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Abstract— We revisit the problem of characterizing the ca-
pacity of an ad hoc wireless network with n mobile nodes.
Grossglauser and Tse (2001) showed that, by exploiting user
mobility, it is possible to maintain a constant per-node throughput
as the number of nodes grows. Their scheme allows to overcome
the throughput decay (at least as 1/

√
n) that affects networks

with static nodes, which was first pointed out by Gupta and
Kumar (2000). Subsequent works have analyzed the delay-
capacity trade-off that arises in mobile networks under various
mobility models. Almost invariably, however, available asymptotic
results strongly rely on the assumption that nodes are identical,
and move according to some ergodic process that is equally likely
to visit any portion of the network area. In this paper, we relax
such ‘homogeneous mixing’ assumption on the node mobility
process, and analyze the network capacity in the more realistic
case in which nodes are heterogeneous, and the motion of a node
does not necessarily cover uniformly the entire space. We propose
a general framework to characterize the capacity of networks
with arbitrary mobility patterns, considering both the case of
finite number of nodes (also with the support of experimental
traces), as well as asymptotic results when the number of nodes
grows to infinity.

I. INTRODUCTION AND PREVIOUS WORK

In recent years a significant effort has been devoted by the
research community to study the asymptotic performance of
ad hoc wireless networks when the number of users increases.
Gupta and Kumar [1] consider a model in which n static
nodes randomly placed in a disk of unit area, establish n
source-destination (S-D) communications. They obtain the
disheartening result that the throughput available to each
S-D pair decreases at least as 1/

√
n, even allowing optimal

scheduling and node placement. Grossglauser and Tse [2]
consider a similar scenario in which the nodes are mobile, and
show that, in contrast to the fixed node case, the throughput
per S-D pair can be kept constant while increasing n. This
nice property was established under the assumption that the
trajectories of the nodes are independent, and results for each
node into a uniform stationary distribution over the disk of
unit area. This mobility pattern is actually a generous one,
since it allows each node to equally come in contact with any
other node in the network.

Indeed, in real environments, the contact times between
the nodes can be highly diverse, as recently pointed out
in [3]. Actually, an individual node usually spends most of
the time just on a small portion of the entire network area,
and rarely goes outside its region of habit. Motivated by
this observation, in [4] the authors considered a restricted
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mobility model, where each node independently moves along
a randomly chosen great circle on the sphere of unit surface.
Quite surprisingly, even under this one-dimensional mobility
pattern a constant throughput per S-D pair can be sustained.

Since then, the attention of researchers has been mostly
attracted by capacity-delay trade-offs [5], [6], [7], [8]. Various
mobility models have been considered, such as the simple re-
shuffling model [5], Brownian motion [6], different variants of
random walks and random way-point [7], [8]. Almost invari-
ably, in all these studies nodes are assumed to be identical and
independently moving, while their trajectories ‘fill the space
over time’. One exception is [9], where the authors study
throughput-delay scaling laws for the same one-dimensional
mobility pattern considered in [4]. Another study of capacity-
delay trade-off under restricted mobility appears in [10]: here
the network of unit area is partitioned into square cells, and
nodes are restricted to move within one randomly chosen cell;
the authors consider two cases in which the cell area either
scales as (log n)/n or remains constant, obtaining results close
to Gupta-Kumar and Grossglauser-Tse, respectively.

Apart from the above examples of restricted mobility
over great circles or cells, the general question about how
anisotropic mobility patterns affect the network capacity has
been left behind unanswered. The goal of this paper is to fill
the existing gap in the analysis of the throughput capacity
of ad hoc wireless networks. We address the general case of
heterogeneous nodes with arbitrary mobility patterns. Clearly,
there exists an extraordinary huge space of different mobility
patterns in between the extreme cases of static nodes (Gupta-
Kumar) and complete homogeneous mixing (Grossglauser-
Tse). Therefore it is quite interesting to investigate how the
network capacity can vary across such a huge space. In this
work we are not concerned with delay, but only on throughput.
Thus practical implications of our work mainly fit in the
context of delay tolerant networks [11].

We remark that we are not the first to consider the capacity
of ad hoc wireless networks with heterogeneous nodes. In
the particular case of static nodes, several works have already
appeared that generalize the results of Gupta-Kumar. The nice
deterministic approach proposed in [12] allows to analyze in
a simple way non-uniform spatial distribution such as straight
lines, or highly dense neighborhoods. The work in [13] inves-
tigates the network capacity resulting from asymmetric traffic
patterns. In [14] the authors analyze arbitrary node placement
and interference constraints using spectral techniques. Several
papers have also considered the case of hybrid networks,
where an overlay of wired base stations is added to the
ad hoc network [15], [16], [17], [18], with the potential of
dramatically improving the available per-node throughput.
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To the best of our knowledge, we are the first to consider
the general case of heterogeneous mobile nodes. More specifi-
cally, we provide the following contributions: i) we formulate
the general case as a joint scheduling and routing problem,
defining an abstract framework within which the performance
analysis of mobile ad hoc networks can be carried out; ii)
we precisely characterize the capacity region of a network
with finite number of nodes, pointing out several structural
properties of the system; iii) we apply the framework to the
analysis of a real network, using publicly available traces; iv)
we extend the analysis to the asymptotic regime, first estab-
lishing some results of general validity, and then considering
a few significant examples of anisotropic distributions of the
nodes over the area.

II. NETWORKS WITH FINITE NUMBER OF NODES

A. System assumptions and notation

We consider a mobile ad hoc network composed of n
nodes moving according to a general mobility model in-
side a bidimensional, compact and convex region A of
area |A|. Let Xi(t) denote the position of node i at
time t and X(t) = (X1(t),X2(t) . . . Xn(t)) the vector of
nodes’ positions; we define with dij(t) the euclidean dis-
tance between mobile i and mobile j at time t, i.e.,
dij(t) = ||Xi(t) − Xj(t)||2.

We assume the node mobility process to be stationary
and ergodic; i.e., given any m-uple (B1, B2, B3 . . . Bm) of
Lebesgue measurable subsets of A, it results:

lim
t→∞

1
t

∫ t

0

I(∩iXi(τ)∈Bi)dτ = E[I(∩iXi(t)∈Bi)] w.p.1

where I represents the logical indicator function.
Node s generates traffic for destination d according to a

stationary and ergodic process with average traffic rate λsd

bit/s1. We denote with Λ = [λsd] the corresponding n × n
traffic matrix.

We assume that interference between simultaneous trans-
missions is described by the well known protocol interference
model [1]. However, most of the results obtained in this paper
can be extended to the physical interference model [1] too2.
According to the protocol interference model, transmission
from node i to node j at time t at rate r is successful only if,
for any other simultaneously transmitting node k, it holds:

dkj(t) > (1 + ∆)dij(t)

for some guard factor ∆ > 0. Note that according to this inter-
ference model: (i) no node can be either origin or destination
of multiple simultaneous transmissions, (ii) a node cannot be
simultaneously origin and destination of transmissions.

We denote with Q the set of all possible transmission-
receiver pairs (i, j) (by construction it must be i �= j).
Subsets π of Q in which nodes appear at most once (either
as transmitter or receiver), represent possible transmission

1Defined with λ̂(t, τ) the amount of data generated by a source within the
interval [t, τ), the traffic is said stationary and ergodic with average rate λ
iff: E[λ̂(t, t + 1)] = λ for any t > 0 and limt→∞ λ̂(0, t)/t = λ w.p.1.

2Note that the protocol interference model has been proved to be equiv-
alent to the physical interference model when each user employs the same
power [1].

configurations, i.e., sets of transmission-receiver pairs (i, j),
which may be simultaneously enabled to communicate at time
t. We denote with Π the set of all the possible transmis-
sion configurations and with A(t) ⊆ Π the set of all non-
interfering (hence, implementable) transmission configurations
at time t. The protocol interference model (more in general,
any interference model) induces a correspondence between
the vector of instantaneous nodes positions X(t) and the
set of non-interfering transmission configurations A(t); we
formalize this concept introducing function I mapping vectors
of nodes positions into sets of non-interfering transmission
configurations: I(X(t)) = A(t).

Given any set A of implementable transmission configura-
tions, we denote with I−1(A) the set of node positions X
to which A corresponds through mapping I, i.e., I−1(A) =
{X : I(X) = A}. 3 For any A, we can univocally determine
the probability that A(t) = A, i.e. the probability that
configurations in A are the only implementable at time t:

P (A) = E[IX(t)∈I−1(A)] = lim
t→∞

1
t

∫ t

0

IX(τ)∈I−1(A)dτ w.p.1

Note that the above probability depends only on the joint
stationary distribution of the node mobility process.

At last, we denote with {Tn} the sequence of random
instants at which the set of implementable transmission con-
figurations changes; i.e., limt↑Tn

A(t) �= A(Tn).
B. Scheduling policy

The scheduling policy S dynamically selects an im-
plementable transmission configuration πS(t) belonging to
A(t) = I(X(t)). In this paper we restrict our investigation to
stationary and ergodic scheduling policies: i.e. those policies
for which:

E[I(i,j)∈πS(t)] = lim
t→∞

1
t

∫ t

0

I(i,j)∈πS(τ)dτ w.p.1

In general the selection of πS(t) may be influenced by several
dynamical parameters, including instantaneous queues lengths,
age of stored information at nodes, etc. Particularly relevant
are those scheduling policies driven only by X(t). In this paper
we call stateless and memoryless such scheduling policies.

We also introduce the class of simple scheduling policies
Ŝ, which is a strict subclass of the stateless and memoryless
scheduling policies characterized as follows. At each transition
time Tn a transmission configuration π ∈ A(Tn) is selected
according to a stationary and memoryless (possibly random)
rule; the selected transmission configuration is then kept
constant in the whole interval [Tn, Tn+1). Simple scheduling
policies are fully specified by the conditional probabilities
pŜ(π,A) that the transmission configurations π ∈ A are
selected at time Tn, given that X(Tn) ∈ I−1(A):

pŜ(π,A) = Pr{πŜ(Tn) = π|X(Tn) ∈ I−1(A)}
∀A and π ∈ A

According to scheduling policy S, a communication link is
established between nodes i and j whose average capacity
expressed in bit/s is:

µS
ij = rE[I(i,j)∈πS(t)] = lim

t→∞
r

t

∫ t

0

I(i,j)∈πS(τ)dτ w.p.1

3It can be verified that, for any A ∈ Π, I−1(A) is a convex set of R
2n.
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which, in case of simple scheduling policies, can be rewritten
as: µŜ

ij = r
∑

A∈Π

∑
π∈A I(i,j)∈π pŜ(π,A)P (A).

An important question we would like to answer is: “how
can we characterize the capacity of the mobile ad hoc network
under a scheduling policy S (or Ŝ)?” To this end we need to
spend few words on the routing strategy employed to transfer
data through the network. The more general and abstract way
to define a routing strategy is to specify quantities fsd

ij ∈ [0, 1]
denoting the average fraction of traffic from node s to node
d, which is routed through link (i, j), i.e. j follows i as relay
node [19]; fsd

ii = 0 by construction. The above quantities
fsd

ij must satisfy the following well known flow conservation
constraints:∑

i

fsd
ij −

∑
k

fsd
jk =




1 for j = d
0 for j �= d and j �= s
−1 for j = s

(1)

A routing strategy specified by a set of fsd
ij satisfying (1)

can be easily implemented by the following simple hop-by-
hop routing algorithm R: every node i in the network, upon
reception of new data from source s, destined to d, routes them
by selecting node j as next hop with probability fsd

ij /
∑

k fsd
ik .

C. Traffic sustainability and capacity region

In this subsection we analyze the performance of a mobile
ad hoc network comprising n users, obtaining a precise
characterization of its capacity region. We emphasize that our
results are fairly general since only stationarity and ergodicity
of traffic and mobility processes are required. We remark that,
in our framework, the nodes movements are not constrained
to be independent of each other.

Definition 1: We denote with Z(t) the network backlog,
that is, the amount of traffic (in bits) already generated by
sources that has not yet been delivered to destinations at time
t.

Definition 2: Traffic Λ is sustainable if there exists a
scheduling policy S and a routing strategy R, such that:
lim supt→∞ Z(t)/t = 0 w.p.1.

Definition 3: Traffic Λ is strongly sustainable if there
exists a simple scheduling policy Ŝ and a routing strategy R,
such that: lim supt→∞ Z(t)/t = 0 w.p.1.
We are now in a position to state our first result:

Theorem 1: A mobile ad hoc network sustains a traffic Λ,
if a scheduling policy S and a routing strategy R can be found
such that: ∑

sd

λsdf
sd
ij ≤ µS

ij ∀i, j (2)

Moreover, if a simple scheduling policy Ŝ and a routing
strategy R can be found such that:∑

sd

λsdf
sd
ij ≤ µŜ

ij ∀i, j (3)

the mobile ad hoc network strongly sustains traffic Λ.
Proof: The dynamics of the system can be described by a
network of queues representing the evolution of the backlog
at different nodes. We suppose that every node i is equipped
with n − 1 separate transmission queues, each one storing
data to be routed through a different node j. Upon reception,
new data are immediately routed according to policy R and

enqueued in the transmission queue associated to the next
hop. Transmission queues are served at fixed rate r according
to a FCFS service policy, during the periods of activity of
the corresponding link (i, j). Note that, by construction, the
average service rate in bit/s of the transmission queue of link
(i, j) is µS

ij . The network of queues describing the system falls
in the class of generalized Kelly networks, which are stable
under the condition that no queues are overloaded [20]. Being,
by construction, the load at the queue of link (i, j) equal to∑

sd λsdf
sd
ij /µS

ij ≤ 1, the assert follows immediately 4.
As a corollary, we get a strict characterization of the traffic

matrices which are strongly sustainable:
Proposition 1: A traffic matrix Λ = [λsd] is strongly sus-

tainable iff a set of fsd
ij ∈ [0, 1], ∀i, j, s, d and p(π,A) ∈ [0, 1]

∀A, π ∈ A can be found satisfying the following equations:


fsd
ij satisfies (1) ∀i, j, s, d∑

π∈A

p (π,A) = 1 ∀A ∈ Π∑
sd

λsdf
sd
ij ≤ r

∑
A∈Π

∑
π∈A

I(i,j)∈π p (π,A)P (A) ∀i, j

Definition 4: The capacity region of the mobile ad hoc
network is the set of all sustainable traffic matrices.

Definition 5: The restricted capacity region of the mobile
ad hoc network is the set of all strongly sustainable traffic
matrices.

Note that the restricted capacity region, by construction,
depends on nodes mobility only via the joint stationary distri-
bution of nodes. We can now state the following fundamental
result:

Theorem 2: If traffic matrix Λ is sustainable, then it is also
strongly sustainable.

Proof: Let S be the stationary and ergodic scheduling
policy which sustains Λ. Define for every configuration A
and every π ∈ A:

qS(π,A) = Pr{πS(t) = π|X(t) ∈ I−1(A)} =

lim
t→∞

1
t

∫ t

0

IπS(τ)=π|X(τ)∈I−1(A)dτ w.p.1

Due to the ergodicity of the mobility process and of the
scheduling policy, the above quantities are well defined. It
is immediate to verify that:

∑
π∈A qS(π,A) = 1. Thus

considering a stationary, simple scheduling policy Ŝ such that
pŜ(π,A) = qS(π,A), it follows, by construction: µS

ij = µŜ
ij

∀i, j.
The previous result has three significant implications: i) the

class of simple policies achieves maximum throughput, i.e.,
no gain in terms of throughput can be obtained by adopting
complex scheduling policies that select transmission configura-
tions by considering dynamical variables such as instantaneous
queues lengths, age of stored information at the nodes, etc; ii)
a tight characterization of the capacity region is provided by
Proposition 1; iii) the capacity region depends on the mobility
process only through the joint-stationary distribution of nodes.
This result extends and generalizes recent findings in [8]. At
last,

4When
∑

sd λsdfsd
ij /µS

ij = 1 the concept of stability is weak.
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Corollary 1: The capacity region of an ad hoc wireless
network with mobile nodes is convex.
The proof is reported in [21].

D. Contact graph: throughput and routing

To understand the relationship between the scheduling pol-
icy and the routing strategy, we first need to characterize
which traffic patterns are sustainable by employing an assigned
scheduling policy S. Observe that the capacities5 µij associ-
ated to the communication links are univocally determined,
once the scheduling policy S has been selected. Thus a (capac-
itated) graph G(V, E) whose vertices correspond to network
nodes and capacitated edges correspond to communication
links, fully characterizes the mobile ad hoc network adopting
S. In the following we refer to G(V, E) with the term contact
graph. Therefore, the routing problem through the mobile ad
hoc network adopting S can be formalized in terms of a multi-
commodity flow problem on the contact graph.

Proposition 2: A traffic matrix Λ = [λsd] can be sustained
employing a policy S iff the multi-commodity flow problem
defined by (1) and (2), where communication link capacities
are determined by S, admits a feasible solution. In such a case
the set of variables fsd

ij univocally defines the routing strategy
R.
An alternative, partial characterization of the sustainable re-
gion achievable by scheduling policy S (i.e. the set of Λ =
[λsd] that can be sustained employing S) can be provided in
terms of the capacities associated to cuts of the contact graph.

Proposition 3: Traffic Λ = [λsd] is sustainable by policy
S only if, for any partition (D, D̄) of the nodes, it results:∑

s∈D̄

∑
d∈D

λsd ≤
∑
s∈D̄

∑
d∈D

µsd (4)

For undirected Graphs G(V, E), it was proven in [22] that
traffic Λ is guaranteed to be sustainable if the ratio between
the minimum value of the r.h.s. and the maximum value of
the l.h.s. is ω(log m) being m the number of flows. 6

Consider a network adopting a scheduling policy S and a
routing strategy R, under a sustainable traffic pattern Λ. Let ν
be the network throughput, equal, by definition, to the offered
network load ν =

∑
sd λsd, and |π(t)| be the size of π(t) (i.e.,

the number of parallel transmissions enabled by S at time t);
it results:

E[|π(t)|] = E
[∑

ij

I(i,j)∈π(t)

]
=
∑
ij

µij

r

Let C be the average aggregate transmission rate over all of
the links; by construction:

C =
∑
sd

λsd

∑
ij

fsd
ij ≤ rE[|π(t)|] (5)

The ratio have = C/ν represents the average number of times
that data are transmitted in the network; thus have is the

5To simplify the notation we omit, in this section, the explicit dependency
from the scheduling policy S.

6Given two functions f(n) ≥ 0 and g(n) ≥ 0: f(n) =
o(g(n)) means limn→∞ f(n)/g(n) = 0; f(n) = O(g(n)) means
lim supn→∞ f(n)/g(n) = c < ∞; f(n) = ω(g(n)) is equivalent to
g(n) = o(f(n)); f(n) = Ω(g(n)) is equivalent to g(n) = O(f(n));
finally, f(n) = Θ(g(n)) means f(n) = O(g(n)) and g(n) = O(f(n)).
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Fig. 1. Tail distribution function of the edge capacities

average length of the paths followed by information flows,
expressed in number of hops. The following relationship is of
immediate verification: νhave ≤ E[|π(t))|]r.

In general, to efficiently exploit the network bandwidth,
the routing strategy should minimize have. This consideration
justifies the fact that shortest path routing approaches have
been widely used in several application contexts related to
computer communications. In the context of mobile ad hoc
networks, the 2-hop routing strategy proposed in [2] has
gained a wide popularity; according to this strategy, data are
delivered from source s to destination d either through the
direct communication link, or through routes s → k → d,
using every other node k of the network as relay. Although the
2-hop routing strategy is appealing because of its simplicity,
in general it does not allow to optimally exploit the network
bandwidth, possibly causing a reduction of the sustainability
region achievable by the scheduling policy, as we show in the
following section.

E. Capacity and routing in an experimental mobile network

We have analyzed the traces collected during the iMotes ex-
periment that took place during Infocom 2005 conference [3].
At that time, a set of 41 small intelligent network devices
(implemented through iMotes) were carried in the pocket by
some volunteers attending the conference; the iMotes had
small radio range and, thanks to the mobility of the person,
could contact other iMotes. The publicly available traces of the
experiment [3] provide the radio contact durations (measured
in seconds) between any two iMotes7; contact durations can
be seen as an indirect measure of the capacity between nodes.

The resulting contact graph exhibits almost the maximum
clustering (about 95% of all possible edges exists) and thus it
looks like a fully connected graph. However it is important to
observe that, as already pointed out in [3], the distribution
of the edge capacities is characterized by a heavy tail, as
shown in Fig. 1. Hence the contact graph contains significant
asymmetries and inhomogeneous capacities. Fig. 2 shows
visually the contact graph partitioned in three subgraphs: the
left subgraph contains all the edges with small capacity (less
than 500 sec), the central subgraph (almost fully connected)
contains medium capacity edges (between 500 and 5,000 sec)
and the right subgraph shows high capacity edges (more than
5,000 sec) in which we also highlighted in bold all the edges
with capacity larger than 50,000 sec. Observe that, even if

7The traces refer also to some external devices, but since the information
about the contacts among such external devices is not available, we restricted
our analysis to iMotes only.
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Capacity <500 sec Capacity 500-5000 sec Capacity >5000 sec

Fig. 2. Contact graph of Infocom-iMotes experiment, subdivided in three subgraphs (bold lines on the right represent edges with capacity larger than 50,000
sec). Edges of the contact graph are distributed among the three subgraphs according to the following proportion: 22.3%, 64.5%, 13.2%. In terms of aggregate
transport capability, the contribution of the three subgraphs is: 1.3%, 40.3%, 58.4% respectively.

Traffic scenario Maximum aggregate capacity Ave. number of hops
mDC 1.756 106 sec 2.605
MDC 3.008 106 sec 1.692

TABLE I

OPTIMAL CAPACITY AND ROUTING FOR INFOCOM-IMOTES EXPERIMENT

only 13.2% of the edges have high capacity, they contribute
58.4% of the overall transport capability.

Through the solution of the multi-commodity flow problem
previously described, maximizing

∑
sd λsd, we have also

evaluated the maximum achievable throughput for two specific
traffic scenarios, in which each node of the network is origin
and destination of a single traffic flow. The 41 node pairs
that exchange traffic in the two scenarios (named minimum
Direct Capacity - mDC and Maximum Direct Capacity - MDC
respectively), has been selected so to minimize/maximize the
sum of capacities associated to the direct communication links
between sources and destinations.

Table I shows the aggregate maximum throughput and the
average number of hops for the corresponding optimal routing
strategy. In both cases we observed routes longer than 2 hops;
in particular, for the mDC scenario, even the average number
of hops is significantly larger than 2.

III. ASYMPTOTIC ANALYSIS FOR n → ∞
To analyze asymptotic properties of the network when the

number of nodes becomes large, we progressively increase
the number of nodes n in the network, generating a sequence
of systems indexed by n. In each system, nodes are moving
in a closed connected and finite region A (for simplicity
we assume |A| = 1), according to stationary and ergodic
mobility processes8. We denote with X(n)(t) ∈ R

2n the vector
representing the nodes positions at time t in system n. We
suppose that the following “continuity” property holds over
the sequence of systems.

Property 1: Given any finite M -uple of mobiles
(i1, . . . iM ) and defined for any im, (with 1 ≤ m ≤ M )
a sequence of measurable sets B

(n)
m with B

(n)
m ↓ Bm (or

B
(n)
m ↑ Bm), there must exist:

lim
n→∞E[I

(∩mX
(n)
im

(t)∈B
(n)
m )

]

8In the following, to simplify the notation, whenever strictly unnecessary
we omit the dependency on n.

that represents the asymptotic probability that mobiles
(i1, . . . , iM ) fall in B = (B1, . . . , BM ).

Essentially we are interested in establishing how the net-
work capacity scales with n, under non-uniform mobility mod-
els. Without lack of generality we normalize the transmission
rate r to 1 and on the analogy of previous work we restrict
our investigation to uniform permutation traffic patterns, i.e.,
traffic patterns in which every node is origin and destination of
a single traffic flow with average rate λ; however, as immediate
consequence of the capacity region convexity (Corollary 1),
all of our asymptotic results can be extended to more general
traffic patterns.

More specifically, we say that the asymptotic per-node
capacity (or per-node maximum achievable throughput) of the
system is Θ(f(n)) if, given a sequence of uniform permutation
traffic patterns with average rate λ(n) = f(n), there exist two
constants c < c′ such that both the following properties hold:

lim
n→∞Pr{cλ(n) is sustainable} = 1

and

lim
n→∞Pr{c′λ(n) is sustainable} < 1

Equivalently, we say in this case that the network capacity (or
maximum network throughput) is Θ(nf(n)).

Given a point X0 ∈ A, we define the local asymptotic
density of nodes in X0 as:

ρ(X0) = lim
n→∞

n∑
i=1

E[I
X

(n)
i (t)∈B(X0,1/

√
n)

]

where B(X0, 1/
√

n) is the disk centered in X0, of radius
1/
√

n.

A. The impact of transmission range

First we discuss the impact of the transmission range
associated to node-to-node communications selected by the
scheduling policies on the achievable asymptotic throughput
as n → ∞.

Theorem 3: Given a network comprising n nodes. Let
S(n) be the associated scheduling policy. If S(n) achieves
asymptotically a network throughput ν(n) = Θ(f(n)), then
only a negligible amount of traffic o(f(n)) is transferred
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exploiting node-to-node communications whose transmission
range is ω( 1√

f(n)
).

The proof is reported in [21].
The previous theorem essentially states that throughput ν(n)

is achievable only by those scheduling policies selecting with
high probability (w.h.p.) (i.e. with a probability converging to
1 as n → ∞) transmitters and receivers pairs whose distance is
O( 1√

ν(n)
). Hence, the scheduling policies achieving a network

throughput ν(n) = Θ(n) must exploit transmission ranges
within O( 1√

n
). Furthermore,

Theorem 4: Given a network comprising n nodes. If (i)
node movements are independent and (ii) the asymptotic node
density is finite and different from zero at every point X0 ∈ A,
i.e. there exist ρ1, ρ2 such that:

0 < ρ1 ≤ ρ(X0) ≤ ρ2 < ∞ for every X0 ∈ A (6)

the asymptotic capacity is achievable by the class of schedul-
ing policies which forces the transmission range to be w.h.p.
O( log(n)√

n
).

The proof is reported in [21].
The above results concerning the transmissions ranges es-

sentially provide the guidelines to the design of through-
put efficient scheduling policies, indicating that transmission
ranges should be reduced as much as possible. This finding
is in line with observations in [1], [2] for particular cases.
A generic communication (i, j) occurring at time t interferes
with possible communications involving nodes within the
transmission range used; thus, by reducing the transmission
range of nodes, the transmission parallelism |π(t)| is increased
on average, resulting in a maximization of the global trans-
port capability (5). Instead, wherever the local asymptotic
density of nodes is finite and non null, the selection of a
node-to-node communication with range ω( 1√

n
) blocks on

average an (asymptotically) infinite number of other potential
communications. So the choice of allowing communications
with transmission ranges ω( 1√

n
), unless strictly necessary (as

for the special case of static nodes), leads to a suboptimal
exploitation of the system bandwidth, resulting in a global
throughput reduction.

For the above reasons, in the following we mainly focus
our investigation on the class of scheduling policies forcing
transmission ranges to be O( 1√

n
).

B. The S∗ scheduling policy

Following the above described guidelines, we propose the
following stateless and memoryless scheduling policy:

Definition 6: Given a network comprising n nodes, policy
S∗ schedules transmission between i and node j under the
following condition:

min(dkj(t), dki(t)) > (1 + ∆)dij(t) for ∆ > 0

for every other node k in the network (regardless of node
k activity). Notice that, under scheduling policy S∗, the
transmission bandwidth between i and j is equally shared in
the two directions.

Long term capacities µ∗
ij achieved by S∗ can be expressed

as function of the joint stationary spatial distribution of mo-
biles according to:

µ∗
ij = lim

t→∞
1
2t

∫ t

0

I(∩k �=i,j min(dkj(τ),dki(τ))>(1+∆)dij(τ))dτ

=
1
2
E[I(∩k �=i,j min(dkj(t),dki(t))>(1+∆)dij(t))] w.p.1

When movements of mobiles are independent, µ∗
ij can be ob-

tained as function of marginal spatial distribution of individual
nodes:

µ∗
ij =

1
2

∫
Xi∈A

∫
Xj∈A

[ ∏
k 	=i,j

∫
X∈A∆(Xi,Xj)

dFk(X)
]

dFj(Xj)dFi(Xi) (7)

being Fi(X) the spatial Distribution of node i and
A∆(Xi,Xj) the area outside the transmission range used by
i to communicate with j: A∆(Xi,Xj) = {X : min(||X −
Xj ||2, ||X − Xi||2) > (1 + ∆)||Xi − Xj ||2}.

Theorem 5: Under the assumption that mobiles move-
ments are independent and that (6) holds, w.h.p. the trans-
mission ranges selected by S∗ are O(1/

√
n). In addition, for

any pair of nodes (i, j) and any finite c > 0, it results:
µ∗

ij = Θ
(
Pr{dij ≤ c√

n
})

The proof is reported in appendix I.
As a consequence, no sequence of scheduling policies S(n)

forcing the transmission ranges to be O( 1√
n
) can achieve an

asymptotically higher throughput than sequence of policies
S∗(n). In addition, by applying Theorem 3 and Theorem 5,
we can conclude that:

Corollary 2: If S∗(n) achieves a network throughput o(n),
then no other sequence of policies exists that achieves an
asymptotic network throughput Θ(n).

IV. APPLICATIONS OF THE ASYMPTOTIC ANALYSIS

A. Independent mobile nodes with uniform distribution

We revisit the case in which nodes move independently and
uniformly over a closed domain A as in [2], showing that
S∗ achieves Θ(n) network throughput. First, observe that by
symmetry all the node-to-node capacities µ∗

ij must be equal.
Moreover, since by construction

∑
j µ∗

ij ≤ 1, it necessarily
follows µ∗

ij ≤ 1
n−1 . To avoid edge effects (which however can

be proved to be irrelevant along the lines of [1]) we suppose A
to be the spheric surface of unit area. We apply (7) to evaluate
the capacity between any two mobiles i and j. We denote with
φ the angle described by the positions Xi and Xj of nodes
i and j, whose distance results to be φ/(2

√
π). Using simple

geometrical arguments we have:
1
4

∫ π
2(1+∆)

0

sin(φ)[cos((1 + ∆)φ)]n−2dφ ≤ µ∗
ij ≤ 1

n − 1
Note that, by restricting the integration domain to interval
[0, 1√

n(1+∆)
], and observing that for small values of φ ≥ 0,

sin(φ) ≥ φ + φ3/3 and cos(φ) ≥ 1 − φ2/2, it results:

µ∗
ij ≥ 1

4

∫ 1√
n(1+∆)

0

[
φ − φ3

3

][
1 − [(1 + ∆)φ]2

2

]n−2

dφ =

1
8n(1 + ∆)2

+ o
( 1

n

)
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which proves that µ∗
ij = Θ(1/n). At last, to show that the

network maximum throughput is Θ(n) (Θ(1) per node), as
found in [2], we select a 2-hop routing strategy. In this case,
every communication link (i, j) is traversed by at most two
traffic flows (the flow originated at i and the traffic flow
destined to j). Thus, by dividing equally the link capacity
among the two traffic flows, the total capacity on paths from
source s to destination d, exclusively devoted to the transport
of traffic flow (s, d), is: µ∗

sd + 1
2

∑
k 	=s,d min(µ∗

sk, µ∗
kd) =

Θ( 1
n ) + (n − 2)Θ( 1

n ) = Θ(1).

B. Examples of non-uniform spatial distributions

Now, we explicitly compute the asymptotic network capac-
ity (as n → ∞), achievable by scheduling policies forcing
the transmission range of communications to be O( 1√

n
), in

a few interesting cases in which the spatial distribution of
each mobile node is non-uniform over the network area. For
simplicity, we assume that nodes move independently of each
other.

Thanks to Theorem 5, within the above mentioned class
of scheduling policies, maximum throughput is achieved by
policy S∗(n), according to which the communication link
capacity µ

∗(n)
ij between any pair of nodes is:

µ
∗(n)
ij = Θ

(∫
Xi∈A

∫
Xj∈A

Idij<Rn
dF

(n)
j (Xj) dF

(n)
i (Xi)

)

being Rn = 1√
n

. We consider a class of node spatial distri-
butions characterized as follows: each node selects a point as
its ‘home point’, chosen uniformly at random within the area.
The probability that it visits another point at distance d from
its home point is then given by an assigned distribution g(d).
Notice that the networks resulting from our model are random
in nature. Therefore, to precisely characterize the asymptotic
network capacity as n → ∞, we rely on the notion of typical
configurations introduced in [4]. Basically, our results are
meant to hold with high probability.

To simplify the analysis, we take A to be a square torus
of unit area9. We consider a coordinate system centered at
the home-point of a node, and express the probability that
the node visits point (x, y) in the form g(|x|)g(|y|), with
−1/2 ≤ x , y ≤ 1/2. One can show that the capacity
obtained under this model is the same (in order sense) as
that achieved in case the spatial distribution has a circular
symmetry around the home point. Furthermore, we approxi-
mate the probability that nodes i and j are within euclidean
distance Rn, with the probability (equivalent in order sense)
that the absolute difference of their coordinates along the x
and y axes are jointly smaller than Rn. This allows us to
further simplify the evaluation of µ∗

ij , since we have in this
case µ∗

ij = Θ(G(dx)G(dy)), where dx and dy are the distance
components between the home points of i and j, along the x
and y axes, respectively. Function G(d) is the probability that
two nodes, moving along a circle of length 1 with distribution
g(d) around their home points (0 ≤ d ≤ 1/2), happen to be

9The same asymptotic results hold, in order sense, on the surface of a
sphere, or on any compact set in R
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Fig. 3. Partition of the network area and distributions of the distances dx

and dy

within distance Rn of each other, being d the distance between
their home points along the same circle.

Once we have computed G(d), the network capacity can
be evaluated resorting to Proposition 3 applied to the contact
graph of a typical network configuration.

Under the assumption that G(d) is non-increasing with d,
the asymptotic critical cut (i.e., the cut which determines
the network capacity for n → ∞) is obtained, in typical
network configurations, partitioning the n nodes into two sets
of cardinality n/2+o(n), such that the the sum of the distances
between the home points of any pair of nodes belonging to
different sets is maximized. In the case of a torus, such critical
cuts are obtained dividing the area into two halves of size 1

2×1
(through a physical linear cut), and grouping in one set all
nodes having their home point in the same half of the area10

(see Figure 3).
The distance distribution between two generic home points

located on different halves of the torus can be characterized
as follows: the component dy along the y axes is uniformly
distributed over the interval [0, 1/2]. The component dx along
the x axes has, instead, the triangular distribution Tri(x)
depicted in Figure 3. In typical network configurations, the
traffic flows (s, d) traversing the physical cut from left to right
(i.e. traffic flows (s, d) such that the home point of s is in the
left half and the one of d in the right half) are n/4 + o(n),
while the edges across the same cut are n2/4+o(n2) (from left
to right). Moreover, the expected fraction of edges connecting
pairs of nodes with given values of dx and dy is asymptotically
provided by the above distributions of dx and dy . It turns out
that the asymptotic network throughput ν(n), as n → ∞,
satisfies:

ν(n) = ω
( ν̄(n)

log(n)

)
ν(n) = O(ν̄(n))

being:

ν̄(n) = nΘ

(
n

∫ 1/2

0

2G(y) dy

∫ 1/2

0

Tri(x)G(x) dx

)
(8)

We now compute the function G(d) and the resulting network
throughput in a few interesting cases.

1) Uniform distribution over a restricted domain: First, we
assume g(d) to be constant over the interval [0, q] and zero
for d > q, where q ≤ 1/2. This corresponds, on the surface
of the torus, to a mobility model according to which a node
uniformly visits a square of edge 2q centered at his home
point, and never goes outside of it. When q = Rn nodes

10The considered critical cut is just one of many equivalent cuts.
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can be considered to be fixed (Gupta-Kumar case), whereas
for q = 1/2 we obtain the uniform distribution over the
whole area (Grossglauser-Tse case). Therefore it is interesting
to explore how the network capacity varies as we increase
q from Rn to 1/2. In particular, we let q = Θ(nδ), and
vary δ from -1/2 (Gupta-Kumar case) to 0 (Grossglauser-Tse
case). Notice that, as long as δ is strictly larger than -1/2,
the network is connected almost surely even if transmissions
are constrained to be Θ(1/

√
n): indeed, by allowing nodes to

reach a minimum distance from their home points, of order
Ω(
√

log n/n), connectivity is no longer an issue as in the case
of random networks with static nodes.

The computation of G(d) is rather immediate in this case, It
results: G(d) = (2q − d)Rn

q2 , for 0 < d < 2q (we assume that
q < 1/4), whereas G(d) is identically zero for 2q < d < 1/2.
Plugging the above expression of G(d) into (8) we obtain

ν̄(n) = Θ(n2R2
n q) = Θ(n1+δ) (9)

Thus, as we vary δ from -1/2 to 0, the network capacity varies
from Θ(

√
n) (Gupta-Kumar case) to Θ(n) (Grossglauser-Tse

case).
2) Exponential distribution: The case of restricted mobility

considered in the previous example is a trivial one, because the
average number of hops required to reach a destination located
at distance Θ(1) from the source (almost all connections)
is inevitably Θ(1/q) = Θ(n−δ), hence it grows to infinity
(δ is negative), and the resulting network capacity has to
scale down accordingly. A more interesting case is when
g(d) is non-zero over the entire space. This means that every
node soon or later meets every other node (with probability
one), thus one can apply, in principle, the two-hop relay
scheme of Grossglauser-Tse, minimizing the number of hops
while allowing for communication diversity. Unfortunately, the
achievable network capacity is not always Θ(n) even if nodes
“fill the space over time”. As an example, we consider the case
in which g(d) decays exponentially with d, with parameter
γ. More specifically, since the area is finite, we consider
the truncated exponential g(d) = γe−γd/(2(1 − e−γ/2)). The
complete expression of G(d) is

G(d) =
e−(d+Rn)γ [eγ(e2Rnγ − 1)(1 + dγ)+

4(eγ/2 − 1)2

+e(d−Rn)γ(2Rnγ − dγ + 3) + e(d+Rn)γ(2Rnγ + dγ − 3)]

Substituting the above expression into (8) we obtain

ν̄(n) = Θ
(

n2R2
n

γ

)

which is formally identical to (9) provided that γ = 1/q. Thus,
by letting 1/γ = nδ , with −1/2 < δ < 0, we obtain a network
capacity Θ(n1+δ).

We have repeated the computation in case of a truncated
Pareto distribution defined over [Rn, 1/2], obtaining a simi-
lar continuous variation of network capacity in between the
extreme cases of Gupta-Kumar and Grossglauser-Tse as we
vary the mean value of g(d), this time through the power-law
exponent.

3) Uni-dimensional mobility: Quite surprisingly, a network
capacity of Θ(1) can be sustained even when nodes visit
a small fraction of the entire network area. This has been
already pointed out in [4], where the authors assume that
nodes are constrained to move just along uni-dimensional
paths. Our framework allows to recover and extend this result
in a simple way. For simplicity, we assume that nodes are
constrained to move either on a vertical or horizontal path
(each with probability 1/2) passing through their home-point.
As opposed to the uniform assumption adopted in [4], we
allow the nodes to visit the points along their path according
to a given distribution g(d) of the distance from the home
point, which is assumed to be non-increasing with d. The
dominant contribution to network capacity is provided by
communication links between nodes moving along orthogonal
directions. Actually, contacts between a horizontal (vertical)
node i and a vertical (horizontal) node j, occur only when
both nodes simultaneously fall within distance Rn from the
unique intersection point between their paths (see Fig. 3).
Hence the capacity µ∗

ij of communication link (i, j), is µ∗
ij =

Θ(g(dx)g(dy)R2
n), where the distributions of dx and dy are

those reported in the right of Figure 3. Considering that G(d)
is Θ(g(d)Rn), and that the number of edges across the critical
cut is n2/8+ o(n2), by comparing with (8) we recognize that
ν̄(n) is the same as that achieved under a two-dimensional
mobility pattern having the same distance distribution g(d)
along the two dimensions.

This fact allows us to make an interesting observation.
Suppose that nodes are constrained to visit uniformly a fraction
n−ζ of the space, with 1/2 < ζ < 1, over a rectangular domain
of minimum edge equal to n− 1

2 , and random orientation. It
turns out the the best solution in terms of network capacity
is to stretch out the domain as much as possible, forming a
rectangle n− 1

2 × n
1
2−ζ , which achieves a capacity n

3
2−ζ . The

worst case instead is the square of edge n− ζ
2 , which achieves

a capacity n1− ζ
2 . We conclude that the network capacity is

significantly affected by the shape of the domain visited by the
nodes. In this sense, uni-dimensional mobility over maximum
length paths (as in [4]) can be considered to be a best-case
scenario.

4) Multiple classes of nodes: Our technique based on the
application of Proposition 3 over the typical contact graph
provides quite a powerful and flexible tool to evaluate the
network capacity in very general conditions. In particular,
we can also mix different classes of users with different
mobility patterns. As an example, we consider the case of
nζ nodes visiting uniformly the entire area (class A nodes),
with 0 < ζ < 1; the remaining n − nζ nodes (class B) are
assumed to move around a randomly located home-point with
distribution g(d). The average of g(d) is Θ(nδ), (δ < 0), as in
the previously considered examples. To evaluate the network
capacity, we consider that the critical cut is traversed by:
n2ζ/4+o(n2ζ) edges of capacity Θ( 1

n ) (among nodes of class
A), (n − nζ)2/4 + o((n − nζ)2) edges of capacity Θ(nδ−1)
(among nodes of class B), and nζ(n−nζ)/2+ o(nζ(n−nζ))
edges of capacity Θ( 1

n ) (cross capacity A-B). We obtain a
network capacity ν(n) = Θ(nζ + n1+δ). Thus, to have any
impact on network capacity (in order sense), the fraction nζ
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of fully mobile nodes of class A must satisfy ζ > δ + 1.

V. CONCLUSIONS

In this paper we have considered an ad hoc wireless network
composed of n heterogeneous mobile nodes and proposed a
general methodology that allows to precisely characterize its
capacity region by considering the associated contact graph,
highlighting several important structural properties of the
system. We have, then, extended our study to the asymptotic
regime (for n → ∞) and obtained fundamental results of
general validity. Finally we have computed the asymptotic
capacity of an ad-hoc network under significant examples
of non-uniform mobility models of the nodes. Our results
show that under anisotropic mobility patterns network capacity
may vary with continuity from Θ(

√
n) (Gupta-Kumar case) to

Θ(n) (Grossglauser-Tse case).
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APPENDIX I
PROOF OF THEOREM 5

First we prove that for each i and j, µ
∗(n)
ij = Θ(Pr{d(n)

ij ≤
c√
n
}). Indeed, by construction:

Pr{d(n)
ij ≤ c√

n
} =

∫
Xi∈A

∫
Xj∈B(Xi,c/

√
n)

dF
(n)
j (Xj)dF

(n)
i (Xi)

while, by restricting the integration domain in (7):

µ
∗(n)
ij ≥ 1

2

∫
Xi∈A

∫
Xj∈B(Xi,c/

√
n)[ ∏

k 	=i,j

∫
X∈A∆(Xi,Xj)

dF
(n)
k (X)

]
dF

(n)
j (Xj)dF

(n)
i (Xi) (10)

Thus to prove the assert, it is sufficient to show that
limn→∞

∏
k 	=i,j E[I

X
(n)
k (t)∈A∆(Xi,Xj)

] > ε a.e. for some
ε > 0. Note that limn→∞ E[I

X
(n)
i (t)∈B(X0,c/

√
n)

] represents
the limiting probability of finding mobile i at location X0,
i.e., by ergodicity, the limiting fraction of time that mobile i
spends still at location X0. By construction, excluding at most
a denumerable set of points {Xm}, ∀X0∈/{Xm}, it results:
limn→∞ E[I

X
(n)
i (t)∈B(X0,c/

√
n)

] = 0. Thus fixing Xi with

Xi �= Xm, considering Xj ∈ B(Xi, c/
√

n) and defining for
short: pn

k = 1 − E[I
X

(n)
k ∈A∆(Xi,Xj)

], we have: pn
k → 0, for

any k when n → ∞. Thanks to (6):

lim
n→∞

n∑
k=1

pn
k < +∞ (11)

The assert is proved if we show that: limn→∞
∏n

k=1(1−pn
k ) >

ε > 0. By the continuity of log function, this is equivalent to:

lim
n→∞

n∑
k=1

log(1 − pn
k ) > log ε > −∞ (12)

Observe that log(1 − x) > −2x for any 0 ≤ x ≤ x0, with
x0 ≈ 0.8 such that 1 − x0 = exp(−2x0), and that for n
sufficiently large we can assume pn

i < x0; thanks to (11) we
can easily show (12).

At last, to prove that S∗ selects w.h.p. transmission
ranges which are O(1/

√
n) it is sufficient to show that

limn→∞
∏

k 	=i,j E[I
X

(n)
k (t)∈A∆(Xi,Xj)

] = 0 whenever d
(n)
ij =

ω( 1√
n
). Also in this case, defining for short: pn

k = 1 −
E[I

X
(n)
k ∈A∆(Xi,Xj)

] it results: limn→∞
∑n

k=1 pn
k = +∞.

Since log(1 − x) ≤ −x:

lim
n→∞

n∑
k=1

log(1 − pn
k ) ≥ −

n∑
k=1

pn
k = −∞

and thus by continuity of exponential function:
limn→∞

∏n
k=1(1 − pn

k ) = 0.
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