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Abstract An ambient calculus with both static and dynamic types is presented, where the
latter ones represent mobility and access rights that may bedynamically con-
sumed and acquired in a controlled way. Novel constructs andoperations are
provided to this end. Type-checking is purely local, exceptfor a global hierar-
chy that establishes which locations have the authority to grant rights to which:
there is no global environment (for closed terms) assigningtypes to names. Each
ambient or process move is subject to a double authorization, one static and the
other dynamic: static type-checking controls (communication and) “active” mo-
bility rights, i.e., where a given ambient or process has theright to go; dynamic
type-checking controls “passive” rights, i.e., which ambients a given ambient
may be crossed by and which processes it may receive.

Keywords: Ambient calculi, type systems for security, local type checking, dynamic ex-
change of rights.

1. Introduction
The ever growing importance, in the last decades, of forms ofdistributed and mo-

bile computing over wide physical or virtual domains has prompted the design of new
theoretical models of computing: in particular, distributed process calculi and ambient
calculi, for example [Hennessy and Riely, 2002; Cardelli and Gordon, 2000; Levi and
Sangiorgi, 2003; Bugliesi et al., 2004].
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All such models rely on (often sophisticated) type systems for expressing and
checking behavioural properties concerning mobility, resource access, security, etc.
In most of them, a system or component is represented by a termt of a given calculus,
a typeT assigned tot, and an environmentΓ. In the standard view, as is well-known,
the termt abstractly describes the implementation, its typeT may express some be-
havioural properties, and the environmentΓ is a set of assumptions on the outside
world. Typically, these are assumptions on types of non-local names; there is thus the
notion of a global environment, which is the abstract description of situations where
all the interacting parties are known in advance to each other, so that static checks
performed before execution ensure the correctness of the whole system.

When dealing with distributed and mobile computing in wide-area “open” systems,
however, one is often confronted with a scenario where interaction may take place
between parties whose respective properties are unknown oronly partially known to
each other. If stopping the execution for re-checking is to be avoided, each component
must dynamically carry with it sufficient behavioural information that can be checked
at runtime by the other ones interacting with it. This may correspond to a formal
system where, like in the one proposed in [Bugliesi and Castagna, 2002], the typing
judgmentΓ `a t:T is relative to a localitya, and may be “packed” into a new kind of
terma[t]ΓT that carries at runtime the typing information.

In this paper we address the same problem (of theoretically modelling such kind of
scenarios) via a new approach that, though similar in spiritto the one of [Bugliesi and
Castagna, 2002] just recalled, is nevertheless different from it in several aspects.

We present a typed ambient calculus where global type assumptions on ambient
names are eliminated, and the only global assumptions left are those on the input
variables which, owing to their nature, have only a limited scope and do not span the
whole system.

Behavioural type assumptions are instead local to each ambient. Thus an ambi-
ent type, which in most calculi [Cardelli et al., 2000; Bugliesi and Castagna, 2002;
Bugliesi et al., 2004; Coppo et al., 2003; Bugliesi et al., 2003] specifies the behaviour
of all ambients with the same name or group and requires cross-reference type con-
trols, is here attached to a single ambient occurrence: ambients with the same name
or group, occurring in different parts of a system, can have different types. The ab-
sence of static global type information requires the introduction of runtime types, with
dynamic controls which test the compatibility between different local assumptions.

Our calculus is based onM3 [Coppo et al., 2003], a variant of the Calculus of Mo-
bile Ambients (MA) where theopen primitive for dissolving ambient boundaries has
been removed and its role in enabling component interactionis played by primitives
for general process mobility. The new operators were inspired by thego primitive of
Dπ [Hennessy and Riely, 2002], but they are tailored to the ambient nested structure,
which is richer than the flat structure of Dπ locations.

As a matter of fact, theopen primitive of MA has been considered by many re-
searchers as potentially dangerous, because it could be inadvertently or maliciously
used to destroy an ambient’s individuality (by dissolving its boundary). Several vari-
ants of MA have therefore been proposed, which either are equipped with additional
constructs for controlling the execution ofopen, like co-capabilities of Safe Ambi-



ents [Levi and Sangiorgi, 2003], or replace it with other mechanisms for interaction
between ambients, such as the communication between nestedambients that charac-
terizes Boxed Ambients [Bugliesi et al., 2004]. Process mobility, however, seems to
be a more suitable mechanism for modelling code exchange andremote execution.

The rest of the paper is organized as follows. In the next section we describe the
main features of our system. In sect. 3 a meaningful example,which illustrates the use
of the different constructs of the calculus, is developed atlength. In sect. 4 we draw
some short conclusions.

Due to space limitation most technical details, like the proof of subject reduction,
have been omitted. We refer the interested reader to the fullpaper [Coppo et al.,
2004] for a detailed account. In it we also introduce, along with further examples, a
behavioural semantics (i.e., barbed congruence) and some equivalence laws based on
it. The soundness of the laws is proved through standard techniques by relying on a
higher-order labelled transition system and on a labelled bisimulation (which is proved
sound w.r.t. to the behavioural semantics).

2. The typed language and its reduction semantics
The syntax of the pre-terms of the language (where type constraints are ignored) is

given in Fig. 1, the one of types in Fig. 2. The precise syntax of the language results
from the typing rules given in Definition 3. Processes are built through the usual con-
structs of sequential action prefixing, parallel composition, and ambient construction.
In the following a process of the formm:g(G)[c, e‖P ], which corresponds, in our
richer calculus, to the termm[P ] of standard ambient calculi, will be simply called an
ambient, distinct from the mere ambient namem. Communication is only local (and
synchronous), as in the original MA [Cardelli and Gordon, 2000]. Actions include
the usualin andout primitives for ambient mobility, and the two new primitivesdown

andup for moving processes between ambients; already taken into consideration in
[Coppo et al., 2003], they replace theto primitive of M3.

Thedown action is analogous to thein action. Its (simplified) reduction rule (see
[Coppo et al., 2003]) is:down m.P |Q |m[R] → Q |m[P |R]; i.e., the process
down m.P enters an ambient namedm where it continues asP . On the contrary,
theup action is only partially analogous toout, since its argument is the name of the
destination ambient and not that of the source ambient, likein the case ofout. The cor-
responding (simplified) reduction rule ism[n[up m.P |R] |Q] → m[P |n[R] |Q],
also given in [Coppo et al., 2003]. The explicit mention of the target ambient allows
more effective controls on the incoming process. In the present setting the four mo-
bility primitives, though keeping their basic behaviours just recalled, come with richer
syntactic forms that correspond to more sophisticated reduction rules, as we will see
later in the section.

Types describe communication and mobility properties. With reference to an am-
bient, we distinguish between its active and passive mobility: by the former we intend
which ambients the given ambient may cross or send processesto; by the latter, the
ambients by which it may be crossed or sent processes. Of course, by directly specify-
ing the active mobility of each ambient one indirectly specifies the passive mobility of
all the concerned ambients, and vice versa. One of the main features of our system is



A denotes the set ofambient namesandG denotes the set ofgroup names.

α ::= ambients
m, n, . . . ambient names
x, y, . . . variables

γ ::= groups
g, h, . . . group names
x, y, . . . variables

χ ::= capabilities
in α:g moves the containing ambient

into ambientα of groupg

out α:g moves the containing ambient
out of ambientα of groupg

up α:g with G moves the continuation process out from
its ambient up to enclosing ambientα

of groupg requiring rightsG
down α:g with G moves the continuation process from

its ambient down to enclosed ambientα

of groupg requiring rightsG
addc γϕ in α:g adds the crossing rightγ with

multiplicity ϕ to ambientα of groupg

adde 〈γ, G〉ϕ in α:g adds the entering right〈γ, G〉 with
multiplicity ϕ to ambientα of groupg

χ.χ′ path
x, y, . . . variables

M, N, L ::= messages
α ambients
γ groups
χ capabilities

ρ ::= guards
χ capabilities

〈
−→
M〉 synchronous output

(
−−→
x: W ) typed input

P, Q, R ::= processes
0 null
ρ . P prefixing
P |Q parallel composition
α:g(G)[c, e‖P ] ambient
! ρ . P guarded replication
(νn)P name restriction

wherec are multisets of groups,e are multisets of pairs〈g, G〉;
−→
W andG are defined

in Figure 2.
Figure 1. Syntax



C , E , . . . sets of groups;

G ::= mc(C , E , T ) mobcomtype: mobility rights
and communication type

Pro ::= g(G) process type: processes that can stay in ambients
of groupg with rightsG

Cap ::= g′(G′) g(G) capabilities that can be consumed
by processes of typeg′(G′) and leave
processes of typeg(G) as continuations

W ::= message type
Cap capability type
group group
amb ambient type

T ::= communication type
shh no communication
−→
W communication of messages of type

−→
W

Σ ::= ∅ context
Σ, x : W

Figure 2. Types

that static types directly specify active mobility while dynamic types directly specify
passive mobility, and the compatibility between them is tested by runtime checks.

The type system is based onambient groups: a group is a name that represents (i.e.,
labels) a set of ambient name occurrences. Different ambient names may belong to the
same group, but at the same time different occurrences of thesame ambient name may
be labelled with different group names, i.e., different ambients with the same name
may belong to different groups. The mobility properties directly specified for each
ambient are always expressed with reference to groups and not to individual ambients,
so as to avoid a dependence of types from values.

In order to enable an ambient to check at runtime (i.e., during reduction) that the
active types of the incoming processes are compatible with its own type, the primi-
tives for moving processes between ambients carry with themthe communication and
mobility types of their continuations.

While local typing allows the control of the active mobilitybehaviour, the absence
of global type information makes impossible a static control of the passive behaviour.
This check has therefore also to be performed dynamically; for that reason, at runtime
each ambient carries a specification of which (groups of) ambients can cross it and
which can send it processes, and how many times.

Thus every mobility action becomes subject to a double authorization, one static
and the other dynamic. The fact that “passive” permits are dynamically checked al-
lows them to also be dynamically granted; to this end, we haveintroduced two new
primitives through which a process may enrich the rights of another one thus enabling
it to carry out a given task.



Static types and their packing for runtime use
The static type system is centered on the notion of process type, which consistboth

of a group nameg and of a mobility and communication type (ormobcomtype for
short)G; following the notation of [Cardelli et al., 1999], we writeit g(G).

The mobcom typeG is of the formmc(C , E , T ), whereC is the set of (groups of)
ambients into which the process may drive (through anin or out action) its enclosing
ambient,E the set of (groups of) ambients to which it may send (through adown or
up action) a continuation process, andT is the process communication type. We use
the notationC (G), E (G), T (G) to respectively indicate the componentsC , E , T of
G.

Like in most ambient calculi, all the (parallel) processes within an ambient must
have the same process typeg(G), which is thus a sort of inner type of that ambient and,
as we will see, is bound locally to it. Ambient names, on the other hand, only have the
atomic typeamb, and are therefore omitted in the environments. As a consequence,
name restriction may be simply written as(νm)P . Similarly, group names have the
atomic typegroup. Group names can be exchanged in communications but group
variables can only be used in a limited way, as will be remarked later.

Ambient and process mobility actions must specify not only an ambient name, as in
MA, but also a group name. For instance, the syntax of the usual in andout primitives
becomesinα:g, outα:g (with α ambient name or variable). A process may contain one
such action (i.e., it may be well typed) only if its type allows it to drive its enclosing
ambient across the boundary of ambients labelled with the group nameg. Values
exchanged in communications may be ambient names (of typeamb), group names (of
typegroup), or capabilities.

A capability type consists, as in [Coppo et al., 2003], of a pair of process types,
written here with the notationg′(G′) g(G). Capability types take into account the
fact that, owing to thedown or up actions, a process can move from one ambient to
another, changing its type accordingly. A capabilityχ of typeg′(G′)  g(G) drives
a continuation processP from an ambient of (inner) typeg′(G′) to an ambient of type
g(G). ObviouslyP must have the typeg(G) of the destination ambient while the
resulting processχ.P has the typeg′(G′) of the source ambient. This is formalized in
the rule (Prefix) of Fig. 3. The type of a sequence ofin- or out-capabilities has the
form g(G)  g(G), because in executingin or out actions a process remains in the
same ambient.

The meaning of types, informally described in the body of this section, is formally
defined by the set of the typing rules shown in Fig. 3.

Dynamic types
Type controls no longer statically performed must of coursebe done dynamically.

To this end, the inner typeg(G) of an ambient namedm is bound to it with the notation
m:g(G)[. . . ]. An ambient is also characterized by two componentsc ande that record
by which ambient or process groups it may be entered and how many times. The
complete notation isα:g(G)[c, e‖P ], with α variable or ambient name.



n ∈ A

O; Σ ` n : amb
(Amb Const)

g ∈ G

O; Σ ` g : group
(Grp Const)

x : W ∈ Σ

O; Σ ` x : W
(Env)

O; Σ ` 0 : ((g)G)
(Null)

O; Σ ` α : amb g ∈ C (G)

O; Σ ` in α:g : g′(G) g′(G)
(In)

O; Σ ` α : amb g ∈ C (G)

O; Σ ` out α:g : g′(G) g′(G)
(Out)

O; Σ ` α : amb g ∈ E (G′)

O; Σ ` down α:g with G : g′(G′) g(G)
(Down)

O; Σ ` α : amb g ∈ E (G′)

O; Σ ` up α:g with G : g′(G′) g(G)
(Up)

〈〈g, g′〉〉 ∈ O O; Σ ` α : amb O; Σ ` γ : group

O; Σ ` addc γϕ in α:g : g′(G) g′(G)
(Add-c)

〈〈g, g′〉〉 ∈ O O; Σ ` α : amb O; Σ ` γ : group

O; Σ ` adde 〈γ, G〉ϕ in α:g : g′(G′) g′(G′)
(Add-e)

O; Σ ` χ : g′(G′) g′′(G′′) O; Σ ` χ′ : g′′(G′′) g(G)

O; Σ ` χ.χ′ : g′(G′) g(G)
(Path)

O; Σ ` χ : g′(G′) g(G) O; Σ ` P : g(G)

O; Σ ` χ.P : g′(G′)
(Prefix)

O; Σ,
−−−→
x : W ` P : g(G) G ≡ mc(C , E ,

−→
W )

O; Σ ` (
−−−→
x : W ) . P : g(G)

(Input)

O; Σ ` P : g(G) O; Σ `
−→
M :

−→
W G ≡ mc(C , E ,

−→
W )

O; Σ ` 〈
−→
M〉 . P : g(G)

(Output)

O; Σ ` α : amb O; Σ ` P : g(G) 〈g′′, G′′〉 ∈ e =⇒ G′′ ≤ G

O; Σ ` α:g(G)[c, e‖P ] : g′(G′)
(Amb)

O; Σ ` P : g(G) O; Σ ` Q : g(G)

O; Σ ` P |Q : g(G)
(Par)

O; Σ ` ρ . P : g(G)

O; Σ `! ρ . P : g(G)
(Repl)

O; Σ ` P : g(G)

O; Σ ` (νn)P : g(G)
(Amb Res)

Figure 3. Typing rules



More precisely, in a given ambient the componentc is the multiset of groups of
ambients that are allowed to cross its external boundary, while e is the multiset of
groups of ambients that are allowed to send processes to it. In e each element is
actually a pair〈g, G〉 consisting of a group and a mobcom type; its meaning is that a
process coming from an ambient of groupg is given the entrance permit if it respects
the behavioural constraints specified by the typeG. In an ambientm:gm(Gm)[c, e‖P ]
all the pairs〈g, G〉 occurring ine must therefore be such thatG is a subtype ofGm.

Each execution of anin or out action consumes one element ofc and each execu-
tion of adown or up action consumes one element ofe, with the exception ofstarred
elements, which represent permanent permits, i.e., elements with infinite multiplicity.
The control of the mobility constraints represented byc ande is performed dynami-
cally during process reduction. A reduction rule cannot fireif the corresponding side
conditions onc ande are not satisfied.

In the following we give the formal definition of a multiset with possibly infinite
multiplicities, and we define the operations of addition andremoval of elements.

Definition 1
A multiset over a set of elementsS is a function fromS to the set of multiplicities
ω ∪ {∗} (ranged over byf); ω ∪ {∗} is the set of natural numbersω extended
with the extra element∗ denoting the infinity;

If f is a multi-set onS, s, r ∈ S, ϕ ∈ ω ∪ {∗} we define:

– s ∈ f iff f(s) 6= 0;

– (f ∪ sϕ)(r) =

{

f(s) + ϕ if r = s,

f(r) otherwise.

– (f ↓ s)(r) =

{

f(s) − 1 if r = s,

f(r) otherwise.

where∗ + ϕ = ∗.

A partial order on mobcom types is naturally defined via set inclusion, and so is the
notion of glb of mobcom types. Communication subtyping is characterized only by
the fact thatshh is smaller than any other communication type.

Definition 2

T ≤ T ′ if eitherT = shh or T = T ′.

mc(C , E , T ) ≤ mc(C ′, E ′, T ′) if C ⊆ C ′ andE ⊆ E ′ andT ≤ T ′.

T u T ′ =







shh if T = shh or T ′ = shh

T if T = T ′

undefined otherwise

mc(C , E , T ) u mc(C ′, E ′, T ′) = mc(C ∩ C ′, E ∩ E ′, T u T ′)
if T u T ′ is defined and is undefined otherwise.

The elements ofc ande are similar to the co-capabilities of Safe Ambients [Levi and
Sangiorgi, 2003], with starred elements corresponding to banged co-capabilities.



Dynamic modification of mobility rights
The componentsc ande of an ambient process may allow or forbid movements

at runtime; they can therefore be changed dynamically without breaking the subject
reduction. As a matter of fact, this is achieved:

by automatically removing a (consumable) permit when a movement action is
performed;

by adding toc or to e an element with a multiplicity, by means of one of the
two newly introduced permit-adding primitivesaddc andadde.

Action addc gϕ in m:gm dynamically adds the groupg with multiplicity ϕ to thec
component of a local ambient namedm of groupgm (see the reduction rule (R-addc));
as usual, by “local ambient” we intend one that is found in thesame enclosing am-
bient. Actionadde 〈g, G1〉

ϕ in m:gm dynamically adds the group/type pair〈g, G1〉
with multiplicity ϕ to thee component of a local ambientm (rule (R-adde)). In a
termm:gm(Gm)[c, e‖P ] all mobcom types occurring ine are subtypes ofGm. This
property is preserved by the reduction rule (R-adde) since theadde 〈g, G1〉

ϕ in m:gm

action can be performed only ifG1 u Gm is defined.
A process may perform a permit-adding operation on an ambient only if its group

is higher than the target’s group in a global administrativehierarchy, represented by
a partial order relationO over group names. Such hierarchy is the only global envi-
ronment of our calculus; it might be thought of as some general (not necessarily cen-
tralized) coordination and administration structure of the network. The typing rules
(Add-c), (Add-e) assure that this hierarchy is always respected.

Mobility actions and dynamic type-checking
Process mobility actions must specify, in addition to the ambient and group name

of the destination, the mobcom typeG of the continuation process (i.e., of the process
that will run within the target ambient). The complete syntax of thedown action is
downm:gm withG, that ofup is similar. Of course, the typeG needs to be compatible
(via subtyping) with the mobcom typeGm of the destination ambient. More precisely,
if a processdown m:gm with G′ . P is of groupg (i.e., is typed with a typeg(G)) the
e component of the target ambientm must contain the groupg paired with a typeG′′

such thatG′ ≤ G′′. The typing rule (Amb), along with the reduction rule (R-adde),
ensures thatG′′ ≤ Gm and soG′ ≤ G′′ ≤ Gm. Hence, the migrating processP is
guaranteed not to require more rights than those specified bythe inner typegm(Gm)
of the destination ambient, which was statically checked.

Reduction rules are thus dependent on the typing assumptions and the reduction
relation is labelled with the process typeg(G), even though the group nameg is only
involved in the (R-down) rule and the typeG never plays any role in reduction. In fact
reduction rules are only defined for well typed terms, i.e., for processes that are typed
with some typeg(G). The complete set of rules is given in Fig. 4.

A basic property of the system is that typing is preserved by≤ on mobcom types.

Lemma 3 If O; Σ ` P : g(G) andG ≤ G′ thenO; Σ ` P : g(G′)



Basic reduction rules:

(R-in) n:gn(Gn)[cn, en‖ in m:gm . P |Q ] |m:gm(Gm)[cm, em‖R]

→g,G m:gm(Gm)[cm ↓ gn, em‖n:gn(Gn)[cn, en‖P |Q ] |R ]

if gn ∈ cm

(R-out) m:gm(Gm)[cm, em‖n:gn(Gn)[cn, en‖ out m:gm . P |Q ] |R ]

→g,G n:gn(Gn)[cn, en‖P |Q ] |m:gm(Gm)[cm ↓ gn, em‖R]

if gn ∈ cm

(R-down) down m:gm with G′ . P |m:gm(Gm)[cm, em‖Q]
→g,G m:gm(Gm)[cm, em ↓ 〈g, G′′〉‖P |Q]

if 〈g, G′′〉 ∈ em & G′ ≤ G′′

(R-up) m:gm(Gm)[cm, em‖n:gn(Gn)[cn, en‖up m:gm with G′ . P |R] |Q]
→g,G m:gm(Gm)[cm, em ↓ 〈gn, G′′〉‖n:gn(Gn)[cn, en‖R] |Q |P ]

if 〈gn, G′′〉 ∈ em & G′ ≤ G′′

(R-addc) addc g′ϕ in m:gm . P |m:gm(Gm)[cm, em‖R]

→g,G P |m:gm(Gm)[cm ∪ g′ϕ, em‖R]

(R-adde) adde 〈g′, G′〉ϕ in m:gm . P |m:gm(Gm)[cm, em‖R]

→g,G P |m:gm(Gm)[cm, em ∪ 〈g′, G′ u Gm〉ϕ‖R]

if G′ u Gm is defined

(R-comm) (
−−−→
x : W ) . P | 〈

−→
M〉 . Q →g,G P{−→x :=

−→
M} |Q

Structural reduction rules:

(R-par) P →g,G Q ⇒ P |R →g,G Q |R

(R-amb) P →g,G Q ⇒ n:g(G)[c, e‖P ] →g′,G′ n:g(G)[c, e‖Q]

(R-≡) P ′ ≡ P ′, P →g,G Q, Q ≡ Q′ ⇒ P ′ →g,G Q′

(R-ν) P →g,G Q ⇒ (νn)P →g,G (νn)Q

Structural Congruence: ( | , 0) is a commutative monoid.

(νn)(P |Q) ≡ (νn)P |Q (n 6∈ fn(Q)) (νn)(νm)P ≡ (νm)(νn)P

n:g(G)[c, e‖(νm)P ] ≡ (νm)n:g(G)[c, e‖P ] (n 6= m) ! P ≡ P | ! P

Figure 4. Reduction



Using Lemma 3 a property of subject reduction, which ensuresthat static typing is
preserved by computation, can be proved with standard techniques.

Theorem 4 (Subject Reduction) If O; Σ ` P : g(G) andP →g,G Q

thenO; Σ ` Q : g(G).

Finally, observe that group variables may only occur as firstarguments ofaddc and
adde, so that they never occur inG or within thec ande components, since otherwise
their role in allowing a safe name restriction would be defeated.

3. An example
Our main example is the modelling of a public transportationsystem, thetrain

introduced by [Cardelli, 1999] as a nice pictorial illustration of the issues related to
the control of mobility.

We want to represent a railway network connecting a set of different places (e.g.,
cities) in the world. Trains move between stations, travellers may get into and off
trains only at stations and cannot drive them (no hijacking possible). The number
of passengers in a train at any given instant cannot exceed the number of seats; a
passenger takes a seat on boarding and releases it on gettingoff. Each train has a fixed
route.

For the sake of simplicity, we assume that:

There is a top-level untrusted ambientworld, which includes stations, travellers,
and some other unspecified processR (e.g., other means of transport); it has
group and mobcom typegw(Gw), but no assumption can be made onGw. Also,
cworld, eworld andR are unknown.

In our intended representation different stations should be found within different
cities or localities, and moving from one city to another would only be possible
by train. The presence of cities would however increase the size of the example
in a trivial manner, without providing more insights; we therefore place stations
directly withinworld, although in this way travellers appear to use a train to end
up in the same ambientworld where they started from.

There are only two stationsstA andstB, and one traintrain commuting be-
tween them. Initially, the train is withinstA.

Stations and trains are represented by ambient processes; travellers are represented
by simple processes; the number of free seats in a train is represented by the multi-
plicity of the right to get into the train.

Stations are ambientsstA:gst(Gst)[. . . ] andstB:gst(Gst)[. . . ], of groupgst and mob-
com typeGst. They are immobile, and can have travellers both going down into the
trains or up into the world; they can be crossed by trains, andcan receive travellers
both from train and from the outside world. Correspondingly:

Gst = mc(∅, {gtr, gw}, shh) cst = {g∗tr} est = {〈gtr, Gto〉
∗, 〈gw, Gfrom〉

∗}

whereGfrom = mc(∅, {gtr}, shh) andGto = mc(∅, {gw}, shh). Note thatGfrom ≤ Gst

andGto ≤ Gst, i.e., bothGfrom andGto, which represent two accepted behaviours for



processes entering the station, are compatible withGst, as is required by the typing
rule (Amb).

The train is an ambient of groupgtr , which can cross stations and world, send
traveller processes into stations, and receive a maximum numbern of passengers from
stations, provided they behave as good passengers (and not,for example, as drivers):

train , tr:gtr(Gtr)[ctr, etr‖ ! out stA:gst . in stB:gst . out stB:gst . in stA:gst]
where Gtr = mc({gst}, {gst}, shh) ctr = ∅ etr = {〈gst, Gpsng〉

n}
with Gpsng = mc(∅, {gst}, shh)

A traveller is represented by a parametric processtraveller(src, dst) which from
some unspecified place in the world enters the stationsrc to become a passenger of a
train that takes it to the stationdst:

traveller(src, dst) , down src:gst with Gfrom . psng

where psng , down tr:gtr with Gpsng. up dst:gst with Gto

. adde 〈gst, Gpsng〉 in tr : gtr . up world:gw with Gw .P

The mobcom typesGfrom andGto specify the behaviours of a passenger respectively
in the departure station, going to board a train, and in the arrival station, going to exit
the station into the outside world or city.

The initial configuration is:

(ν stA, stB)world:gw(Gw)[cw, ew‖R |trvlrs(stA, stB)
| stA:gst(Gst)[cst, est‖train] | stB:gst(Gst)[cst, est‖0 ]
|trvlrs(stB, stA) ]

wheretrvlrs(src, dst) is a parallel composition of processestraveller.
Our specification satisfies many properties of interest; some of them immediately

follow from the definitions. For instance, from the definition of etr it follows that no
traveller can get into the traintr when this is outside a station: any action to such
purpose from a process inworld will be dynamically blocked. Also, by the definition
of etr and of thepsng process1 it follows that at mostn psng processes can be within
the traintr at the same time.

A bad passenger willing to get off the train when this is not in a station, though
it maybe statically well typed, is dynamically not allowed to do so. Suppose the bad
passenger be represented by the process

badpsng , down tr:gtr with Gbad . up world:gw with Gw .bp

By assumingO; Σ ` bp : gw(Gw) one may derive the typing

O; Σ ` up world:gw with Gw .bp : gtr(Gbad) with Gbad, mc(∅, {gw}, shh)

Observe that the process typegtr(Gbad) characterizes a process that might stay within
the train and go from it directly into the world. From the above we may infer the
typing O; Σ ` badpsng : gst(Gst), since for that it is enough thatGst allows the
process to get into the train, i.e.,gtr ∈ E (Gst).

1The present specification does not prevent a passenger to addmore than one pair toetr .



The processbadpsng is therefore statically allowed to stay within a station, as
for example in the well-typed termstA : gst(Gst)[cst, est‖ badpsng |train]. Nev-
ertheless, when trying at runtime to get into the train, the process is blocked be-
causeetr = {〈gst, Gpsng〉

n} (with Gpsng ≤ Gtr ). As a matter of fact, for the action
down tr:gtr with Gbad to fire, it is required thatGbad ≤ Gpsng, which is not the case
sinceGbad = mc(∅, {gw}, shh) while Gpsng = mc(∅, {gst}, shh): Gbad allows going
into the world whileGpsngdoes not.

This should have been somehow expected, because in our calculus the dynamic
checks performed by an ambient are assigned the task of controlling that mobile pro-
cesses willing to get in do respect some fixed policies expressed through types and, if
this is not the case, of preventing them from getting in. Notice that all the previous
properties are guaranteed by only exploiting in the operational semantics information
local to the involved processes/ambients.

A similar scenario has already been modelled in [Cardelli, 1999; Ferrari et al.,
2002]. In both cases, the mobility control is implemented byinforming the passenger
when the train has reached the station at which he wants to getoff. More specifically,
in [Cardelli, 1999] a new primitive forambient renamingis exploited. Intuitively, the
train ambient takes a suitable name to implicitly inform thepassengers when it has
arrived at a certain station, while it takes a name unknown topassengers when it is
moving (in this way passengers cannot get in or off the train). In [Ferrari et al., 2002]
a suitable ambient calledannouncementis generated by the train when it arrives at a
station. This ambient informs the passengers of the arrivalat a certain station.

4. Conclusions
The calculus we presented is a first attempt to model the interplay of static and

dynamic type-checking when handling the security requirements of global computing
applications. In particular, the packing of a mobility and communication type within
a mobile process and its subsequent check at destination maybe considered as an
abstract modelling of the proof-carrying code approach.

Due to the absence of static ambient types (apart from the atomic typeamb), static
typing rules may be easily translated into a simple type inference algorithm that, given
a term in whose body all the mobcom types are left unspecified,reconstructs the min-
imal such type allowing the term to be well typed. The algorithm will merely build a
type by recording the capabilities occurring in the term. The groups assigned to ambi-
ent occurrences, on the other hand, as well as the dynamic componentsc ande, define
the policy and the mobility constraints established by the designer of the application,
and cannot be sensibly inferred.

A still unsatisfactory aspect of our model is that the authority (specified by the
partial orderO) granting dynamic rights to ambients is a too coarse-grain notion:
either an ambient is authorized to grant a right with any (even infinite) multiplicity, or
the ambient may grant none. It would be useful that this authority could have different
degrees, related to maximal multiplicities of granted rights. As noticed by one referee,
another useful extension would be the introduction of a primitive for group restriction
as in [Cardelli et al., 2000; Coppo et al., 2003]. This could provide protection from
external untrusted agents, but the interaction with the partial orderO representing the



administrative hierarchy requires a careful handling. A modification of the calculus
in this sense, along with a possible increasing of the expressivity of types, is currently
under investigation.
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