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Abstract An ambient calculus with both static and dynamic types is@néed, where the
latter ones represent mobility and access rights that mayybamically con-
sumed and acquired in a controlled way. Novel constructsogedations are
provided to this end. Type-checking is purely local, exdepta global hierar-
chy that establishes which locations have the authorityaatgights to which:
there is no global environment (for closed terms) assigtyipgs to names. Each
ambient or process move is subject to a double authorizatios static and the
other dynamic: static type-checking controls (commuidcaand) “active” mo-
bility rights, i.e., where a given ambient or process hagitjig to go; dynamic
type-checking controls “passive” rights, i.e., which aeniis a given ambient
may be crossed by and which processes it may receive.

Keywords:  Ambient calculi, type systems for security, local type dtieg, dynamic ex-
change of rights.

1. Introduction

The ever growing importance, in the last decades, of forntistfibuted and mo-
bile computing over wide physical or virtual domains hasppted the design of new
theoretical models of computing: in particular, distrigdiprocess calculi and ambient
calculi, for example [Hennessy and Riely, 2002; Cardeltl @ordon, 2000; Levi and
Sangiorgi, 2003; Bugliesi et al., 2004].
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All such models rely on (often sophisticated) type systenrseikpressing and
checking behavioural properties concerning mobilityprese access, security, etc.
In most of them, a system or component is represented by atefagiven calculus,
a typeT assigned t@, and an environment. In the standard view, as is well-known,
the termt abstractly describes the implementation, its typmay express some be-
havioural properties, and the environméhts a set of assumptions on the outside
world. Typically, these are assumptions on types of noallnames; there is thus the
notion of a global environment, which is the abstract desicm of situations where
all the interacting parties are known in advance to eachrp#ieethat static checks
performed before execution ensure the correctness of tbhéewslistem.

When dealing with distributed and mobile computing in watea “open” systems,
however, one is often confronted with a scenario where aatesn may take place
between parties whose respective properties are unknownlppartially known to
each other. If stopping the execution for re-checking issawoided, each component
must dynamically carry with it sufficient behavioural infioation that can be checked
at runtime by the other ones interacting with it. This mayrespond to a formal
system where, like in the one proposed in [Bugliesi and @asta2002], the typing
judgmentl” -, ¢:7T'is relative to a locality:, and may be “packed” into a new kind of
termalt]’. that carries at runtime the typing information.

In this paper we address the same problem (of theoreticaltyefting such kind of
scenarios) via a new approach that, though similar in gpitie one of [Bugliesi and
Castagna, 2002] just recalled, is nevertheless different it in several aspects.

We present a typed ambient calculus where global type adgumsppn ambient
names are eliminated, and the only global assumptions lefttese on the input
variables which, owing to their nature, have only a limitedge and do not span the
whole system.

Behavioural type assumptions are instead local to eachearnbirhus an ambi-
ent type, which in most calculi [Cardelli et al., 2000; Bwgli and Castagna, 2002;
Bugliesi et al., 2004; Coppo et al., 2003; Bugliesi et alQZspecifies the behaviour
of all ambients with the same name or group and requires-tedssence type con-
trols, is here attached to a single ambient occurrence: ertgwith the same name
or group, occurring in different parts of a system, can hafferént types. The ab-
sence of static global type information requires the inticithn of runtime types, with
dynamic controls which test the compatibility betweenetiéint local assumptions.

Our calculus is based dvi3 [Coppo et al., 2003], a variant of the Calculus of Mo-
bile Ambients (MA) where thepen primitive for dissolving ambient boundaries has
been removed and its role in enabling component interactiphayed by primitives
for general process mobility. The new operators were iesiliy thego primitive of
Dz [Hennessy and Riely, 2002], but they are tailored to the antlriested structure,
which is richer than the flat structure offDocations.

As a matter of fact, thepen primitive of MA has been considered by many re-
searchers as potentially dangerous, because it could Hedrtantly or maliciously
used to destroy an ambient’s individuality (by dissolvitgghoundary). Several vari-
ants of MA have therefore been proposed, which either argopgd with additional
constructs for controlling the execution ofen, like co-capabilities of Safe Ambi-



ents [Levi and Sangiorgi, 2003], or replace it with other hr@dsms for interaction
between ambients, such as the communication between reesteients that charac-
terizes Boxed Ambients [Bugliesi et al., 2004]. Process ifitpbhowever, seems to
be a more suitable mechanism for modelling code exchangeeamate execution.

The rest of the paper is organized as follows. In the neximeete describe the
main features of our system. In sect. 3 a meaningful examyligh illustrates the use
of the different constructs of the calculus, is developel@gth. In sect. 4 we draw
some short conclusions.

Due to space limitation most technical details, like thegbif subject reduction,
have been omitted. We refer the interested reader to thepéper [Coppo et al.,
2004] for a detailed account. In it we also introduce, aloritip fiurther examples, a
behavioural semantics (i.e., barbed congruence) and squieaéence laws based on
it. The soundness of the laws is proved through standardhigeés by relying on a
higher-order labelled transition system and on a labeligidilation (which is proved
sound w.r.t. to the behavioural semantics).

2. The typed language and its reduction semantics

The syntax of the pre-terms of the language (where type ing are ignored) is
given in Fig. 1, the one of types in Fig. 2. The precise synfatkh® language results
from the typing rules given in Definition 3. Processes arét Buiough the usual con-
structs of sequential action prefixing, parallel compositiand ambient construction.
In the following a process of the formm:g(G)[c, e||P], which corresponds, in our
richer calculus, to the termm[P] of standard ambient calculi, will be simply called an
ambient, distinct from the mere ambient name Communication is only local (and
synchronous), as in the original MA [Cardelli and GordonQ@p Actions include
the usualn andout primitives for ambient mobility, and the two new primitivéswn
andup for moving processes between ambients; already taken otsideration in
[Coppo et al., 2003], they replace theprimitive of M3,

Thedown action is analogous to thHe action. Its (simplified) reduction rule (see
[Coppo et al., 2003]) isdown m.P|Q |m[R] — Q|m[P]|R]; i.e., the process
down m.P enters an ambient named where it continues a®. On the contrary,
theup action is only partially analogous taut, since its argument is the name of the
destination ambient and not that of the source ambientiriikee case out. The cor-
responding (simplified) reduction ruleds[n[up m.P|R]| Q] — m[P|n[R]|Q],
also given in [Coppo et al., 2003]. The explicit mention of target ambient allows
more effective controls on the incoming process. In thegmesetting the four mo-
bility primitives, though keeping their basic behaviowstjrecalled, come with richer
syntactic forms that correspond to more sophisticatedatmturules, as we will see
later in the section.

Types describe communication and mobility properties.hWétference to an am-
bient, we distinguish between its active and passive ntgbbiy the former we intend
which ambients the given ambient may cross or send procéssky the latter, the
ambients by which it may be crossed or sent processes. Gfeduy directly specify-
ing the active mobility of each ambient one indirectly sfiesithe passive mobility of
all the concerned ambients, and vice versa. One of the maiars of our system is



o/ denotes the set afimbient nameand¥ denotes the set @froup hames

a = ambients v = groups
m,n,... ambientnames g,h,... group names
x,y,... Vvariables x,y,... variables
x == capabilities
ina:g moves the containing ambient
into ambienty of groupg
out a:g moves the containing ambient
out of ambienty of groupg
up a:g with G moves the continuation process out from

its ambient up to enclosing ambiemt
of groupg requiring rightsG

down a:g with G moves the continuation process from
its ambient down to enclosed ambient
of groupg requiring rightsG

add® ¥ in a:g adds the crossing rightwith
multiplicity ¢ to ambientv of groupg

add® (v, G)? in a:g adds the entering righty, G) with
multiplicity ¢ to ambienix of groupg

XX path
T,Y, .- variables
M, N, L == messages p == guards
o ambients X capabilities
~ groups (M) synchronous output
x capabilities (z:W) typed input
P, Q, R := processes
0 null
p.P prefixing
PlQ parallel composition
a:g(G)[c,e||P] ambient
'p.P guarded replication
(vn)P name restriction

wherec are multisets of groupg, are multisets of pair§y, G); W and( are defined
in Figure 2.
Figure 1. Syntax



C,8,... sets of groups;

G x= mc(¢,8,T) mobcontype: mobility rights
and communication type

Pro == ¢(G) process type: processes that can stay in ambients
of groupg with rightsG

Cap == ¢ (G')~ g(G) capabilities that can be consumed

by processes of typg(G’) and leave
processes of typg(G) as continuations

W o= message type

Cap capability type

group group

amb ambient type
T = communication type

shh no communication

— —

W communication of messages of tyge
by = g context

W

Figure 2. Types

that static types directly specify active mobility whilerdymic types directly specify
passive mobility, and the compatibility between them isgg by runtime checks.

The type system is based ambient groupsa group is a name that represents (i.e.,
labels) a set of ambient name occurrences. Different arhb@nes may belong to the
same group, but at the same time different occurrences chtine ambient name may
be labelled with different group names, i.e., different &nbs with the same name
may belong to different groups. The mobility propertiesedity specified for each
ambient are always expressed with reference to groups drd imalividual ambients,
S0 as to avoid a dependence of types from values.

In order to enable an ambient to check at runtime (i.e., durgduction) that the
active types of the incoming processes are compatible wgtbwn type, the primi-
tives for moving processes between ambients carry with thensommunication and
mobility types of their continuations.

While local typing allows the control of the active mobilighaviour, the absence
of global type information makes impossible a static cdrifdhe passive behaviour.
This check has therefore also to be performed dynamicalhythiat reason, at runtime
each ambient carries a specification of which (groups of)ianté can cross it and
which can send it processes, and how many times.

Thus every mobility action becomes subject to a double aizhiion, one static
and the other dynamic. The fact that “passive” permits areadyically checked al-
lows them to also be dynamically granted; to this end, we liaveduced two new
primitives through which a process may enrich the rightsither one thus enabling
it to carry out a given task.



Static types and their packing for runtime use

The static type system is centered on the notion of process tyhich consigboth
of a group name and of a mobility and communication type (onobcomtype for
short)G; following the notation of [Cardelli et al., 1999], we writeg(G).

The mobcom typé& is of the formmc(%, &, T'), where? is the set of (groups of)
ambients into which the process may drive (througlnaor out action) its enclosing
ambient,& the set of (groups of) ambients to which it may send (througbven or
up action) a continuation process, afids the process communication type. We use
the notatiors’(G), £(G), T(G) to respectively indicate the componefsts &', T' of
G.

Like in most ambient calculi, all the (parallel) processethim an ambient must
have the same process tyg(€+), which is thus a sort of inner type of that ambient and,
as we will see, is bound locally to it. Ambient names, on threeohand, only have the
atomic typeamb, and are therefore omitted in the environments. As a coreseny)
name restriction may be simply written &&n)P. Similarly, group names have the
atomic typegroup. Group names can be exchanged in communications but group
variables can only be used in a limited way, as will be remaitkeer.

Ambient and process mobility actions must specify not onlgmbient name, as in
MA, but also a group name. For instance, the syntax of thel uisaadout primitives
becomesna:g, outa:g (with « ambient name or variable). A process may contain one
such action (i.e., it may be well typed) only if its type all®vt to drive its enclosing
ambient across the boundary of ambients labelled with tbemnameyg. Values
exchanged in communications may be ambient names (oktyp® group names (of
typegroup), or capabilities.

A capability type consists, as in [Coppo et al., 2003], of & p&process types,
written here with the notation' (G’) ~» ¢(G). Capability types take into account the
fact that, owing to thelown or up actions, a process can move from one ambient to
another, changing its type accordingly. A capabijitef type ¢’ (G’) ~ ¢(G) drives
a continuation procesB from an ambient of (inner) typg (G’) to an ambient of type
g(G). Obviously P must have the typg(G) of the destination ambient while the
resulting procesg. P has the typg’(G’) of the source ambient. This is formalized in
the rule PrEFIX) of Fig. 3. The type of a sequenceiof or out-capabilities has the
form g(G) ~ ¢(G), because in executirig or out actions a process remains in the
same ambient.

The meaning of types, informally described in the body of gection, is formally
defined by the set of the typing rules shown in Fig. 3.

Dynamic types

Type controls no longer statically performed must of colrs&one dynamically.
To this end, the inner typg(G) of an ambient namex is bound to it with the notation
m:g(G)[...]. Anambientis also characterized by two componeratsde that record
by which ambient or process groups it may be entered and howy times. The
complete notation is:g(G)[c, || P], with « variable or ambient name.



neod geYy

—— (AMB ConsT) —  — (GRrP CONST)
O;XFn:amb O; ¥ F g : group
z:WekX
onrew o oo 0: ((ge) &
O;XFa:amb g€ %(G) O;2F a:amb g€ %(G)

(In) (Our)
O;S Fina:g: ¢'(G) ~ ¢'(G) O; Y Fout azg : ¢'(G) ~ ¢'(G)

O; k- a:amb g€ &(G)

(DowN)
O; 2 F down a:g with G : ¢'(G') ~ g(G)

O;SFa:amb g€ &(G)
(Up)

O; X F up azg with G : ¢'(G') ~ g(G)

(9,9Y€ O O;TFa:amb O;XF v : group

(ADD-C)
O; 2 F add® v? ina:g : ¢'(G) ~ ¢'(G)

{9,9) €0 O;=F a:amb O;%F «: group

(ADD-E)
O; %k add® (7, G)¥ ina:g : ¢'(G') ~ ¢’ (G")

Ok x:g(G)~¢g"(G") O;ZF X" :¢9"(G") ~g(G)

(PATH)
0%k XX g'(G") ~ 9(G)
O;2F x:d'(G') ~g(G) O;ZF P:g(G)
(PREFIX)
O;T+ x.P: g (G)
_ —
O;%,2:WEP:g(G) G=mc(¢,8,W)
(InpPUT)
—
O;XF (x:W).P:g(QG)
—_ = —
O;2FP:g(G) O;EFM:W G=mc(%,8,W)
(OutpuT)

O;2 - (M).P:g(G)

O;SFa:amb O;XF P:g(G) (¢",G"Yee = G" <G

(AMB)
O; S+ arg(G)lc, €| P] : g'(G)
O;5F P:g(G) O;2FQ:9(G) O;%F p.P:g(G)
(PAR) —— (RePL)
O;2F P|Q:g(G) O;XFlp.P:g(G)

O;8F P:g(G)

(AMB RES)
O;EZF (vn)P : g(G)

Figure 3. Typing rules



More precisely, in a given ambient the componens the multiset of groups of
ambients that are allowed to cross its external boundarifevehis the multiset of
groups of ambients that are allowed to send processes tmie dach element is
actually a pairg, G) consisting of a group and a mobcom type; its meaning is that a
process coming from an ambient of grogfs given the entrance permit if it respects
the behavioural constraints specified by the tghén an ambientn:g,,, (G )[C, e|| P]
all the pairs(g, G) occurring ine must therefore be such thatis a subtype o7,,,.

Each execution of am or out action consumes one elementadnd each execu-
tion of adown or up action consumes one elementsfwith the exception oftarred
elements, which represent permanent permits, i.e., elesmgth infinite multiplicity.
The control of the mobility constraints representedctande is performed dynami-
cally during process reduction. A reduction rule cannotifithe corresponding side
conditions orc ande are not satisfied.

In the following we give the formal definition of a multisettwipossibly infinite
multiplicities, and we define the operations of addition aemioval of elements.

DEFINITION 1

= Amultiset over a set of elemeidtss a function froms to the set of multiplicities
w U {x} (ranged over by); w U {x} is the set of natural numbets extended
with the extra elementdenoting the infinity;

m [f fisamulti-setorS, s,r € S, ¢ € w U {x} we define:
— s efiff f(s) #0;

f(r) otherwise
_Jf(s) =1 ifr=s,
- (L)) = {f(r) otherwise

wherex 4+ ¢ = .

A partial order on mobcom types is naturally defined via seluision, and so is the
notion of glb of mobcom types. Communication subtyping iareleterized only by
the fact thathh is smaller than any other communication type.

DEFINITION 2
m 7 <T'if eitherT =shhorT =1".
s mc(€¢,8,T) <mc(¢,&,T)if€ C¢ andé C & andT < T".

shh if T'=shh or 7" = shh
m N7 =T if T =1
undefined otherwise

B mc(%,8,T)Nmc(¢,&,T')=mc(€NE,ENSE,TNT)
if 7'M T" is defined and is undefined otherwise.

The elements of ande are similar to the co-capabilities of Safe Ambients [Levilan
Sangiorgi, 2003], with starred elements correspondingtwlked co-capabilities.



Dynamic modification of mobility rights

The components ande of an ambient process may allow or forbid movements
at runtime; they can therefore be changed dynamically withoeaking the subject
reduction. As a matter of fact, this is achieved:

= by automatically removing a (consumable) permit when a moa# action is
performed;

= by adding toc or to e an element with a multiplicity, by means of one of the
two newly introduced permit-adding primitivedd® andadd®.

Action add® g¥ in m:g,, dynamically adds the groug with multiplicity ¢ to thec
component of a local ambient namedof groupg.,, (see the reduction rule (R-agjit
as usual, by “local ambient” we intend one that is found ingame enclosing am-
bient. Actionadd® (g, G1)¥ in m:g,,, dynamically adds the group/type pdy, G1)
with multiplicity ¢ to thee component of a local ambient (rule (R-add)). In a
termm:g.,(Gn,)[c, e||P] all mobcom types occurring ia are subtypes of7,,,. This
property is preserved by the reduction rule (R<gdthce theadd® (g, G1)% in m:g.,
action can be performed only@, 1 G,, is defined.

A process may perform a permit-adding operation on an arhbidy if its group
is higher than the target’s group in a global administratiierarchy, represented by
a partial order relatio® over group names. Such hierarchy is the only global envi-
ronment of our calculus; it might be thought of as some gériecd necessarily cen-
tralized) coordination and administration structure & tietwork. The typing rules
(ApD-C), (ADD-E) assure that this hierarchy is always respected.

Mobility actions and dynamic type-checking

Process mobility actions must specify, in addition to théamt and group name
of the destination, the mobcom typgof the continuation process (i.e., of the process
that will run within the target ambient). The complete syntd the down action is
downm:g,,, with G, that ofup is similar. Of course, the typ@ needs to be compatible
(via subtyping) with the mobcom tyg&,,, of the destination ambient. More precisely,
if a processlown m:g,, with G’ . P is of groupg (i.e., is typed with a typg(G)) the
e component of the target ambientmust contain the grougp paired with a types”
such that’ < G”. The typing rule AMB), along with the reduction rule (R-atjd
ensures that:” < G,, and soG’ < G’ < G,,. Hence, the migrating procegsis
guaranteed not to require more rights than those specifigdebiyner typey,,,(G.)
of the destination ambient, which was statically checked.

Reduction rules are thus dependent on the typing assurnspaiod the reduction
relation is labelled with the process typ&~), even though the group narges only
involved in the (R-down) rule and the tygénever plays any role in reduction. In fact
reduction rules are only defined for well typed terms, i@ pgrocesses that are typed
with some typgy(G). The complete set of rules is given in Fig. 4.

A basic property of the system is that typing is preserved.lmn mobcom types.

LEMMA 3 IfO;XF P:g(G)andG < G’ thenO; X F P : g(G')



Basic reduction rules:

(RAN)  n:gu(Go)[Gos €allin migu . P Q10 (G [Gors €10 | R)
—9.G M:Gm(Gm)[Cn | gns €l 1:9n(Gr)[Cr, 60| P| Q]| R]
if gn € Cn

(R-out) M:Gm (Gm)[Cn, €| 7:9n (Gr)[Cn, €] out migm, . P| Q]| R]
—4.6 1:9n(Gn)[Co, €| P| Q]| migm(Gm)[Cn | gn,€nl| R]
if gn € Cn

(R-down) down m:g,, with G'. P | m:gm (Gm)[Cn, €m||Q]
=g, M:Gm(Gm)[Cn, € | (9, G")||P| Q]
if (9,G")ee,&G <G’

(R-up) M:Gm (Gm) [Cny € ||1:9n (Gr)[Cn, € ||up m:igm with G’ . P| R] | Q]
=96 M:Gm(Gm)[Cn,€n | (gn, G")||n:9n(Gn)[Co, €| R] | Q| P]
if (9,,G")€ee,&G <G’

(R-add)  add® ¢’? in m:gp, . P | m:gm(Gm)[Cn, €m||R]

—g,G Pmigm(Gm)lCm U g, enl R]

(R-add)  add® (¢, G')* in migm . P | migun(Gin) (G €| B
=46 P|m:gm(Gn)[Cm,emn U (g, G' T Gm)?|R]
if G’ NG, is defined

(R-comm) (z: W).P|(M).Q —4c P{T =M} |Q

Structural reduction rules:
(R-par) P —y¢ @ = P|R —yc Q|R
(Ramb) P —,c¢ @ = nyg(G)[celP] —g.c ng(G)lc €Q]
R=) PP=P, P —y6Q Q=Q = P —,6Q
(R-v) P —,a Q = (vn)P —4c (vn)Q
Structural Congruence: (],0) is a commutative monoid.
(vn)(P|Q) = (vn)P|Q (n ¢ Mm(Q)) (vn)(vm)P = (vm)(vn)P
n:g(G)[c,e||(vm)P] = (vm)n:g(G)[c,e||P] (n#m) 'P=P|!P

Figure 4. Reduction



Using Lemma 3 a property of subject reduction, which enstivasstatic typing is
preserved by computation, can be proved with standard igeés

THEOREM 4 (SUBJECT REDUCTION) If O;E F P: g(G)andP —,c Q
thenO; X+ Q : g(G).

Finally, observe that group variables may only occur as éirgutments ofdd® and
add®, so that they never occur @ or within thec ande components, since otherwise
their role in allowing a safe name restriction would be defda

3. An example

Our main example is the modelling of a public transportasgatem, thetrain
introduced by [Cardelli, 1999] as a nice pictorial illustoa of the issues related to
the control of mobility.

We want to represent a railway network connecting a set édreint places (e.g.,
cities) in the world. Trains move between stations, trarslimay get into and off
trains only at stations and cannot drive them (no hijackingsible). The number
of passengers in a train at any given instant cannot exceedumber of seats; a
passenger takes a seat on boarding and releases it on géttiEgch train has a fixed
route.

For the sake of simplicity, we assume that:

= Thereis atop-level untrusted ambi&varld, which includes stations, travellers,
and some other unspecified procésge.g., other means of transport); it has
group and mobcom typg, (G.,), but no assumption can be made®y. Also,
Cworlds €worid AN R are unknown.

= |nour intended representation different stations shoalfibind within different
cities or localities, and moving from one city to another \abonly be possible
by train. The presence of cities would however increaseitteess the example
in a trivial manner, without providing more insights; we tbfore place stations
directly withinworld, although in this way travellers appear to use a train to end
up in the same ambiemtorld where they started from.

m  There are only two stationstA andstB, and one trainrrRAIN commuting be-
tween them. Initially, the train is withigtA

Stations and trains are represented by ambient processes|drs are represented
by simple processes; the number of free seats in a train iesepted by the multi-
plicity of the right to get into the train.

Stations are ambiens$A gsi(Gsy)[. . . | andstBgs(Gsy)[. . . ], of groupgs; and mob-
com typeGg.. They are immobile, and can have travellers both going dowmthe
trains or up into the world; they can be crossed by trains,@mdreceive travellers
both from train and from the outside world. Correspondingly

Gst = mC(®7 {gtr,gw}, Shh) Cst = {gtt} €5t = {<gt|’; Gt0>*a <9w7 Gfrom>*}

whereGiom = mc(2, { gy }, shh) andGie = me(2, {gw }, shh). Note thatGiom < Gst
andGi, < Gg, i.€., bothGrom and Gy, Which represent two accepted behaviours for



processes entering the station, are compatible @ighas is required by the typing
rule (AMB).

The train is an ambient of groug,, which can cross stations and world, send
traveller processes into stations, and receive a maximunbetn of passengers from
stations, provided they behave as good passengers (arffdmetample, as drivers):

TRAIN 2 tr:gy (Gyr ) [Crr, € || ! out StA gt in StBiget . out StBiget. in StA gs]

where Gy = mc({gst}a {gst}75hh) Cr =9 €y = {<gsta Gpsng>n}
With Gpsng= mc(2, {gst}, shh)

Atraveller is represented by a parametric proaassvELLER(Src, dst) which from
some unspecified place in the world enters the statioto become a passenger of a
train that takes it to the statiaist

TRAVELLER(SIC, dsf) & down SIC:gst with Girom - PSNG
where PSNG £ down tr:gy with Gpsng. up dstgst with Gio
.add® (gst, Gpsng in tr : gy . up world:g,, with G, . P

The mobcom type&rom and Gy, specify the behaviours of a passenger respectively
in the departure station, going to board a train, and in theadstation, going to exit
the station into the outside world or city.

The initial configuration is:

(v stA stByworld: g, (G ) [Cw, € || R | TRVLRS(StA stB)
| StA: gst(Gst) [Cst; estH TRAIN] | StB: gst(Gst) [Cst; estHO]
| TRVLRS(StB, StA) |

whereTRVLRs(src, ds) is a parallel composition of procesSESAVELLER.

Our specification satisfies many properties of interest;esofrthem immediately
follow from the definitions. For instance, from the definitiof e it follows that no
traveller can get into the traitr when this is outside a station: any action to such
purpose from a process world will be dynamically blocked. Also, by the definition
of ey and of thepsnG processit follows that at mosh PSNG processes can be within
the traintr at the same time.

A bad passenger willing to get off the train when this is not in distg though
it maybe statically well typed, is dynamically not allowexldo so. Suppose the bad
passenger be represented by the process

BADPSNG £ down tr:gy with Gpag. up world:g,, with G, . BP
By assuming); ¥ F BP : g,,(G,,) one may derive the typing
O; % up world:g,, with G, . BP : gir(Gpad) With Gpag = mc(D, {gw }, shh)

Observe that the process type(Ghag) Characterizes a process that might stay within
the train and go from it directly into the world. From the above may infer the
typing O; ¥ + BADPSNG : gsi(Gst), Since for that it is enough thats; allows the
process to get into the train, i.gy € &(Gst).

1The present specification does not prevent a passenger ta@ethan one pair tey.



The processADPSNG is therefore statically allowed to stay within a station, as
for example in the well-typed terrstA : gsi(Gst)[Cst, €st| BADPSNG | TRAIN]. Nev-
ertheless, when trying at runtime to get into the train, thecess is blocked be-
causeey = {(gst, Gpsng"} (With Gpsng < Gy). As a matter of fact, for the action
down tr:gy with Ghaq to fire, it is required thatipag < Gpsng Which is not the case
sinceGpad = mc(D, {gw }, shh) while Gpsng = mc(2, {gst}, shh): Gpaq allows going
into the world whileGysngdoes not.

This should have been somehow expected, because in oufusatbe dynamic
checks performed by an ambient are assigned the task obdlorgrthat mobile pro-
cesses willing to get in do respect some fixed policies espethrough types and, if
this is not the case, of preventing them from getting in. dthat all the previous
properties are guaranteed by only exploiting in the openalisemantics information
local to the involved processes/ambients.

A similar scenario has already been modelled in [Carde®®%t Ferrari et al.,
2002]. In both cases, the mobility control is implementedrfgrming the passenger
when the train has reached the station at which he wants wffgdfiore specifically,
in [Cardelli, 1999] a new primitive foambient renamings exploited. Intuitively, the
train ambient takes a suitable name to implicitly inform gessengers when it has
arrived at a certain station, while it takes a name unknowpassengers when it is
moving (in this way passengers cannot get in or off the trdm)Ferrari et al., 2002]
a suitable ambient callemhnouncemeris generated by the train when it arrives at a
station. This ambient informs the passengers of the amivalcertain station.

4. Conclusions

The calculus we presented is a first attempt to model theplaterof static and
dynamic type-checking when handling the security requinetsiof global computing
applications. In particular, the packing of a mobility araimmunication type within
a mobile process and its subsequent check at destinatiorbmagnsidered as an
abstract modelling of the proof-carrying code approach.

Due to the absence of static ambient types (apart from theiatypeamb), static
typing rules may be easily translated into a simple typer@rfee algorithm that, given
a term in whose body all the mobcom types are left unspecifé@bnstructs the min-
imal such type allowing the term to be well typed. The aldoritwill merely build a
type by recording the capabilities occurring in the terme ghoups assigned to ambi-
ent occurrences, on the other hand, as well as the dynamjpatents ande, define
the policy and the mobility constraints established by tesigher of the application,
and cannot be sensibly inferred.

A still unsatisfactory aspect of our model is that the autgdispecified by the
partial order®) granting dynamic rights to ambients is a too coarse-graiton:
either an ambient is authorized to grant a right with any jéaénite) multiplicity, or
the ambient may grant none. It would be useful that this aitthcould have different
degrees, related to maximal multiplicities of granted tglAs noticed by one referee,
another useful extension would be the introduction of a jirinfor group restriction
as in [Cardelli et al., 2000; Coppo et al., 2003]. This couldvide protection from
external untrusted agents, but the interaction with théglarderO representing the



administrative hierarchy requires a careful handling. Adification of the calculus
in this sense, along with a possible increasing of the espigsof types, is currently
under investigation.
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