Structured Communications with
Concurrent Constraints

Mario Coppo and Mariangiola Dezani-Ciancaglini
Dipartimento di Informatica, Universita di Torino

Abstract. We propose a calculus which combingancurrent constraintsname pass-
ing and sessionslin this way we get enough expressivity to represent bothitgjuaf
services and safety of interaction between clients andeserCentral for the sound-
ness of our calculus is a type assignment system whose megltyds the assurance
of channel bilinearityin presence of channel constraints, channel delegatichgtan
cesses recursions.

1 Introduction

Service Level Agreements are expected to specify, in Se®itented Computing,
both the client requirements, the service guarantees anduhlity of services (cost,
availability, etc..). Moreover after the client and thevegthave started to communicate
it is essential to assure that both behave as expected,én torduarantee the safety of
the interaction. A case in point is delegation of activitieghird parties, which often
occurs transparently to the client.

This paper proposes a calculus to describe contracts whitibines different pro-
gramming paradigms to achieve these goals. We use the mftimmcurrent constraint
programming[8], enriched with aname-passin@aliasing) mechanism [7], in order to
explicitly represent, through the notion of constraintatiens involving private and
public names (see [3,4]). In this calculus data commuracas symmetric in input
and output and is achieved via the introduction of constsadietween channel names.
Public and private constraints specify the requiremertsy both the customer and the
provider side, to open new interactions and to conduct them.

Moreover we exploit the notion of session and session typ@ @ design commu-
nication protocols which assure safe and reliable comnatioic sequences. session
is an abstraction of a series of communications between tacegses. In our calculus
the opening of sessions is controlled by a set of constréiatsspecify the require-
ments imposed by both the server and the client to start themmication. Standard
tell, check andask primitives allow further control and conditional brancbiwhile
sessions are carried on. A branching primitive based on &dohange is also included
in the language.

The resulting calculus combines the flexibility and the esgive power of con-
straint and name-passing programming with the safenessrfmeinications guaran-
teed by session types. A relevant feature of our approadteipitimitive for opening
sessions, which allows to specify a set of constraints wisasisfaction is necessary
for starting the session interaction. Usually in sessitwesprivacy of communications
is assured by creating a new fresh channel restricted todtipants. In our calcu-
lus instead we obtain this through a constraint that expfieissociates the client and

the server channels making them private and exclusivedrves to carry on the com-
munication prescribed by the session. As usual in the titegaon session types this
condition is calledbilinearity. To increase the expressive power of the calculus we also
introduce a delegation primitive which allows to involvéhet agents in a communi-
cation protocol transferring in a safe way the communicasequence to appropriate
partners.

A type assignment system assures both the well formedngseoésses and con-
straints and the correctness and bilinearity of the compatiain protocols. Being all
communications defined in terms of constraints we need é&phat care in the defi-
nition of typing rules to assure the bilinearity conditiongresence of delegation and
recursive processes. In fact we cannot simply state thdt ela@nnel name must oc-
cur exactly once, since channel delegation and processsienwneed propagation of
constraints. Our solution is to control via the type systhenrtumber of possible occur-
rences of channel names in constraints. In particular vesvathannel names to occur
at most twice in constraints, but we assure at the same tiateathchannels which
can communicate appear at most once in constraints. Thislge since constraints
between channel names can only be generated by the redudiéisnThe programmer
is only allowed to tell, check and ask constraints betweenigd expressions.

A subject reduction theorem proves that the property of deiell typed is pre-
served along reduction, showing the consistency and iktyatf the system.

Related work Our calculus is an enrichment afcalculus [7] with primitives for han-
dling communication protocols whose execution can staly d@rthe conditions re-
quired by the participants can be satisfied. Fmoialculus we inherit the possibility of
communicating and restricting names.

For describing communication protocols we essentiallipfl[9, 6], the main dif-
ference being that a session opening is conditioned by & senstraints and that the
communication of data is realised by means of name fusioh [10

Our primitives for testing and adding constraints are a sub$ those proposed
in [3, 4]. We consider only a simple notion of constraint imtihg equalities of names,
equalities and order relations between ground expresditore general notions of con-
straints, like in [3] or [1], could also be considered, but wave this for future work.
One novelty of our approach is that we have also constragttgden channels which
need to be used bilinearly in order to guarantee the safetgssfions. Channel bilinear-
ity in presence of delegation needs a careful treatmentdardp preserve types under
reduction as discussed in [11]. Instead for data differemhfchannels our constraints
are a particular case of the general treatment of 3, 4]. Gaice is motivated by the de-
sire of modelling the interaction between constraints ass$iens without introducing
orthogonal features.

A related paper is also [2], where traditional sessions aadexmore robust by
adding correspondence assertions.

Paper Structure Section 2 describes the syntax and the operational sersanftimur
calculus, illustrating them also by means of an exampleti@e8 discusses the type
assignment system and Section 4 the features of well-typmmgpses. Section 5 draws
some future work directions. For referee’s conveniencg tird appendix contains the
proofs.

2 The Calculus
2.1 Syntax

constraints
C = e=¢€|e<éd
C n= c|C|C
pure processes

simple
composed

P.Q n= x{C}(y).P session opening
| y((x)).P data communication
| y(2).P channel delegation
| y(z).P channel reception
\ yel.P label selection

e
| y&{l : P} label branching
| 0 inaction
| PIQ parallel composition
| P data name restriction
| defDin P recursive definition
| X{e z) process call
\ tell(c).P tell
| check(c).P check
e
| ask(c:P) alternative ask
constrained processes

SR = P pure process
| c constraint
| S|R parallel composition
| V) S restriction
| defDin S recursive definition

auxiliary definitions
% n= x|yl|z]... names
e = V |true|false [O]|1]... |[e+e|exe]... expressions
D = X(xy)=P declaration for recursion

Table 1. Syntax

Our calculus is an extension of thiecalculus [7] inspired by the session calculus
of [6] and by the concurrent constraint calculus of [3].

Table 1 gives the syntax of the calculus. Té¢imple constraintsve consider are
only equalities between names and equalities and ordé¢iom@ddetween expressions of
ground types (boolean and natural). Meaningful conssaiah only equate expressions
of the same type and compare naturals with respect to thasr.orhis will be assured
by the type system of next section. Clearly there is no pralstechanging or extending
the set of expressions and the kinds of constraints, prduidiet a suitable notion of
provability and consistency (see Subsection 2.2) can beatefin themComposed
constraintsare parallels of simple constraints.

In this tablex, y, z,.. denote names which can be free (public) or restrictadgia).
We convene that ranges over data names, i.e. session hames or names of geound
pressions, whilg, z range over communication channels names. Wevusedenote

both kinds of names. An overlined namé meaningful only ifv does not stand for a
ground expression. In this caseepresents the dual session name or the dual channel
name ofv. Unless explicitly stated, a namés used to denote bothandv. The duality

is an involution, i.ev=v.

The pure processesontain constraints only inside prefixes. In the prefic}(y)
for session openingis the session name amds the associated private channel. The
setC is the set of constraints controlling the opening of sessidie following five
prefixed processes denote different kinds of communicaiiothe channey, called
the subjectof the communication. Communication of data names (redlisename
fusion) does not require to distinguish between input artgutuso we have an unique
prefix. Instead, as we will see in Section 3, to preserve tivedairity of communications
we need to distinguish channel delegation (in whidh not restricted) from channel
reception (in whichz is restricted). In label selection and branchinganges over a
distinguished set of labels. The selection chooses amatiee and the branching offers
different alternatives, as in [6].

The last three prefixed processes are take from [3, 1] anthei¢ialconstraints. Both
tell andcheck test the consistency of a constraint with the current sebostaints,
and if the test is successfukll adds the constraint. Insteadk allows different al-
ternatives controlled by the corresponding constraint® femaining constructors for
pure processes are standardticalculus [7].

The syntax oftonstrained processqait in parallel pure processes and constraints.

Free and restricted names for constraints and processeegfmed as usual, con-
vening that:

— a namev occurs in a constrained proceSwhenv or v occurs inS,
— arestriction forv bounds botlv andv;,
— x andy are restricted in the declaratiot{x,y) = P.

We denote byn(S) the set of names which occur freeSnand similarly forD. Process
variables are bound by recursive definitions: we defipgD)=X if D is X(x,y) = P
and we denote bipv(S) the set of process variables which occur fre&.in

A channelyis activein a constrained proceSsf y occurs inSinside a pure process.

— —
We use the to denote a sequendg, ..., &n. We also writeé € & to denote that
& = & for some(1 <i < n). We will use| to separates alternatives in branching and

ask. So, for instancqﬁ} stands foll1 : Ty [... [In: Tn}.

2.2 Operational Semantics

Since processes contain constraints which determine tiedyut¢he semantics is
given in three steps: structural equivalence, provabhdigsistency of constraints and
reduction rules.

Structural equivalence Constrained processes are considered modtdonversion
of restricted names and the structural rules of Table 2, hvaie standard.

Owing to structural equivalence each constrained procasde written incanon-
ical form, i.e. as the parallel composition of a set of constraint$ aitpure process

restricted with respect to the common names:
—

W(C[P).

S|0=S S/R=R|S (S|R|R=S|(R|R) (VS|R=W)(S|R ifv¢m(R)
W(V)S=(V)(V)S (V0=0 defDin0=0 defDin (V)S=(v)defDinS if v¢ fn(D)
(def Din S)| R=defDin (S| R) if dpv(D) ¢ fov(R)
def D in (def D' in S) = def D' in (def D in S) if dpyD) # dpuD’)

Table 2. Structural equivalence

[Axiom] —— [Ident ——[Invol]
Clckcc Chce=e CheXx=X
Chex=y Creer=e Chcel =& Chrce = €3
—— [Dual — [Simm [Trang
Chex=y Chcex=¢1 Chcer = e3

Table 3. Constraint inference

Provability and consistency of constraints Table 3 gives the interesting rules for
proving that a constraintis a logical consequence of a set of constrah{sotation

C k¢ c). To prove constraints about boolean and arithmetic espras we assume to
have also a set of rules for standard elementary boolearrdiihatic reasoning, which
are omitted here.

The rules of Table 3 are complete for proving equality andiuaf names. The
rules [Invol] and [Dual] give the desired meaning to ovextimames. In all cases both
Ckccand its negatiof /. c are easily shown to be decidable.

A set of constraint isonsisten{notationcongC)) if no contradiction can be derived
from it by the rules of Table 3 plus those for boolean and arétic expressions. So also
consistency is decidable.

Reduction rules The reduction rules for the operational semantics are givé@able

4. We can assume, by rule [Str], that each process is in cealdorm. This allows us

to require that the collectio@ of constraints occurring in the reduction rules represent
all the constraints in the system. This condition is enfdrgog rule [Par], which allows

to put redexes and contracta in parallel with pure processgsot with constraints.
Via the structural rules [Defin], [Scop] and [Par] we can exit¢he reduction relation

to all reducible contexts.

Rule [Link] describes the initialization of a new sessiotvilEen two participants
with dual session names, provided both the constr@n#ndC, required to activate the
respective participants are consistent with the globastramtsC. Note that the duality
of session hames could have been obtained via some prevdausanication. When
the session starts, the constrai@isandC, are added to the set of global constraints:
in this way we assure they will be true for the execution of Wiele session. The
participants will communicate through the private chasgely,. The constrainy; =
¥z declares that the two channels are dual.

Rule [Comm] allows communication via fusion on two dual chels for data ex-
change. Note that there is no distinction between input artgut, but a constraint
forcing equality betweery, andxy, if it is consistent withC, is generated.

CIx{Cit(y1)Pr [%{Co}(y2)P. — C[C1[Co| (Y1)(Y2)(Y1=V2| P |P2)
if CH¢xg =%z andcongC | C1 | Cp) andy; ¢ fn(P,) and y, & fn(Pp) [Link]

Clyr{(xa)-PLly2{)-P2 — Clxa=%|PL| P2
if CHcyr =Yz andcongC | X3 = X2) [Comm]

Clvi{z)PL|y2(z2).Po — C|PL|(22)(m=2|P)ifCkcy1=Y2 [Deleg]

e i —
C|v1&{l:P} |y2®i.P — C|R|PifCtcyr =¥z andlj e | [Branch]

C|tell(c).P — C|c|P if congC]|c) [Tell]
C| check(c).P — C|Pif congC | c) [ChecK]
e
Clask(c:P) — C|RifChkcgandforall 1< j <i Clfc; [Ask]

C|def X(xy) =PinX(e2) — C|def X(x,y) =Pin (X)(y)(x=e|y=z| P) [Rec]

S— S =defDinS — defDin S [Defin]
S—S=WwWS— (WS S— S =S|P— S|P [Scop,Par]
S=SandS — FandE=5%=5 — & [Str]

Table 4. Reduction rules

In a channel delegation (rule [Deleg]) there is instead apliex distinction be-
tween input and output represented by two different coo&rThis is necessary since
we want to preserve bilinearity, i.e. that each active cledhas only one dual active
channel. This is also the reason why we need to restrict ime@&cepting the delegated
channel, in order to prevent the introduction of other caists on it, thus leaving only
the original channel visible from the outside. The type syswill play an essential role
in assuring safety of delegation.

Rule [Branch] selects the continuation process in the traccording to the label
li as usual.

Constraints on channels are created by session openirgadiein, recursion, and
tested in all communication rules. To assure channel lafibethe type assignment
system does not allow processes to add or check constravuttising channels. So in
the following rules only constraints between data are amrsid. Rule [Tell] adds a
new constraint provided that it is consistent with the seglobal constraints and rule
[Check] tests the consistency of a constraint against thefsglobal constraints. In
rule [Ask] the continuation proce$% is the one associated with the first constrajnt
derivable from the set of global constraints.

The rule for evaluation of (recursive) definition is stardiadote that also the asso-
ciation of actual to formal parameters is realised via o@sts.

2.3 Example

We illustrate our calculus through an example, which shdwvesitteraction between
constraints and sessions. The overall scenario involvesk $eller (S), two customers
Alice (A) and Bob (B), and as global constraint the dollartexate.

S = (stitle)(sprice)(saddresg sordnum)
(af{time= 3}(y1).y1((stitle)).tel1l(sprice= book-price-$).y; ((Sprice).
y1& {ok.y1 ((saddres} .tell(sordnum= order-number).ys ((sordnum)).0[
quit.0}) |
a{time= 15}(y1)...“similar but with cheaper book pricg

A = (atitle)(aprice)(aaddres$(aordnum)
(a{time< 5}(y2).tell(atitle = Hamlet).yo((atitle)).y>((aprice)).
ask((apricexrate < 100€) : y» @ok.tell(aaddress= Alice-address).
y2((aaddresy.y»((aordnun)).0]]
(true) : (acontrib)
(b{title = atitle}(z).z; {(acontrib)).
ask{(acontrib> apricexrate div2) : z; ®ok.z(y2).0[
(true) : z3 ®quit.yp @ quit.0}))

B = (bcontrib)(baddresg(bordnum)
(b{title = Hamlet }(2).
tell(bcontrib= offered-contrib).z((bcontrib)).
2,& {ok.zp(t).t dok.tell(baddress= Bob-address).t((baddresy.t((bordnum)).0[
quit.0})
Table 5.Bookseller example

The Seller provides a price list in dollars, and offers twdivdey options via the
session nama: one assures reception of the book in 3 days and the other dayl&s
The former one is obviously more expensive. We have then éssians offered by the
Seller, with the same name, but with different initial coasits.

The buyer Alice chooses the first option but she is not sureat@ lenough euros
to buy the book alone. So if the price is too high she asks Bobatticipate in the
business. The negotiation proceeds as follows:

— Alice and the Seller open a session usangnda and then Alice communicates
the book title to the Seller. The Seller privately commutesdo Alice the price in
dollars of the book, which is converted in euro by Alice usihg dollar/euro rate.

— If the price is within Alice’s budget, she notifies the Sel{sending arok label)
that she accepts to buy the book. Then she communicatesdrasadind receives
the order number (via private constraints).

— If the price exceeds Alice’s budget, she asks (through@essifor someone will-
ing to contribute to buy the book. Her intention is expressac global constraint.

— Bob accepts to open the sessionlb(since he want to share the cost to buy the
same book) and communicates to Alice how much he can coteribu

— If Bob’contribution covers at least half of the cost of theokpthen Alice sends
to Bob theok label and delegates to him to conclude the session with ther &s
if he were Alice. Otherwise she communicates to both Bob hedSeller that she
gives up (sending quit label).

Notice that the delegation of Alice to Bob is transparenhi $eller.

The system is represented by the constrained process
(rate=0.7)| S|A | B
where S, A and B are defined in Table 5. It would be easy usinggsdefinition to
modify the process S in such a way that the Seller offers Ingcein a permanent way.

3 Type System

3.1 Types

Sort B:=(T) | Bool | Nat |...

Channel T :=B;T fusion
| leh(T);T channel delegation
| 2eh(T);T channel reception

SRS .
| &l :T} selection
r-J .
| &{I:T} branching
| pt.T recursive
| t variable
| end end

General U :=B|T

Table 6. Syntax of Types

General typeggiven in Table 6) classify expressions in two disjoint lsndata and
channels. Data hawort typesi.e., session typesT) andground type®ool, Nat,
Session types associate channel types to session names.

Channel typeslescribe the sequences of communications that take placedu
session. Théusion type BT expresses that a names of typés ready to be fused and
then the session goes on according tdhechannel delegation typeh(T’); T and the
channel reception typech(T’); T express the sending and the receiving of a channel of

typeT’, respectively. Theelection typep{l : T} represents the transmission of a label
—
li chosen in the set followed by the communications describedlin Thebranching

type&{l : T} represents the reception of a lahethosen in the set followed by the
communications described . Recursive types have the standard meaning and they
are considered modulo fold/unfold, ijet. T = T [ut.T /t]. Theend type signals the end
of communications.

Each channel typ& has adual channel typedenoted byT, which offers the com-
plementary communications. The duality relation on chatypes is defined by the

following clauses, where & {!,?} and! =?. Note thafl=T.

B,T=B;T fch(T’);T=Tch(T’;T putT=utT T=t end=end

®{l:T}=&({l:T}) &{I:T=a{l:T}).
3.2 Typing rules for expressions

Expressions can be both data names and channel names. d~mrabon we need
type environments assigning types to both kinds of namesugia observation is that

| DATA | | SESSDUAL |

rx:B;0~x:B Fox:(T); OF%:(T)

——— |CHANN]| ———— |CHANNDUAL |

i {y:Tiry: T r{y:TFy: T
——— |TRUE], ————— |FALSE] ———— | ZERO|
; OF true: Bool I; O+ false : Bool ;O 0:Nat

[0Fe:Nat [;0F¢€:Nat

|PLus|
[;0Fe+€:Nat

Table 7. Typing rules for expressions

in order to preserve the bilinearity of channel names in guoeesses each channel
name can appear at most twice in well-typed constraints. thigewge this by taking
two disjoint environments in the typing judgements for egsions. More precisely we
define:

— standard environmenf{sanged over by) which associate data names to sort types
and process variables to pairs of sort types and channes {fpe types of their
parameters);

— constraint session environmei@tanged over by) which associate channel names
to channel types and to.

Formally:
r:=0|r,x:B|rXx:BT Zi=0|Zy:T|Zy: L

where we assume that we can wiifitex : B only if x does not occur i, briefly x ¢
dom(I") (we denote bydom(I") the domain of, i.e. the set of identifiers which occur
in ') and similarly for>.

Note thatenvironments only contain assumptions for names withcetioe: this
is a key choice in order to guarantee that overlined names taal types (see rules
| SESSDUAL | and | CHANNDUAL | in Table 7). Session environments are relevant, i.e.
they contain only the assumptions really used to prove theciated judgements (see
rules| CHANN |, | CHANNDUAL |).

The judgements for expressions are then of the shape:

r2re:U.

Table 7 gives the typing rules, which are as expected. Masidsird typing rules for
boolean and arithmetic expressions are omitted. Note thatam derive the dual types
for overlined names by rulgsSSEsDUAL | and| CHANNDUAL |.

3.3 Typing rules for constraints

The judgements for constraints only say that they are wekdyfrom a standard
and a constraint session environments:

r;>+Cok

r;,21Fe:U r; Fe:U 21=x 27

|OK-=]
21Uz e = e ok
I, 0~e :Nat I;0Fe:Nat
|Ok-<|
0Fe < e ok
I_;Zl}—C]_Ok F;ZZFCZOK 21 =< 2o
|Conc-C|

I_;Z]_@ZQFC;”CQOK

Table 8. Typing rules for constraints

The typing rules are given in Table 8. A single constrairdksvhen it relates expres-
sions of the same type (rul¢®k-=] and| Ok-<]).

To get bilinearity of communication we want that each actiiannel has at most
one dual active channel. We introduce an assumptiah to represent the fact that the
channel namg, occurring in two constraints, has been used to prove guaditween
two other channel names (by means of rule [Trans]) but it ctwncur in pure pro-
cesses. This mechanism is needed to correctly type chaalegladion and process re-
cursion. We must also guarantee that in putting togetheetpoessions (ruleOk-=|)
or two sets of constraints (rulgConc-C|) a channel name occurring twice has been
used with the same type. This is assured by:

1. the condition that the constraint session environmefteqremises agree, where
agreement between constraint session environmentndZ’ is given by:

> =2'ifyedomZ)ndomZ’) impliesX(y) = 2'(y) # L;

2. taking as constraint session environment of the coratugieconstraint uniony
of the constraint session environments in the premisesatkbin:

SUY ={y:L|y:TeZnZ}U{y:T|y:TeZ&ygdom')}U
{y:T|y:TeXZ &ygdom)}.

In this way if ;> - C okthen:

— each channel name which occurs onc€igets a channel type iB;
— each channel name which occurs twic€igets_L in Z;
— no channel name occurs more than twic€in

3.4 Typing rules for pure processes

In order to take into account the communications a pure pcan offer, the typ-
ing judgements for pure processes derive finite mappingsdset channel names and
channel types. More precisely we definpure session environmentas a set of as-
sumptions on channel names:

A:=0|Ay:T
and then the judgements for pure processes are of the shape:
r=PrA.

10

r;0Fx:(Ty +FPrAy:T TI;0-Cok rx:BFPrAy:T

| SESS| |ComM |
I =x{C}(y).P>A rx:BrFy(x).P-Ay:B;T
F-PoAy:T z¢domA) rEPoAy:T,z:T
|CHDEL| |CHREC]|
IEy(z).PeAy:leh(T);T,z: T I -y(2).PeAy:2eh(T);T
FePsAy: T L:Tiel:T FERbAY:T (1<i<n)
— | SEL| |BRANCH]
rEyali.PeAy:a{l: T} r-y&{l:PrAy:&{l:T}
r'ePoA ;0Fcok r'=PoA TI;0Fcok
| TELL] | CHECK|
I tell(c);PrA [+ check(c).P>A
F=P>A M0Fcok (1<i<n) r.x:B-PsA
|ASK] — |RES|
I+ ask(c:P)>A I (X)PsA
domMNy =0 r-P-A T +FQxA" domA)ndomA')=0
— [INACT| |Conc]
I +0>{y:end} r-pP|QeauA
r;0oFe:B MX:BT,x:BFPx{y:T} rX:BTHQrA
| VAR | DEF
r.X:BTHX(ez{z:T} I +def X(x,y) = Pin QoA

Table 9. Typing rules for pure processes

Table 9 presents the typing rules for pure processes.
Rule | SEsg| allows to initialise a session which asks for the constsfrand uses
the session nameand the channel namelt requires that:

— the constraint€ areok and do not contain channel names;
— the channel typ& of y is associated by the standard environmemnt to

Note that the assumption: T is discharged in the pure session environment of the
conclusion since the session initialisation restrictsthamey.

A fusion is typed by ruld Comm | which adds to the channel tydeof y the sort
typeB of x.

After being delegated, a channel cannot be used any morelalethgating process:
for this reason the channeis added with its typd’ to the pure session environment
in the conclusion of ruld CHDEL |. The reception of a channelis a binding forz
and therefore the assumptian T’ is discharged in the conclusion of rul€HREC|.

In both rules| CHDEL | and | CHREC]| the type of the channelis decorated with the
information on the type of the exchanged channel.

Rules| SEL | and | BRANCH] associate to each label the type of the corresponding
process.

Rules| TELL |, | CHECK] and| Ask| guarantee that the involved conditions are well
typed. Rule| Ask| requires that the different alternatives offer compats#@quence of
communications representable with the same pure sessinoment.

11

r;z+Cok r=pPeA

—— | START-C| ———— | START-P|
r,>FCco0 r0FP-A
r+-SsA I;ZFReA’ domA)ndomA) =0 I=3 IxA I'xA
|CoNnc-S|
r;>us’'Fs|ReAauA’
[,x:B;2FSrA rzZ-Ss-A
|RES-S| |RESCH|
rsk(xSsA FZ\yk-(y)Sea\y

rX:BT,x:BrP>{y:T} rX:BT;ZFS>A

|DEF-S|
;2 def X(x,y) =Pin SpA

Table 10.Typing rules for constrained processes

When putting two processes in parallel, to assure that three sshannel does not
occur in both, we put the conditi@omA)Ndom(A’) = 0 as a premise of rulgCoNC|.

Rule |INACT| says thaD cannot offer communications. The remaining rules are
standard.

3.5 Typing rules for constrained processes

Constrained processes contain constraints in parallbl pite processes: so their
typing requires both constraint and pure session enviroten®/e have then for con-
strained processes judgements of the shape:

[2+-SrA.

Table 10 gives the rules to type constrained processes.

The start rule$ START-C| and | START-P| promote constraints and pure processes
to constrained processes, respectively.

The parallel of two constrained processes is well typed drtlye constraint and
pure session environments have crosswise the same assnsipti the common chan-
nels. This is checked by the conditiods< A’ and 2’ 1 A in the premises of rule
| CoNc-S|, where we define

ZaAifforall y e dom) ndomA) we haveX(y) = A(y).

Inrule |RESCH] X\ y (A \Y) is the environmenk (A) in which an assumption on
y, if any, has been erased.

For instance the bookseller example of Section 2.3 can bg/feal in a standard
environment containingate: Real and the following assumptions for the session names
aandb:

a: (String; Real; ®@{ok : String; Nat;end [| quit : end})

b: (Real; &{ok :!ch(®{ok : String; Nat;end [| quit : end});end [quit : end})
where we usd) to separate the different alternatives in selection typhs. type ofb
shows that the communication arcan be delegated after the fusions of one string and
one real.

12

4 Main properties

A first basic and expected property is that structurally egjent constrained pro-
cesses have the same type, as stated in the following theorem

Theorem 1. LetS=R andl; 2+ S>A. Thenl : X+ R>A.

As remarked before our type system assures bilinearityhie¢ each active channel
has at most one dual active channel. Moreover it assatty of communications
the sense that whenever an active channel and its dual dreemeady to communicate
they offer communication actions which have the shapesiredjloy rules [Comm],
[Deleg] or [Branch], and the types of the data to be exchamgatth. Therefore these
actions can reduce, unless in rule [Comm] the fusion of dataes would generate an
inconsistent set of global constraints. An example of thit fs the well-typed process:

y1=Vz | x1=3]|%2=5]y1{(x1)).0 | y2((x2)).0.

In order to formalize the above properties we need somenpirairy definitions.
Let's denote byp a communication action (of the forg(x)), y(z), y(z), y&l, or

y&{l : P}). We say that a communication actignis readyin a pure procesB if P =
P’ | ¢.P" for someP’,P".

Letl; >+ P>A. We say that a ready communication actipin P agreeswith a
channel typdl underl™, X if we have that:

— @=y(x)) impliesT =B; T andl; > - x: B;

— @=Y(2) impliesT =!ch(T");T" andl; >+ z: T";

— @=yY(z) impliesT =2ch(T"); T/;

. . —_— —

— @=ydlimpliesT=@{l: T}andl € | ;

— @=Yy&{l: P} impliesT =&{I: T}.
Theorem 2 (Bilinearity and Communication Safety).Letl"; >+ S>A and(_v)>(C | P)
be the canonical form of S, then there d&réD> M, 3’ O 3, A’ D A such that™’; >’ -
C|PrA’ and:

1. for each channel name y free in P there are:
(a) an assumption yT € A’ for some channel type T;
(b) at most one channel name z occurring free in P such that =z and in this
casezTeA andy: T,z: T € &/;
2. ify: T € A’ and ¢ is a ready communication action with subject y in P, then
agrees with T undef’,%’ and there cannot be any other ready communication
action with subjecty in P.

As an immediate consequence of the above theorem if two caonwation actions
with dual subjectsy, z are both ready, then they can communicate (communication
safety). Moreover no other ready communication action careta subject which is
dual ofy or z (bilinearity).

Theorem 2 can be proved by inductionBiy using the following facts:

1. typing allows at most two occurrences of a channel namernsteaints,
2. 2’ andA’ must give the same types to channel names which occur b&tamd in
C.

13

Our type system does not guarantee progress, i.e. that inegppocess with open
sessions there is always at least a possible communic3t@nprocess given at the
beginning of this section is well-typed and stuck. Anotharaple is the process:

Y1=Vz2 | 21 =2 | y1{(*1))-z1((*2)).0 | Z2{(X3)).Y2((xa)).0
where the communications on the channedsmdz are crossed. Note that the majority
of type systems for session types do not assure progresgl Heend the references
there.

We state subject reduction, namely the invariance of tyjpidgements by reduc-
tion, under the hypothesis that the pure session envirohimewmntained in the con-
straint session environment. This is not directly impligdte typing rules. A counter
exampleis:

Y1=V2|y1(z1).0[¥2(2).0 — y1=¥2|0| (2)(za=20)
in which the lhs can be typed with,A such thadomX) = {y1,y2} anddom(A) =
{y1,¥2,21}, while the rhs requires an assumption #piin the constraint session envi-
ronment. This hypothesis is sensible since a channel camcmicate only if the set

of constraints proves that it is dual of another channeltlseeeduction rules [Comm],
—

[Deleg], and [Branch]. Note that one can easily prove that - (v)(C | P)>A im-

—

pIiesfcn((_vSC) =dom %) andfcn((v)P) C dom(A), wherefen(S) is the set of channel
names which occur free i ThenA C > guarantees also the bilinearity condition of
the active channels, since all channels which occur twioeirstraints get_ in 2. Itis
easy to verify that the conditiod C X is preserved by reduction.

As usual in calculi involving sessions (e.g. [5]) subjeciuetion does not hold liter-
ally, since channel types are shortened by reduction. Th&parder between pairs of
session environments defined next reflects the differerveclea channel types before
and after one step reduction. Remark that the domain of @nssession environments
does not change under reduction, while the domain of pug@esnvironments may
decrease.

Definition 1 (Evaluation Order).

1. Cis defined as the smallest partial order on channel types_asdch that:
1CT TCBT TC tch(T'); T TCa{l:T} TC&{l:T}.
2. C is extended to session environments as follows:
— 2 C Y ifdom %) =dom%’) and for all ye domZ) we haveX(y) C X' (y).
— ACAifforally e domA) we have ye dom(A’) andA(y) £ A'(y).

We are now able to state the subject reduction theorem.

Theorem 3 (Subject Reduction)Let/ ;5> + S>A andA C 5. Then S— S imply
r;>’FSeA"andA’ C 3/ forsomes’' C 3, A’ C A.

5 Conclusion and Future Works

This paper presents the first integration of sessions anclicent constraints pro-
viding a calculus which allows to express both client/ssgviequirements for opening
an interaction and the interaction protocol, i.e. the saqga®f communications which
are expected to happen in the interaction itself.

14

We plan to develop our calculus in several different diatsi

We will study the addition of a retract operator which alldewgrase constraints [3],
but we want to limit its use in such a way only the participanta session can erase
the constraints they put at the session start.

We would like to introduce a mechanism which makes the camgs required for
opening a session local to the session itself.

It is interesting to enrich the type assignment system ireotd assure progress
inside sessions, i.e. that once a sessions has been thipateesses will never starve at
communication prefixes. The presence of constraints ddeslow a simple adaptation
of the tools developed for standard sessions [5].

Usability of our calculus will be enhanced by a type infeesgstem which allows
to automatically derive types for untyped constrained esses whenever possible.

References

1. S. Bistarelli, U. Montanari, and F. Rossi. Soft Concuti@onstraint ProgrammingACM
Transactions on Computational Logig(3):1-27, 2006.

2. E. Bonelli, A. Compagnoni, and E. Gunter. Correspondéwssertions for Process Synchro-
nization in Concurrent Communicationgournal of Functional Programmingdl5(2):219—
248, 2005.

3. M. Buscemi and U. Montanari. CC-Pi: A Constraint-Baseddusge for Specifying Service
Level Agreements. In R. De Nicola, edit@®@SOP’07 volume 4421 of NCS pages 18 -32.
Springer, 2007.

4. M. Buscemi and U. Montanari. Open Bisimulation for the @ament Constraint Pi-
Calculus. In S. Drossopoulou, edit@&SOP’08 volume 4960 ofLNCS pages 254-268.
Springer, 2008.

5. M. Dezani-Ciancaglini, U. de’ Liguoro, and N. Yoshida. ®rogress for Structured Com-
munications. In G. Barthe and C. Fournet, edit@&,C’'07, volume 4912 olLNCS pages
257-275, 2008.

6. K. Honda, V. T. Vasconcelos, and M. Kubo. Language Priraitiand Type Disciplines for
Structured Communication-based Programming. In C. Harddiitor, ESOP’98 volume
1381 ofLNCS pages 22-138. Springer, 1998.

7. R. Milner, J. Parrow, and D. Walker. A Calculus of MobileoPesses, Parts | and linfor-
mation and Computatiqri00(1), 1992.

8. V. Saraswat and M. Rinard. Concurrent Constraint Progrizng. In F. E. Allen, editor,
POPL'90, pages 232-245. ACM Press, 1990.

9. K. Takeuchi, K. Honda, and M. Kubo. An Interaction-baseshfjluage and its Typing Sys-
tem. In C. Halatsis, D. Maritsas, G. Philokyprou, and S. Teeilis, editorsPARLE'94
volume 817 ofLNCS pages 398-413. Springer, 1994.

10. L. Wischik and P. Gardner. Explicit Fusiohheoretical Computer Sciencg40(3):606-630,
2005.

11. N. Yoshida and V. T. Vasconcelos. Language PrimitivesTaype Disciplines for Structured
Communication-based Programming Revisited. In M. Fedearand C. Kirchner, editors,
SecRet’'0pvolume 171 oENTCS pages 73-93. Elsevier, 2007.

15

A Appendix

A.1 Type preservation under structural equivalence

As usual we first prove that the well typing of an expressiomiariant under
structural equivalence. We start with some basic lemmastwtan be easily shown by
induction on deductions.

Lemma 1 (Weakening).

Ifr; >+ CokandxZdom(l")udom), thenl",x: B; X - C ok.

If ;> +C okandX¢Z dom(I), then,X:BT;X C ok.

IfIr = P>A and x¢ dom(I")udom(A), thenl™ ,x: B P> A.

Ifr =Pr>Aand X¢ dom(I™), then , X : BT F P>A.

Ifr; >+ Sr>Aandx¢g dom(lm)udom() udom(4), thenl™,x: B; X F S>A.
Ifr;Z+SrAand X¢gdom(), then , X:BT;Z - SrA.

ourwdPE

Lemma 2 (Strengthening).

If ,x:B; X I C ok and x£ fn(C), thenl"; Z - C ok.
Ifr,X:BT;X>FC ok, then ;X +C ok.

If,x:BF P>A and x¢ fn(P) thenl” - PrA.
Ifr,X:BTFP>Aand X¢ fpv(P) thenl” - P> A.
Ifr,x:B; 2+ S>A and x¢ fn(S) thenl™ ; X + S>A.
Ifr,X:BT;>F S>Aand X¢ fpy(S) thenl™; X - SrA.

Lemma 3. Letl" ;> + S» A, then

1. dom{lr)ndom %) = dom(")Nndom(A) = 0;
2. domZ)udom) C fn(S);

3. 24,

4. y: 1 e Ximpliesy¢ domA).

ourLdE

Proof. By induction on derivations. Point (4) easily follows fro®)(

Let Cg be the relation defined hy Ty T. We extend=q to constraint session en-
vironments as in Definition 1. IY is a set of channel names, we denotedbyY the
restriction ofX to the names iy, i.e. X [Y={y:TeX|yeVY}.

Lemma 4. Let C¢ candl™; 2 - C ok. Then for som&’ such thats | fn(c) Co 2’ we
havel ; 2’ F cok.

The last lemma shows thatandu agree.

Lemmab. 1. 3 =<2 and(Zle Zz) = 23iff 21 =< (22@ 23) and2, < 23.
2. If 23 <2 and(21U %) < 3 then(Z U Zz) UZ3=2U(2U 23).

Theorem1 LetS=Randl; >+ S>-A. Thenl : 2 - R A.
Proof. By induction on the proof tha= R. We discuss some interesting cases.
- Case(v)S| R= (v)(S| R) wherev ¢ fn(R).
Note that, according to the fact th&tandR are pure or constrained processes a
typing for (v)S| R can have been typed in different ways:

16

1. applying|REs| to Sand then|CoNc| to (v)SandR if both SandR are pure
processes. After that an application of riil&rART-P| could also be possible.

2. applying| REs| and| START-P|to Sand then rulg CoNc-S| if Sis a pure process
andR a constraint process.

3. Applying rules| REs-S| or | RESCH] to Sand then ruld Conc-S| if both Sand
R are constrained processes.

Let's consider case (3) in which the restriction has beeainbd by rulel RESCH |.

rZESsSs-A
——————— | RESCH]|
;3 +(y)S-A’ 2, -Rely
dOI’T(A/)ﬂdOI'T(Al)ZQ) =21 Z/D<lﬂl le><lA/
r;2uzi - (y)S|R-A'UA;

| CONC-S|

whereX’ = X \yandA’ = A\ y. By Lemma 3(1) we have thatdoes not occur in
. Sincey ¢ fn(R) by Lemma 3(2) we have thgt¢ dom(%;) andy ¢ dom(4;). So
domA)ndom4;) =0, X < 2; and also the involvedx -relations are trivially pre-
served. So we can deduce:

FZ-SsA 5 FReA
domA)ndomA) =0 I=5 Sl S =A
U +S|ReAUA;
2oz \yE(@y)(SIRrAUALY

| CONC-S|

| RESCH|

Sincey does not occur iity, A; we have trivially that’ v >, = U 53 \yandA' UA; =
AUAL\Y.

-Case(S|R) |R =S| (R|R). Atyping for (S| R) | R must have the form:

I';le—S|>A1 ;2,FR>Ap
dOI’T(Al) N dOI’T(Az) =0 212>
21y oA
172 “2MA | CONC-S|
I_;ZlUZzF(S| R)I>A1UA2 r;23FRpAs
dOI’T’(AlLJAQ) ﬂdOI’T(A3) =0 21US, <23
21U 35 a1 Ag AUA 1 23
r;(zlLLUZz)UZgl— (S| R) | R,DA1UA2UA3

| CONC-S|

The condition on the application of the inference rules ythatdom(4;), domAy),
dom(Az) are disjoint.

Note that by Lemma 3(4p1 U 25 1 Az implies 25 < Az. With similar arguments, and
using Lemma 5(1), we have that the following is a valid deauncof the same type for
(SIR)|R:

17

[;2,FR>A, F;23D—F¥>A3
dOI’T(Az) ﬂdOI’T(A3) =0 2o <23
Zz[><]A3 23D<1A2

r;2,+Se40q F;ZZU23F(R|R/)DA2UA3
dOI’T(Az UA3) n dOI’T(Al) =0 21X 2oU23
2oU 31 21 x1A,UA3
F;le(22U23) H S| (R| R’)DﬂlUﬂzUA3
Lastly by Lemma 5(1) we havE U (2, U 53) = (X1 U 35) U 33.
-Case(defDin S) | R=def D in (S| R) wheredpVD) ¢ fpv(R). A typing for
(def Din § | R has the form:
rX:BT,x:BFPpy: T rxX:.BT,2+SxA
| DEF-S]
[ZF def X(X,y) =Pin SrA r;2FRed’
domA)ndomA)=0 =3 i XA
[ZUs'F (def X(x,y) =Pin S) | ReAUA’
Note that, sincX ¢ fpv(R), by Lemma 1(6) and (possibly) (2) and (4), we h&ive :

BT; 2+ R>A’. By rule | CONC-S| we can then provE , X :BT; ZUX' + S| ReAUA’
and then we conclude using rulBer-S|.

| CONC-S|

| CONC-S|

| CONC-S|

A.2 Typing properties

A basic property of our constraints is the following, whoseqd is straightforward
by induction on derivations.

Lemma 6. Let/ ;2 F C ok. Then each channel name y can occur at most twice in C,
andinthiscaseyl € 2.

We say that a constraintis similar to another constrairt if c can be derived from
¢’ using only ruleg Axiom |, |INvOL], | DUAL |, | SiIMM |. Note that this implies that
c andc’ contain the same names.

Lemma 7. Let Ctcy =z ok and G-. y = w ok, where av do not coincide. If each
name occurs at most twice in C, then at least one betwgew pccurs twice in C.

Proof. By cases on the proof @ .y =z okandCt.y=w ok

If C contains constraints similar to both= zandy = w, then triviallyy occurs twice
inC.

If C contains a constraint similar o= z, but not toy = w, thenC must contains
constraints similar tg =tg, t =t 1 andt, =wfor 0<i <n, since aproof o€ Fc.y=w
can only be obtained from constraintsGrby applying the rulesAxiom |, [INvOL |,
|DUAL |, |SiMM | and | TRANS]. In this case itg, z coincide, therz occurs twice irC,
and otherwisg occurs twice irC.

If C does not contain constraints similante- zand toy = w, thenC must contains
constraints similar ty = up, Uj = Uj41 andum =zfor0< j <m, and toy =to, tj =ti11
andt, = w for 0 <i < n. Assume ad absurdum thatt; coincide for 0< i < k but
Uk 1,1 do not coincide. This is impossible sinogwould appear three times @.
Thenug,ty cannot coincide angappears twice ic.

18

—

Theorem 2 (Bilinearity and Communication Safety).Letl"; > - S>A and(v)(C | P)
be the canonical form of S, then there &éD> M, 3’ O 5, A’ D A such that™’; >’ +-
C|P>A’and:

1. for each channel name y free in P there are:
(a) an assumption yT € A’ for some channel type T;
(b) at most one channel name z occurring free in P such that =z and in this
casezTeA andy: T,z: T € 5/;
2. ify: T €A’ and ¢ is a ready communication action with subject y in P, then
agrees with T undef’,%’ and there cannot be any other ready communication
action with subjecty in P.

—

Proof. The restriction in(v) must have been typed by applications|&Es-S| and
| RESCH | from a typingl’; ' = C | P>A'. By Theorem 1 we can assume that the final
steps of this deduction are the following:

r';='+Cok r'epea’
—— | START-C| ————— | START-P|
r',2+cebd r';o-pPoa’
| CONC-S|
rs’+cj|pea’

where we need only to assuriéxi A'.
The proof now is by induction oR. The basic stepR=0) is trivial. We give some
interesting cases.

Case P=y(Z).P'. Then the type deduction fé& must end with:
FrEPed”y: T Z¢doma’)
r=y(Z).Ped” yleh(T);,T,Z: T

| CHDEL|

For point (1) by induction hypothesis for each channel ngirfeee inP’ and different
fromy,Z there is an assumption : T; € A’ and there is at most one chanagivhich
occurs inP’ suchthaCrcy; =z andinthiscase; : T, € A’ andy; : Ty,z: Ty € .
By induction hypothesis we also have tlzatloes not occur i’ sincezZ ¢ dom(A’).

By Lemma 7 there is at most one chann&thich occurs only once i€ and such
that C ¢ y = 2. Therefore the conditior’ > A’ implies thatz is the only channel
such thatC . y = z which can occur irP. Froml’; 3’ - C okand Lemma 4 we get
%'(y) = 2’(z) and so we concludé’(y) = A’(z) whenzoccurs inP again using’ »a A’.

The proof of point (2) is immediate.

Case P= Py | P.. Then the type deduction f& must end with:
r=Pi>A; F'ERP>Ar don‘(Al)ﬂdon'(Az):(D
r-=pm | Pr>AiUA;

Point (1) follows easily by induction hypothesis. Note thgthe conditiordom(A;) N
dom(Ay) a free channel name can occur eithedjnor in Ay.

As for point (2) note that ifp is ready inPy | P, theng must be ready in eithd® or P,.
The proof follows immediately by induction.

| Conc|

19

A.3 Type preservation under reduction

Lemma8. If I;Z,y:T,z: T FC ok and C. y = 2, then for any Twe getl";3,y:
T,z:T'+ C ok.

Proof. Notice that by Lemma 6/ andz can occur only once in the constraintsfif

a constraint similar ty = z is a constraint o, then we are done. Otherwi€emust
contains constraints similar = wp, Wi = wi, 1 andw, =z for 0 <i < n. Since all
w; occur twice in the showed constraints@fby Lemma 6 they cannot occur in other
constraints ofC. This implies thatC = C; | C, whereC; only contains constraints
similar toy = wp, wj = wi 1 andw, = zfor 0 <i < n, while C, contains constraints
without occurrences of W, ..., Wn,2 Moreovers = 5"y : T,z: T, Wo: L,...,Wn: L
using again Lemma6 arfd;y: T,z: T,wo: L,...,Wn: L FCy okandl; 2’ -C, ok It
is then easy to verify that;y: T/, z: T .Wo : L,...,Wn : L - C; ok for anyT’ and this
implies the conclusion.

Theorem 3 (Subject Reduction). Let ;3 - S>A whereA C 5. Then S— S
impliesl; >’ - S>A’andA’ C 3/ forsomes' C 5, A’ C A.

Proof. By induction on— and by cases. We only consider the most interesting cases.
- Rule[LinK]:

C|x{C1}(Y1)P1 | %2{C2}(y2)P» — C|C1[Co| (y1)(Y2)(Y1=Y2 | PL|P2)

whereC ¢ x; = Xz andcongC | C; | C;) andy; ¢ fn(P,) and y» ¢ fn(Py). Since
[ZC| x1{Ci}(y1)P1 | x2{C2}(y2)P>>A must be the conclusion of two applications
of rule |CoNC-S| we get

r>FCo0 (1)
[0Fx{Ci}(y1)Pi>4)
[0Fx{Co}(y2)P> A2)

whereA = AU A,.
Since (1) must be the conclusion of ry8TART-C| we must have

r;>FCok 4)

Since (2) must be the conclusion of rul8TART-P| applied to the conclusion of
rule | SEss| we have

[0Fx: (Ty) (5)
:0+Cy ok (6)
r FP11>A1,y1:T1 (7)

and similarly from (3)

[0Fx: (T (8)
r;,0FC,ok 9
rr P2[>A2,y2 . T2 (10)

20

By applying rule| Conc-C| to (4), (6), (9) we can derivE; X +C | C; | C; okand then
by rule | START-C|

F;Z'—C|C1|Czl>® (11)

Lemma 4 together with (4), (5), (8) ar@i-; x; = Xz imply Ty = T, which we will
denote simply byT. By (7), (10) and rule$ CHANN], | CHANNDUAL |, |Ok-=| and
| START-C| we derive

My T,y2: Ty =¥>0 (12)

Putting together (7), (10) and (12) using rifeoNnc-S| we get
Fiyr T2 T ey =V2 | PL P A1 UA Y i Ty i T

and then using ruléRESCH |

0 (y)(Y2) (Y1 =%z | P | P2) > A1UA; (13)
We conclude by applying rulgConc-S] to (11) and (13).
- Rule[Deleq]:

Clyi(z).PL|Y2(z).P. — C|P|(2)(mn=2]|P)

whereC ¢ y1 = ¥2. As in previous case we must have:

r:>FCok (14)
r Fy1<21>.Pll>A1 (15)
r |—y2(22).P21>A2 (16)

whereA = A; U A, dom(A;) ndom(Az) = 0 andX <t A UAy.
Since (15) must be the conclusion of ryl@HDEL | we have

A=Ay eh(T); T,z i T) TEPsALY T a7
Similarly from (16) we must have
Az = Aé,yz Z?Ch(TZ/);TQ rre PzDAé,yz . T2,Zz . TZ/ (18)

Lemma 4 together with (17), (18) at@lt-c y; =¥z imply Ty = T2, and T, = T;. We
denotel;, T, andT], T; by T andT’, respectively.
BeingA C > from (17) and (18) we must have

S =5"y1:dch(T');T,y2:2ch(T"); T,z : T/

and this by Lemma 8 and (14) gives>",y; : T,y» : T,z : T’ - C ok which implies
by rule | START-C|

2"y :T,y2:T,z0: T'-Cr0 (19)
By rules| CHANN |, | CHANNDUAL |, |Ok-=| and | START-C| we derive

Fi{z:T,z20: T}z =20

21

which together with (17) and (18) allows to get using rUl€3sArRT-P|, | CONC-S|, and
| RESCH|

F{z:TYEP | () (=2 |P)>ALALY1 i T,y T (20)

By applying rule| Conc-S| to (19) and (20) and observing that< A; U A, implies
Sy iT,ye T,z LA ALy i T,Y2 1 T, sincezy ¢ dom(A;) Udom(A3), we con-
clude:

M2y Ty T,z LEC|P | () (=2 | P)>ALAL Y1 i T,y T.

- Rule[Rec]:
C|def X(x,y) =Pin X(e2) — C|def X(x,y) =Pin (X)(y)(x=€| y=2| P)
As in previous case we get

r;>FCok (21)
I def X(x,y) =Pin X(e2)>A (22)

Since (22) must be the conclusion of rGBeF| applied to the conclusion of ru|&/AR |
we haved ={z: T} andl" ,X:BT+F X(ez)>{z: T} and

[X:BT,x:B-Prx{y:T} (23)
r;0-e:B (24)

By Lemma 1 from (24) we gdt, X : BT,x: B; 0+ e: B and then using rulelENV | and
[OK-=]

M X:BT,x:B;0Fx=eok (25)
By rules| SENV| and | Ok-=] we can also derive
rX:BT,x:B;{y:T,z:T}Fy=2z0k (26)

From (23), (25), (26) by using rulesSTART-C|, | START-P| and | CONC-S| we get
X:BT,x:B;{y:T,z:T}x=e|y=z|Pr{y: T} and then by rule$Res-S| and
| RESCH |

M X:BT;{z:T}F(X)(y)(x=e|y=2z|P)>0 (27)
Applying rule | DEF-S]| to (23) and (27) we derive
FX:BT;{z:T}Fdef X(x,y) =Pin X)(y)(x=€e|y=z|P)>0 (28)

Being{z: T} C > by applying rule| START-C| to (21) and then ruléConc-S]| to the
resulting judgement and to (28) we conclude

[X:BT;2,z: LEC|def X(X,y)=Pin (X)(y)(x=¢e|y=2z|P)>0

where> =5",z: T.

22

