∆)∩dom(∆1) = /0, Σ ≍ Σ1 and also the involved⊲⊳ -relations are trivially pre-
served. So we can deduce:

Γ ;Σ ⊢ S⊲ ∆ Γ ;Σ1 ⊢ R⊲ ∆1

dom(∆)∩dom(∆1) = /0 Σ ≍ Σ1 Σ ⊲⊳ ∆1 Σ1 ⊲⊳ ∆
⌊CONC-S⌋

Γ ; Σ ⋒Σ1 ⊢ S | R⊲ ∆ ∪∆1
⌊RESCH⌋

Γ ; Σ ⋒Σ1\ y⊢ (y)(S | R)⊲ ∆ ∪∆1\ y

Sincey does not occur inΣ1, ∆1 we have trivially thatΣ ′⋒Σ1 = Σ ⋒Σ1\yand∆ ′∪∆1 =
∆ ∪∆1\ y.

- Case(S | R) | R′ ≡ S | (R | R′). A typing for (S | R) | R′ must have the form:

Γ ;Σ1 ⊢ S⊲ ∆1 Γ ;Σ2 ⊢ R⊲ ∆2

dom(∆1)∩dom(∆2) = /0 Σ1 ≍ Σ2

Σ1 ⊲⊳ ∆2 Σ2 ⊲⊳ ∆1
⌊CONC-S⌋

Γ ;Σ1 ⋒Σ2 ⊢ (S | R)⊲ ∆1∪∆2 Γ ;Σ3 ⊢ R′ ⊲ ∆3

dom(∆1∪∆2)∩dom(∆3) = /0 Σ1 ⋒Σ2 ≍ Σ3

Σ1 ⋒Σ2 ⊲⊳ ∆3 ∆1∪∆2 ⊲⊳ Σ3
⌊CONC-S⌋

Γ ;(Σ1 ⋒Σ2)⋒Σ3 ⊢ (S | R) | R′ ⊲ ∆1∪∆2∪∆3

The condition on the application of the inference rules imply thatdom(∆1), dom(∆2),
dom(∆3) are disjoint.
Note that by Lemma 3(4),Σ1 ⋒Σ2 ⊲⊳ ∆3 impliesΣ2 ⊲⊳ ∆3. With similar arguments, and
using Lemma 5(1), we have that the following is a valid deduction of the same type for
(S | R) | R′:

17

Γ ;Σ1 ⊢ S⊲ ∆1

Γ ;Σ2 ⊢ R⊲ ∆2 Γ ;Σ3 ⊢ R′ ⊲ ∆3

dom(∆2)∩dom(∆3) = /0 Σ2 ≍ Σ3

Σ2 ⊲⊳ ∆3 Σ3 ⊲⊳ ∆2
⌊CONC-S⌋

Γ ;Σ2 ⋒Σ3 ⊢ (R | R′)⊲ ∆2∪∆3

dom(∆2∪∆3)∩dom(∆1) = /0 Σ1 ≍ Σ2 ⋒Σ3

Σ2 ⋒Σ3 ⊲⊳ ∆1 Σ1 ⊲⊳ ∆2∪∆3
⌊CONC-S⌋

Γ ;Σ1 ⋒ (Σ2 ⋒Σ3) ⊢ S | (R | R′)⊲ ∆1∪∆2∪∆3

Lastly by Lemma 5(1) we haveΣ1 ⋒ (Σ2 ⋒Σ3) = (Σ1 ⋒Σ2)⋒Σ3.

- Case(def D in S) | R≡ def D in (S | R) wheredpv(D) 6∈ fpv(R). A typing for
(def D in S) | R has the form:

Γ ,X : BT,x : B⊢ P⊲ y : T Γ ,X : BT;Σ ⊢ S⊲ ∆
⌊DEF-S⌋

Γ ;Σ ⊢ def X(x,y) = P in S⊲ ∆ Γ ;Σ ′ ⊢ R⊲ ∆ ′

dom(∆)∩dom(∆ ′) = /0 Σ ≍ Σ ′ Σ ⊲⊳ ∆ ′ Σ ′ ⊲⊳ ∆
⌊CONC-S⌋

Γ ;Σ ⋒Σ ′ ⊢ (def X(x,y) = P in S) | R⊲ ∆ ∪∆ ′

Note that, sinceX /∈ fpv(R), by Lemma 1(6) and (possibly) (2) and (4), we haveΓ ,X :
BT;Σ ′ ⊢ R⊲∆ ′. By rule⌊CONC-S⌋ we can then proveΓ ,X : BT;Σ ⋒Σ ′ ⊢ S| R⊲∆ ∪∆ ′

and then we conclude using rule⌊DEF-S⌋.

A.2 Typing properties

A basic property of our constraints is the following, whose proof is straightforward
by induction on derivations.

Lemma 6. Let Γ ;Σ ⊢ C ok. Then each channel name y can occur at most twice in C,
and in this case y: ⊥∈ Σ .

We say that a constraintc is similar to another constraintc′ if c can be derived from
c′ using only rules⌊AXIOM⌋, ⌊INVOL⌋, ⌊DUAL⌋, ⌊SIMM ⌋. Note that this implies that
c andc′ contain the same names.

Lemma 7. Let C⊢c y = z ok and C⊢c y = w ok, where z,w do not coincide. If each
name occurs at most twice in C, then at least one between y,z,w occurs twice in C.

Proof. By cases on the proof ofC ⊢c y = z okandC ⊢c y = w ok.
If C contains constraints similar to bothy= zandy= w, then triviallyy occurs twice

in C.
If C contains a constraint similar toy = z, but not toy = w, thenC must contains

constraints similar toy= t0, ti = ti+1 andtn = w for 0≤ i ≤ n, since a proof ofC⊢c y= w
can only be obtained from constraints inC by applying the rules⌊AXIOM⌋, ⌊INVOL⌋,
⌊DUAL⌋, ⌊SIMM ⌋ and⌊TRANS⌋. In this case ift0,z coincide, thenz occurs twice inC,
and otherwisey occurs twice inC.

If C does not contain constraints similar toy= zand toy= w, thenC must contains
constraints similar toy= u0, u j = u j+1 andum = z for 0≤ j ≤ m, and toy= t0, ti = ti+1

and tn = w for 0 ≤ i ≤ n. Assume ad absurdum thatui ,ti coincide for 0≤ i ≤ k but
uk+1, tk+1 do not coincide. This is impossible sinceuk would appear three times inC.
Thenu0, t0 cannot coincide andy appears twice inC.

18

Theorem 2 (Bilinearity and Communication Safety).LetΓ ;Σ ⊢S⊲∆ and
−→
(v)(C |P)

be the canonical form of S, then there areΓ ′ ⊇ Γ , Σ ′ ⊇ Σ , ∆ ′ ⊇ ∆ such thatΓ ′;Σ ′ ⊢
C | P⊲ ∆ ′ and:

1. for each channel name y free in P there are:
(a) an assumption y: T ∈ ∆ ′ for some channel type T ;
(b) at most one channel name z occurring free in P such that C⊢c y= z and in this

case z: T ∈ ∆ ′ and y: T,z : T ∈ Σ ′;
2. if y : T ∈ ∆ ′ and φ is a ready communication action with subject y in P, thenφ

agrees with T underΓ ′,Σ ′ and there cannot be any other ready communication
action with subject y in P.

Proof. The restriction in
−→
(v) must have been typed by applications of⌊RES-S⌋ and

⌊RESCH⌋ from a typingΓ ′;Σ ′ ⊢C | P⊲∆ ′. By Theorem 1 we can assume that the final
steps of this deduction are the following:

Γ ′;Σ ′ ⊢C ok
⌊START-C⌋

Γ ′,Σ ′ ⊢C⊲ /0

Γ ′ ⊢ P⊲ ∆ ′

⌊START-P⌋
Γ ′; /0⊢ P⊲ ∆ ′

⌊CONC-S⌋
Γ ′;Σ ′ ⊢C | P⊲ ∆ ′

where we need only to assumeΣ ′ ⊲⊳ ∆ ′.
The proof now is by induction onP. The basic step (P=0) is trivial. We give some

interesting cases.

Case P≡ y〈z′〉.P′. Then the type deduction forP must end with:

Γ ⊢ P′ ⊲ ∆ ′′,y : T z′ 6∈ dom(∆ ′)
⌊CHDEL⌋

Γ ⊢ y〈z′〉.P′ ⊲ ∆ ′′,y :!ch(T ′);T,z′ : T ′

For point (1) by induction hypothesis for each channel namey1 free inP′ and different
from y,z′ there is an assumptiony1 : T1 ∈ ∆ ′ and there is at most one channelz1 which
occurs inP′ such thatC ⊢c y1 = z1 and in this casez1 : T1 ∈ ∆ ′ andy1 : T1,z1 : T1 ∈ Σ ′.
By induction hypothesis we also have thatz′ does not occur inP′ sincez′ 6∈ dom(∆ ′).

By Lemma 7 there is at most one channelz which occurs only once inC and such
that C ⊢c y = z. Therefore the conditionΣ ′ ⊲⊳ ∆ ′ implies thatz is the only channel
such thatC ⊢c y = z which can occur inP. FromΓ ′;Σ ′ ⊢ C ok and Lemma 4 we get
Σ ′(y)= Σ ′(z) and so we conclude∆ ′(y)= ∆ ′(z) whenzoccurs inP again usingΣ ′ ⊲⊳ ∆ ′.

The proof of point (2) is immediate.

Case P≡ P1 | P2. Then the type deduction forP must end with:

Γ ⊢ P1 ⊲ ∆1 Γ ⊢ P2⊲ ∆2 dom(∆1)∩dom(∆2) = /0
⌊CONC⌋

Γ ⊢ P1 | P2 ⊲ ∆1∪∆2

Point (1) follows easily by induction hypothesis. Note thatby the conditiondom(∆1)∩
dom(∆2) a free channel name can occur either in∆1 or in ∆2.
As for point (2) note that ifφ is ready inP1 | P2 thenφ must be ready in eitherP1 or P2.
The proof follows immediately by induction.

19

A.3 Type preservation under reduction

Lemma 8. If Γ ;Σ ,y : T,z : T ⊢ C ok and C⊢c y = z, then for any T′ we getΓ ;Σ ,y :
T ′,z : T ′ ⊢C ok.

Proof. Notice that by Lemma 6,y andz can occur only once in the constraints ofC. If
a constraint similar toy = z is a constraint ofC, then we are done. OtherwiseC must
contains constraints similar toy = w0, wi = wi+1 andwn = z for 0 ≤ i ≤ n. Since all
wi occur twice in the showed constraints ofC, by Lemma 6 they cannot occur in other
constraints ofC. This implies thatC ≡ C1 | C2, whereC1 only contains constraints
similar to y = w0, wi = wi+1 andwn = z for 0 ≤ i ≤ n, while C2 contains constraints
without occurrences ofy,w0, . . . ,wn,z. MoreoverΣ = Σ ′,y : T,z : T,w0 : ⊥, . . . ,wn : ⊥
using again Lemma 6 andΓ ;y : T,z : T,w0 : ⊥, . . . ,wn : ⊥ ⊢C1 ok andΓ ;Σ ′ ⊢C2 ok. It
is then easy to verify thatΓ ;y : T ′,z : T

′
,w0 : ⊥, . . . ,wn : ⊥ ⊢C1 ok for anyT ′ and this

implies the conclusion.

Theorem 3 (Subject Reduction). Let Γ ;Σ ⊢ S⊲ ∆ where∆ ⊆ Σ . Then S −→ S′

impliesΓ ;Σ ′ ⊢ S′ ⊲ ∆ ′ and∆ ′ ⊆ Σ ′ for someΣ ′ ⊑ Σ , ∆ ′ ⊑ ∆ .

Proof. By induction on−→ and by cases. We only consider the most interesting cases.

- Rule[Link]:

C | x1{C1}(y1)P1 | x2{C2}(y2)P2 −→ C |C1 | C2 | (y1)(y2)(y1 = y2 | P1 | P2)

whereC ⊢c x1 = x2 and cons(C | C1 | C2) and y1 6∈ fn(P2) and y2 6∈ fn(P1). Since
Γ ;Σ ⊢C | x1{C1}(y1)P1 | x2{C2}(y2)P2⊲∆ must be the conclusion of two applications
of rule⌊CONC-S⌋ we get

Γ ;Σ ⊢C⊲ /0 (1)

Γ ; /0⊢ x1{C1}(y1)P1 ⊲ ∆1 (2)

Γ ; /0⊢ x2{C2}(y2)P2 ⊲ ∆2 (3)

where∆ = ∆1∪∆2.
Since (1) must be the conclusion of rule⌊START-C⌋ we must have

Γ ;Σ ⊢C ok (4)

Since (2) must be the conclusion of rule⌊START-P⌋ applied to the conclusion of
rule⌊SESS⌋ we have

Γ ; /0⊢ x1 : 〈T1〉 (5)

Γ ; /0⊢C1 ok (6)

Γ ⊢ P1 ⊲ ∆1,y1 : T1 (7)

and similarly from (3)

Γ ; /0⊢ x2 : 〈T2〉 (8)

Γ ; /0⊢C2 ok (9)

Γ ⊢ P2 ⊲ ∆2,y2 : T2 (10)

20

By applying rule⌊CONC-C⌋ to (4), (6), (9) we can deriveΓ ;Σ ⊢C |C1 |C2 okand then
by rule⌊START-C⌋

Γ ;Σ ⊢C | C1 | C2 ⊲ /0 (11)

Lemma 4 together with (4), (5), (8) andC ⊢c x1 = x2 imply T1 = T2, which we will
denote simply byT. By (7), (10) and rules⌊CHANN⌋, ⌊CHANNDUAL⌋, ⌊OK-=⌋ and
⌊START-C⌋ we derive

Γ ;{y1 : T,y2 : T} ⊢ y1 = y2 ⊲ /0 (12)

Putting together (7), (10) and (12) using rule⌊CONC-S⌋ we get

Γ ;{y1 : T,y2 : T} ⊢ y1 = y2 | P1 | P2 ⊲ ∆1∪∆2,y1 : T,y2 : T

and then using rule⌊RESCH⌋

Γ ; /0⊢ (y1)(y2)(y1 = y2 | P1 | P2)⊲ ∆1∪∆2 (13)

We conclude by applying rule⌊CONC-S⌋ to (11) and (13).

- Rule[Deleg]:

C | y1〈z1〉.P1 | y2(z2).P2 −→ C | P1 | (z2)(z1 = z2 | P2)

whereC⊢c y1 = y2. As in previous case we must have:

Γ ;Σ ⊢C ok (14)

Γ ⊢ y1〈z1〉.P1 ⊲ ∆1 (15)

Γ ⊢ y2(z2).P2 ⊲ ∆2 (16)

where∆ = ∆1∪∆2, dom(∆1)∩dom(∆2) = /0 andΣ ⊲⊳ ∆1∪∆2.
Since (15) must be the conclusion of rule⌊CHDEL⌋ we have

∆1 = ∆ ′
1,y1 :!ch(T ′

1);T1,z1 : T ′
1 Γ ⊢ P1 ⊲ ∆ ′

1,y1 : T1 (17)

Similarly from (16) we must have

∆2 = ∆ ′
2,y2 :?ch(T ′

2);T2 Γ ⊢ P2 ⊲ ∆ ′
2,y2 : T2,z2 : T ′

2 (18)

Lemma 4 together with (17), (18) andC ⊢c y1 = y2 imply T1 = T2, andT ′
1 = T ′

2. We
denoteT1,T2 andT ′

1,T
′
2 by T andT ′, respectively.

Being∆ ⊆ Σ from (17) and (18) we must have

Σ = Σ ′′,y1 :!ch(T ′);T,y2 :?ch(T ′);T ,z1 : T ′

and this by Lemma 8 and (14) givesΓ ;Σ ′′,y1 : T,y2 : T,z1 : T ′ ⊢ C ok, which implies
by rule⌊START-C⌋

Γ ;Σ ′′,y1 : T,y2 : T,z1 : T ′ ⊢C⊲ /0 (19)

By rules⌊CHANN⌋, ⌊CHANNDUAL⌋, ⌊OK-=⌋ and⌊START-C⌋ we derive

Γ ;{z2 : T ′,z1 : T ′} ⊢ z1 = z2 ⊲ /0

21

which together with (17) and (18) allows to get using rules⌊START-P⌋, ⌊CONC-S⌋, and
⌊RESCH⌋

Γ ;{z1 : T ′} ⊢ P1 | (z2)(z1 = z2 | P2)⊲ ∆ ′
1,∆

′
2,y1 : T,y2 : T (20)

By applying rule⌊CONC-S⌋ to (19) and (20) and observing thatΣ ⊲⊳ ∆1∪∆2 implies
Σ ′′,y1 : T,y2 : T,z1 : ⊥ ⊲⊳ ∆ ′

1,∆ ′
2,y1 : T,y2 : T, sincez1 /∈ dom(∆ ′

1)∪dom(∆ ′
2), we con-

clude:

Γ ;Σ ′′,y1 : T,y2 : T,z1 : ⊥ ⊢C | P1 | (z2)(z1 = z2 | P2)⊲ ∆ ′
1,∆ ′

2,y1 : T,y2 : T.

- Rule[Rec]:

C | def X(x,y) = P in X(e,z) −→ C | def X(x,y) = P in (x)(y)(x=e | y=z | P)

As in previous case we get

Γ ;Σ ⊢C ok (21)

Γ ⊢ def X(x,y) = P in X(e,z)⊲ ∆ (22)

Since (22) must be the conclusion of rule⌊DEF⌋ applied to the conclusion of rule⌊VAR⌋
we have∆ = {z : T} andΓ ,X : BT ⊢ X(e,z)⊲ {z : T} and

Γ ,X : BT,x : B⊢ P⊲ {y : T} (23)

Γ ; /0⊢ e : B (24)

By Lemma 1 from (24) we getΓ ,X : BT,x : B; /0⊢ e: B and then using rules⌊ENV⌋ and
⌊OK-=⌋

Γ ,X : BT,x : B; /0⊢ x = e ok (25)

By rules⌊SENV⌋ and⌊OK-=⌋ we can also derive

Γ ,X : BT,x : B;{y : T,z : T} ⊢ y = z ok (26)

From (23), (25), (26) by using rules⌊START-C⌋, ⌊START-P⌋ and⌊CONC-S⌋ we get
Γ ,X : BT,x : B;{y : T,z : T} ⊢ x = e | y = z | P⊲{y : T} and then by rules⌊RES-S⌋ and
⌊RESCH⌋

Γ ,X : BT;{z : T} ⊢ (x)(y)(x = e | y = z | P)⊲ /0 (27)

Applying rule⌊DEF-S⌋ to (23) and (27) we derive

Γ ,X : BT;{z : T} ⊢ def X(x,y) = P in (x)(y)(x = e | y = z | P)⊲ /0 (28)

Being{z : T} ⊆ Σ by applying rule⌊START-C⌋ to (21) and then rule⌊CONC-S⌋ to the
resulting judgement and to (28) we conclude

Γ ,X : BT;Σ ′,z : ⊥ ⊢C | def X(x,y) = P in (x)(y)(x = e | y = z | P)⊲ /0

whereΣ = Σ ′,z : T.

22

