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Abstract—We provide the scaling laws for the transport capacity
of a wide class of mobile wireless ad hoc networks. Our analysis
generalizes previous results obtained under restrictive assumptions
on the node mobility process and overall node density over the
network area. The broader family of mobile networks that we
consider is able to account for many important characteristics
usually recognized in real traces of both human and vehicular
mobility. In particular, we consider clustered, sparse networks
of heterogeneous nodes, in which the shape of the spatial dis-
tribution of each node around one or more home-points plays a
fundamental role in determining the overall transport capacity.
We identify different operational regimes that arise within our
general class of mobile networks, and for each regime we propose
optimal scheduling and routing strategies achieving the maximum
asymptotic capacity.

I. INTRODUCTION

Store-and-forward has been for decades the fundamental
communication paradigm of packet switched networks, includ-
ing the first generation of ad hoc wireless networks originally
conceived at the end of the last century [1]. The routing proto-
cols developed for these networks have been traditionally based
on the assumption that the network topology is always con-
nected, so that, at any time, there exists a path from any sender
to its intended receiver. In this context, topological changes due
to node mobility have been invariably seen as something evil or
at least undesirable, which inevitably degrades the performance
achieved in an otherwise stable network topology. In recent
years, this traditional view of packet switched networks has
changed, as node mobility has become a necessary, fundamental
component of a new kind of networks based on a novel
store-carry-and-forward communication paradigm (also named
“encounter-based forwarding” or “mobility-assisted routing”).
According to this new paradigm, relay nodes can physically
carry buffered data while they move around the network area,
till they get in contact with a suitable next-hop node. Although
this scheme incurs much longer delays than the traditional
store-and-forward scheme, on the time scale of node movement
across the network space, it has laid the foundation of an entire
new area of research, usually referred to as Delay Tolerant
Networking (DTN) [2], [3], which has recently attracted a lot
of attention. Interesting applications include “pocket switched
networks” based on human mobility [4], vehicular networks
based on public buses [5] or taxicabs [6], sensor networks for
wildlife tracking [7], rural kiosks providing Internet access in
developing nations [8].

The reason why node mobility plays a fundamental role in
DTN is two-fold. Firstly, it permits end-to-end communication
in the first place, in the case of sparse, intermittently connected
networks suffering from frequent partitioning of the nodes.
Indeed, although instantaneous end-to-end routes do not always

exist, messages can nevertheless be delivered over time, through
the sequence of connectivity graphs generated by nodes’ move-
ment. Secondly, mobility can dramatically increase the overall
transport capacity of the network, allowing it to scale up to very
large number of nodes. Indeed, interference-limited networks
of static nodes are known to suffer severe per-node throughput
decay (in the order of 1/

√
n) as the number of nodes n goes

to infinity [9]. In contrast, a simple two-hop relay scheme can
keep the per-node throughput constant, under an ideal mobility
process in which each node independently and uniformly visits
the entire network space [10].

Several routing protocols for sparse delay tolerant networks
have been proposed in the literature, which face the challenging
problem of selecting good routes in space and time using very
limited (and rapidly changing) information about the system
state [11]–[15]. However, only few studies have analyzed the
fundamental scaling laws of the maximum achievable network
capacity in the presence of heterogeneous nodes and under
different mobility models. Indeed, the static scenario analyzed
by Gupta-Kumar [9] and the ‘homogeneous mixing’ scenario
considered by Grossglauser-Tse [10] are two particular species
of a rich zoo of wireless ad hoc networks exhibiting a variety
of scaling behavior as we change the mobility patterns of the
nodes. The goal of this paper is to provide a comprehensive
overview of capacity results for a wide class of mobile networks
which accounts for many characteristics largely recognized in
real mobility traces of people, animals, and vehicles.

The consideration of the fact that an individual node may
not move over the entire network area, but just in a small
portion of it, has already pushed some researchers to analyze
the impact of restricted mobility models. In [16] the authors
extend their results in [10] considering the case where each
node independently moves along a randomly chosen great circle
on the sphere of unit surface. Quite surprisingly, even under
this one-dimensional mobility pattern a constant throughput
per source-destination pair can be sustained as the number of
nodes increases. In [17] the network of unit area is partitioned
into square cells, and nodes are restricted to move within one
randomly chosen cell; the authors consider two cases in which
the cell area either scales as (log n)/n or remains constant,
obtaining results similar to the scenarios of Gupta-Kumar and
Grossglauser-Tse, respectively. The impact of inhomogeneous
node density (e.g., node clusters) has been analyzed in [18],
[19] for the case of static networks only. In [20], [21] we
have addressed the general problem of determining the capacity
of mobile networks in the presence of heterogeneous nodes
and anisotropic mobility. The contributions of this paper with
respect to our previous work will be explained in detail in
Section III, after introducing our system assumptions.
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II. SYSTEM ASSUMPTIONS AND NOTATION

A. Mobility Model

The family of mobile networks that we consider is de-
noted by F(α, δ, ν, ζ) and is characterized by four parameters
α, δ, ν, ζ. For a given choice of parameters, we build a sequence
of networks Fn indexed by the number of nodes n, and let n go
to infinity. Nodes are supposed to move over a bi-dimensional
Torus surface On of size Ln x Ln (to avoid border effects). As
we add more and more nodes into the system, the network
physical extension Ln is expected to increase. To account
for this fact, we assume that Ln scales with n as nα, with
0 ≤ α ≤ 1/2. The extreme cases are: α = 0, for which
the network area remains constant, and average node density
increases linearly with n; α = 1/2, for which the network area
increases linearly with n, and average node density remains
constant. The first parameter of our network family, α, thus
determines how the network area (or, alternatively, the average
node density) behaves as we increase the number of nodes.

Anisotropic mobility and node heterogeneity are taken into
account in our model as follows. First, we observe that, as
proven in [20], the transport capacity of a mobile network
depends on the mobility pattern only through the stationary
distribution of the nodes over the area, under the assumption
that the mobility processes of the nodes are jointly stationary
and ergodic. In this work, we further assume that nodes
move independently of each other. Hence, we only need to
characterize the shape of the spatial distribution of individual
nodes over region On. We consider that each node has one
or more spots where it is most likely to be found (these can
be the private home or the workplace in the case of people,
the garage or the warehouse in the case of vehicles, the nest
or lair in the case of animals). We refer to such spots with
the general term “home-points”, and assume that every node
has just a finite number of them. At any given time, a node
is associated to one of its home-points. The fraction of time
during which a node is associated to any of its home-point is
supposed to be constant and non null. While being associated
to an home-point, a node is not fixed, but moves around it
according to a general ergodic process which results into a
rotationally-invariant spatial distribution φ(d) which decays
with the distance1 d from the home-point as a power law of
exponent δ, with δ ≥ 0. To avoid problems in proximity of
the home-point, we take function s(d) = min(1, d−δ), and
normalize it so as to obtain a proper probability density function
over the network area: φ(d) = s(d)∫∫

On
s(d)

The precise value

of the normalization constant G =
∫∫

On
s(d) is cumbersome

to derive due to the square shape of the network area (as
opposed to the circular symmetry of φ(d)), however it can be
approximated, in order sense 2, by the following integral in

1Given any two points X1 = (x1, y1) ∈ On and X2 =
(x2, y2) ∈ On we define their distance according to: d(X1, X2) =

minu,v∈{−Ln,0,Ln}
√

(x1 + u − x2)2 + (y1 + v − y2)2
2Given two functions f(n) ≥ 0 and g(n) ≥ 0: f(n) =

o(g(n)) means limn→∞ f(n)/g(n) = 0; f(n) = O(g(n)) means
lim supn→∞ f(n)/g(n) = c < ∞; f(n) = ω(g(n)) is equivalent to
g(n) = o(f(n)); f(n) = Ω(g(n)) is equivalent to g(n) = O(f(n));
f(n) = Θ(g(n)) means f(n) = O(g(n)) and g(n) = O(f(n)); at last

f(n) ∼ g(n) means limn→∞ f(n)
g(n)

= 1

polar coordinates:

G = Θ

(∫ 2π

0

dθ
∫ Ln/2

0

min(1, ρ−δ)ρdρ

)

We obtain that G is finite for any δ > 2. For 0 ≤ δ < 2 we
have G = Θ(L2−δ

n ). Let E[d] be the average distance reached
by the node from the home-point. The value of E[d] can be
approximated (in order sense) by

E[d] =
1
G

∫ 2π

0

dθ
∫ Ln/2

0

min(1, ρ−δ)ρ2 dρ

We have that E[d] is finite for any δ > 3. For 2 < δ < 3,
it results3 E[d] = Θ(L3−δ

n ), whereas for 0 ≤ δ < 2 we have
E[d] = Θ(Ln).

Parameter δ accounts for the fact that an individual node
does not visit uniformly the network area, but spends most
of the time in proximity of a few preferred places, which are
assumed to be randomly located within the network region.
However, parameter δ alone does not allow to control the
overall node density over the area. In many realistic scenarios it
has been found that the node density is largely inhomogeneous,
and typically exhibits “concentration points” [6] or hotspots
[22] where nodes are more likely to gather. Such clustering
behavior has been observed in many different traces related to
both human and vehicular movements, and appears to be a quite
ubiquitous feature of realistic mobility processes. Concentration
points are usually well distinct from each other and fairly
stable over time. Examples include dormitories, conference
rooms, restaurants, movie theaters, (in the case of people),
intersections, parking lots, gas stations (in the case of vehicles),
watering holes, oases (in the case of animals).

In our mobility model, we introduce clustering through
the distribution of the nodes’ home-points. In particular, we
consider two different models:

• Uniform: home-points of nodes are uniformly and inde-
pendently chosen inside area On.

• Clustered Random: the n nodes are partitioned into m
clusters according to i.i.d. random variables. Each cluster
has a middle point which is uniformly located within On.
The home-points of nodes belonging to the same cluster
are then uniformly and independently placed within a disk
of radius r centered at the cluster middle point.

In the Clustered Random model, we let the number of
clusters scale with n, defining m = nν , with 0 < ν < 1.
The Uniform model can be considered as an extreme case of
the Clustered Random model when ν = 1 and, in addition, each
cluster contains deterministically one home-point. We intro-
duce the cluster density over the area ρC = nν/n2α = nν−2α

and the average inter-distance between cluster middle points
dC = nα−ν/2. Finally, we assume that the cluster radius
r = o(dC), so that, with high probability, clusters do not
overlap. Examples of home-point distributions according to
Uniform and Clustered Random models are shown in Fig. 1
for n = 10, 000.

In the following we will also consider the Clustered Grid
model, which differs from the Clustered Random model in

3In this paper we will not consider the two special cases δ = 2 and δ = 3
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Fig. 1. Examples of home-point distributions according to Uniform model
(left plot) and Clustered Random model (right plot), in the case of n = 10, 000
nodes.

that: i) the cluster middle points are regularly placed over On,
according to a square grid with step dC ; ii) r = 0, i.e., all home-
points are co-located at the cluster middle-point. The Clustered
Grid model allows to simplify the presentation of some of the
ideas of the paper, and constitutes an intermediate step towards
the analysis of the Clustered Random model.

At last, we need to describe how we assign multiple home-
points to a given node i. To this end, we randomly select one
home-point in the area to be the primary home-point of the
node, and denote it by Xh

i . Then we specify the probability
distribution of the distance z between the primary home-point
and any other of its home-points, assuming that the direction
is uniformly distributed in [0, 2π]. Since the number of home-
points of a node is finite, it turns out that all of the gain in
terms of network capacity is achieved (in order sense) in the
case of just two home-points. Hence, we limit ourselves to
considering only one secondary home-point, located at Y hi . As
an example, the primary home-point could be the residence of
a person, and the secondary home-point his/her workplace. A
node alternates periods in which it moves around the primary
home-point to periods in which it moves around the secondary
home-point. Moreover we assume that it travels from one to the
other in negligible time and hence does not have the opportunity
of exchanging data with other nodes while travelling from
one home-point to the other (the contribution of such data
exchanges are in any case negligible). If the primary and
secondary home-points of a node belong to the same cluster,
or, more in general, they are separated by a distance o(dC),
the behavior is the same as in the case of a single home-
point, hence there is no gain in terms of network capacity.
The only interesting case is when the distance between the
two home-points of a node is Ω(dC), therefore we assume that
the distribution of the distance z between them is according to
min(1, (z/dC)−ζ)/Z, where Z is a proper normalization factor
and ζ ≥ 0 is one additional parameter of our model. When
ζ > 2, the average distance E[z] between the two home-points
is Θ(dC). For 1 < ζ < 2 , E[z] behaves as Θ(Ln/nν/2(ζ−1)),
whereas for ζ < 1 we have E[z] = Θ(Ln). Therefore,
varying ζ between 1 and 2, we relate E[z] to the physical
network extension, obtaining all intermediate cases between
dC (the minimum value for which multiple home-points are
beneficial) and Ln (equivalent to choosing the secondary home-
point uniformly in the area). Conventionally, ζ = −1 represents
the case in which a node has a single home-point, or the average

distance between its home-points is E[z] = o(dC).
Discussion: The class of mobile networks that we study is

very general and encompasses a wide range of possible scenar-
ios, while accounting for what we think are ubiquitous features
of realistic mobility processes (clustering and power laws in the
spatial distribution of nodes). Notice that the Grossglauser-Tse
scenario corresponds to the subclass F(−, 0,−,−) in which
δ = 0, whereas the other parameters can take any value. The
case of static nodes uniformly deployed over the area (Gupta-
Kumar scenario) can be represented by F(1/2,∞, 1,−1) in
which the mobility of each node around a single home-point
(ζ = −1) of the Uniform model (ν = 1) is so limited (δ → ∞)
that the node can be considered to be static, while the node
density is kept constant (α = 1/2).

The use of power laws for the node spatial distribution
is justified by a number of measurement studies: in [6], the
authors analyze a large mobility trace of taxis in the city of
Warsaw. The empirical distribution of the number of taxis
falling in the cells of a regular grid is found to be heavy-tailed
and fairly stable over time. In [4] the duration of contact times
between people is found to be heavy-tailed in different traces
related to conference and campus-wide experiments. In [23]
authors analyze a corporate wireless local area network and
find that the fraction of time spent by users with a given access
point exhibits a power law.

B. Interference Model
We assume that interference among simultaneous transmis-

sions is described by the protocol model4, as introduced in
[9], that roughly represents the behavior of CSMA wireless
protocols (e.g., 802.11) in the case of omni-directional anten-
nas. According to this model, nodes employ a common range
RT for all their transmissions (equivalently, they employ a
common power level, i.e., no power adaptation mechanism
is used). Node i is allowed to transmit to node j at time t,
only if: i) the distance between i and j is no more than RT ,
i.e., dij(t) < RT ; ii) for every other node k simultaneously
transmitting, dkj(t) > (1 + ∆)RT , being ∆ a guard factor.
We assume that transmissions occur at fixed rate which is
normalized to 1.

C. Traffic Model
Similarly to previous work we consider uniform permutation

traffic matrices, i.e., traffic patterns in which n randomly
selected source-destination pairs (s, d) exchange traffic at rate
λ. Source-destination pairs are selected is such a way that
every node is origin and destination of a single traffic flow
with average rate λ. Formally, a uniform permutation traffic
matrix is defined by Λ = λ[λsd], where [λsd] ∈ {0, 1} and∑
s λsd = 1 ∀s, ∑d λsd = 1 ∀d.
We say that the per-node capacity (or maximum per-node

throughput) of the system is Θ(h(n)) if, given a sequence of
uniform permutation traffic patterns with rate λ(n) = h(n),
there exist two constants c, c′ such that c < c′ and both the
following properties hold:{

limn→∞ Pr{cλ(n) is sustainable} = 1
limn→∞ Pr{c′λ(n) is sustainable} < 1

4Our results can be extended to the physical model of [9]
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Fig. 2. Capacity results obtained in our previous work

Equivalently, we say in this case that the network capacity (or
maximum network throughput) is Θ(nh(n)).

III. PAPER CONTRIBUTION

In [21] we have identified two main regimes that arise
within our family of mobile networks, under the restriction
of a single home-point per node: the super-critical regime,
which occurs when α < ν/2 (i.e., in cohesive networks,
where dC → 0), and the sub-critical regime, characterized
by α > ν/2 (i.e., in sparse networks, where dC → ∞). We
have then developed a general framework for the analysis of
the capacity scaling properties in the super-critical regime. Our
main finding, schematically represented in Figure 2, is that the
per-node capacity is Θ(n−α) with high probability5 (w.h.p.),
independently of both the shape φ(d) of the spatial distribution
around the home-point (provided that it has finite first moment)
and of the parameter ν of the particular Clustered Random
model (including the special case of ν = 1, i.e., the Uniform
model).

In [21] we have also made a preliminary investigation of the
sub-critical regime (α > ν/2), limiting our attention to the case
in which the node spatial distribution φ(d) has finite support. In
this case, mobility no longer helps, and the per-node capacity
is abruptly lowered to a constant value Θ(nν/2−1/ log n) (for
any α > ν/2), equivalent to that of a static network.

The purpose of this paper is to complement and generalize
results presented in [20], [21] along several directions: i)
offering a complete panorama of system behavior in the sub-
critical regime for general spatial distributions φ(d) (Section
IV-A); ii) studying the case in which the average distance
reached by a node from the home-point is not independent of n
(in order sense), but scales itself with the network size, tending
to infinity as the number of nodes (or, equivalently, the network
physical extension) increases (Section IV-B); iii) extending the
analysis to the interesting case in which a node has several
home-points variably distributed in the area and moves from
one to another over time (Section V).

IV. SINGLE HOME-POINT

In this section we analyze network scenarios in which
ζ = −1, i.e., each node has a single home-point, or, more in
general, E[z] = o(dC). In Section IV-A we analyze the sub-
critical regime in the case of general spatial distributions for

5I.e., with a probability tending to 1 as n → ∞

A B

dc

Fig. 3. Regular distribution of clusters over the area and scheduling region
between clusters A and B (shaded area)

which the average distance E[d] reached by a node is finite
(δ > 3). In Section IV-B we extend the analysis to the case of
infinite E[d] (δ < 3). A graphical representation of our results
is reported and discussed in Section IV-C.

A. Analysis of the sub-critical regime for δ > 3

We remind that the sub-critical regime is characterized by
α > ν/2. In this case, different spatial distributions resulting
from the node mobility process can impact the network capacity
only in the presence of clustering (ν < 1), otherwise for ν = 1
the network behaves as a static one as soon as α = 1/2
(see Figure 2). As a preliminary step, we start considering the
Clustered Grid model (IV-A1), which is simpler to analyze.
Then we show how our results can be extended to the Clustered
Random model (IV-A3).

1) The Clustered Grid model: In this case clusters’ centers
form a regular square grid, where the distance between neigh-
boring clusters is dC = nα−ν/2. We now anticipate what is,
in this case, the scheduling/routing scheme that achieves the
maximum network capacity, and later show in Section IV-A2
that it is not possible to do any better than the proposed scheme.

A source wishing to send a packet to a destination belonging
to a different cluster (almost all of the flows), routes it through
randomly chosen relay nodes whose home-points belong to an
horizontal and/or vertical sequence of adjacent clusters. We
call such horizontal/vertical sequence a logical path, because
the actual communication between a node and its next hop
along the path can take place anywhere in the network, where
the two nodes get sufficiently close to each other to enable
communication between them. Since the length of each logical
hop is equal to dC , the average number of hops to reach a
destination is Θ(nν/2).

Now, let us consider an arbitrary pair of neighboring clusters
A and B. Transmissions between two nodes whose home-points
belong to A and B, respectively, are scheduled only in the
region of points having either A or B as the closest cluster
(shaded area in Figure 3), so as to maximize the density of
transmitter-receiver pairs. By so doing, we partition the network
into 2nν regions of area Θ(d2

C) = Θ(n2α−ν), each of them
entirely dedicated to scheduling transmissions between nodes
whose home-points belong to adjacent clusters. To determine
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Fig. 4. Density of nodes belonging to clusters A and B in the scheduling
region between them

the total number of transmissions that can be scheduled in the
network according to the proposed scheme, we make use of
the following lemma:

Lemma 1: Let σ > ψ > 0. In a region of area Θ(nσ), in
which the minimum between the density of transmitters and
receivers is, at any point, Θ(n−ψ), it is possible to schedule
Θ(nσ−ψ) non-interfering transmissions.

Proof: (Lemma 1). We divide the region into a regular
tessellation where each element has area nψ . Every element
of the tessellation contains one transmitter-receiver pair with
probability Θ(1), thus, by the law of large numbers, there
are Θ(nσ−ψ) elements containing at least one transmitter-
receiver pair. To avoid interference, it is sufficient to enable
transmissions only in one out of M = Θ(1) elements of the
tessellation, regularly spaced (for example, in the case of a
square tessellation, we employ a maximum transmission range
RT =

√
2nψ/2, and we have M = 9, assuming a protocol

interference model with ∆ = 0).
In our case, the behavior of the density of transmitters and

receivers in a given region is illustrated in Figure 4. The density
of nodes whose home-points belong to cluster A (or B) behaves
as n1−ν/dδ , where d is the distance from the cluster middle-
point. It is easily seen that the maximum of the minimum
density of transmitters and receivers is achieved in the middle
of the region, for d = dC/2, which scales in the same way as at
d = dC , i.e., at the extremes of the region. Hence, at any point,
the minimum between the density of transmitters and receivers
scales as Θ(n1−ν/dδC) = Θ(n1−ν−(α−ν/2)δ). We can thus
apply Lemma 1 with σ = 2α−ν, ψ = 1−ν−(α−ν/2)δ, obtain-
ing that in each region we can schedule n(α−ν/2)(2−δ)+(1−ν)
non-interfering transmissions. We observe that, in proximity
of either A and B, there are fewer limitations caused by
interference, because nodes coming from the other cluster get
surrounded by a large number of nodes belonging to the local
cluster, and thus one can use a transmission range small enough
to prevent interference with nearby transmissions. However
this does not change the scaling order of the number of
transmissions that can occur simultaneously, which is any case
limited by the minimum between the density of transmitters
and receivers.

Notice that in our routing scheme network load is split evenly
among the clusters, and since relays are selected at random

S

D

θ
nκ+ε

nκ−ε

nκ

Fig. 5. Next-hop clusters that can be chosen by an alternative routing strategy
that selects logical hops of length Θ(nκ)

in each cluster, no node is overloaded. Since there are Θ(nν)
regions, and the average number of hops to reach the destination
is nν/2, the final per-node capacity, according to the proposed
scheduling routing scheme results to be

h(n) = Θ
(
n(α−ν/2)(2−δ)−ν/2

)
(1)

2) A simple proof of optimality: Can we do better than
the proposed scheduling/routing scheme for the sub-critical
regime? Notice that for any δ nodes occasionally get in contact
with nodes belonging to far away clusters, however in the pro-
posed scheme we only enable communication between nodes
whose home-points belong to adjacent clusters (at distance dC).
In this section we provide an intuitive explanation for the fact
that no capacity gain can be obtained by allowing transmissions
between nodes belonging to clusters which are separated by
distance d = ω(dC), as long as δ > 3. Therefore the proposed
scheme is optimal (in order sense). A formal proof of this
property is reported in Appendix A.

Let us consider an arbitrary flow between two nodes whose
home-points belong to clusters S and D, respectively (see
Figure 5). The typical distance between S and D is of the
order of nα, the network physical extension. Suppose that we
employ logical hops longer than dC = nα−ν/2. In particular,
suppose we enable transmissions between nodes whose home-
points belong to clusters separated by a distance Θ(nκ), with
κ > α − ν/2. To account for all possible logical next-hop
at distance Θ(nκ), we actually consider all clusters located
at distances nx, with κ − ε < x < κ + ε, where ε is a
small constant. In Figure 5 we illustrate the first logical hop
according to this alternative routing policy. Notice that we can
choose any cluster in a sector of width θ < π (represented
by the shaded area in Figure 5) and arrive at the destination
in a number of hops equal to nα−κ−ε (considering the best
case for the number of hops, which is x = κ + ε). The
number of clusters in which we can find next-hop nodes is
Θ(ρC n2(κ+ε)) = Θ(nν+2(κ+ε−α)). We can limit ourselves to
the case in which transmissions between nodes belonging to a
given cluster and their next-hops occur in a dedicated area of
size Θ(d2

C) around the cluster itself (at any other point between
the source and the destination clusters the minimum density of
transmitters/receivers is of the same order) and apply again
lemma 1 with σ = 2α− ν, ψ = 1 + 2(κ+ ε− α) − (κ− ε)δ,
(considering the best case for the density, which is x = κ− ε).
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The resulting upper bound to the per-node throughput according
to the alternative scheme, denoted by h′(n), is

h′(n) = O(nκ(3−δ)+ε(3+δ)−α) (2)

which has to be compared with (1). Now, for any
δ > 3 and any κ > α− ν/2, it is possible to find an ε,
such that h′(n) = o(h(n)): it is sufficient to choose
ε < (κ− α+ ν/2)(δ − 3)/(δ + 3). Therefore, exploiting logi-
cal hops of any length d = ω(dC) provides no gain in terms
of network capacity: even in the optimistic situation in which
we can schedule such transmissions in addition to those of the
previous scheme, the dominant contribution to network capacity
is still given by logical hops of length Θ(dC).

3) Extension to the Clustered Random model: In the case in
which clusters are placed uniformly at random in the area, we
partition the network into a regular square tessellation whose
elements have area (16 + δ)n2α−ν log nν = Θ(n2α−ν log n).
Standard concentration results based on Chernoff bounds [21]
guarantee that, with high probability, the number of clusters
falling in each squarelet of the considered tessellation can be re-
placed by its expected value, which is Θ(log n). We adopt again
a routing strategy in which data are sent along a logical path
formed by a sequence of relay nodes whose home-points belong
to adjacent squarelets. A relay node is selected at random in
each squarelet. A simple routing scheme according to which
data first move horizontally in a row of adjacent squarelets
till reaching the column of the destination, and then vertically
up to the target node, guarantees that traffic is distributed
uniformly in the network and no squarelet is overloaded. The
average number of hops of the proposed routing scheme is
Θ(nν/2/

√
log n). A lower bound on the number of transmis-

sions that can be scheduled in each squarelet can be obtained
if one enables transmissions between a node and its next hop
along the route at any point of the two adjacent squarelets,
irrespective of the actual locations of the home-points of
the nodes within the squarelets. Using this simple scheduling
policy, the number of transmissions that can be enabled in each
squarelet can be computed using the same rationale of Lemma
1. Since the typical distance between clusters belonging to
adjacent squarelets is dH = Θ(nα−ν/2

√
log n), the minimum

density of transmitters/receivers at any point is of the order
of n1−ν/dδH , and thus in each squarelet one can schedule
Θ
(
n(α−ν/2)(2−δ)+1−ν(log n)1−δ/2

)
transmissions. The final

per-node capacity turns out to be

h(n) = Θ
(
n(α−ν/2)(2−δ)−ν/2(log n)

1−δ
2

)
(3)

which differs from the one computed in the case of a regular
grid of clusters (1) for the factor (log n)

1−δ
2 .

B. The case of δ < 3
When δ < 3, the average distance reached by a node from its

home-point is no longer finite, but scales with n, as described in
Section II-A. Moreover, in this case Equation (2) suggests that
long logical hops are better off than short logical hops. Actually,
according to (2), to maximize the capacity one should exploit
maximum-length logical hops to reach the destination (i.e.,
maximize κ), thus delivering data over routes comprising only a
finite number of hops, i.e., the average number of hops is Θ(1).
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Fig. 6. Illustration of capacity results in the case of single home-point, for
the particular value ν = 1/2

The simplest scheduling/routing scheme, in this regime, is the
well known 2-hops relay scheme proposed by Grossglauser-
Tse. Notice that, when δ goes below the critical value of 3, the
optimal routing scheme shifts abruptly from using the shortest
hops to using the longest hops, without intermediate regimes.

We now evaluate how the network capacity scales in the
case of δ < 3. Essentially, we need to determine how many
transmissions can be scheduled between nodes whose home-
points are separated by a distance nα (almost all flows require
at least one logical hop of length Θ(Ln), the physical network
extension). Using the same arguments as before, we can limit
ourselves to a scheduling policy in which transmissions of
nodes belonging to a given cluster are enabled only in the
region of area Θ(n2α−ν) around the cluster itself. Notice that
there are Θ(nν) clusters that can be exploited as next-hop to
reach a destination at the typical distance nα.

We can thus apply again lemma 1 with σ = 2α − ν, ψ =
1 − αδ − logG, where G is the normalization constant of the
spatial distribution of a node, which can scale with n as well
(Section II-A). The resulting per-node capacity is given by

h(n) = Θ
(
nα(2−δ)

G

)
(4)

Now, for 0 < δ < 2, we have G = Θ(L2−δ
n ), and we obtain

a per-node capacity Θ(1), the same as in the Grossglauser-Tse
case. For 2 < δ < 3, G is finite, thus the per-node capacity
scales as Θ(nα(2−δ)).

C. Graphical representation of capacity results

A schematic representation of the capacity results derived in
previous sections is illustrated in Figure 6, for the case ν = 1/2.
For δ < 3, the capacity is independent of ν, and therefore there
are no super- or sub-critical regimes, but a single operational
regime for all values of (α, ν). When δ = 3 the capacity is the
same as in the super-critical regime, i.e., n−α. When δ = 4,
at α = 1/2 we get (for any ν) the same capacity as the lower
bound of a static network, i.e., nν/2−1/ log n. In general, if
δ < 4 (and α < 1/2) the scheme proposed in Section IV-A
for the sub-critical regime allows to achieve a better capacity
than the one obtained in a static network. If δ > 4, there is a
value α∗ after which mobility can not be anymore exploited
to increase the network throughput. In such cases network
capacity is achieved by a scheme that ignores mobility (i.e.,
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according to which RT = Θ(dC)). The critical value of α
turns out to be α∗ = 2−4ν+νδ

2(δ−2) .

V. TWO HOME-POINTS

We now extend our analysis to the case of ζ ≥ 0, in which
every node has two home-points located at distinct clusters (i.e.,
at distance Ω(dC)). As we will see, in this case it is possible
to achieve a capacity gain provided that the average distance
between the primary and the secondary home-point of a node
is larger (in order sense) than the average distance reached by
a node around one home-point, i.e., E[z] = ω(E[d]).

A. The Clustered Grid Model

Similarly to what we have done before, we first describe
the scheduling/routing scheme that achieves the maximum
network capacity, and later show how to prove its optimality.
We consider a forwarding strategy according to which only
intra-cluster transmissions are allowed, i.e., transmission among
nodes whose home-points belong to the same cluster. Notice
that information can be effectively transferred from one cluster
to another when nodes migrate from their primary to their sec-
ondary home-points. Indeed, the periodic migrations between
the two home-points of a node permit to establish a “virtual
tunnel” of capacity Θ(1), through which information can be
conveyed. Moreover a communication link of capacity Θ(n−ν)
exists between every pair of nodes belonging to the same
cluster [20], [21]. We observe that this strategy is somehow the
opposite of the one proposed in Section IV for the single home-
point case, where only transmissions between nodes belonging
to different clusters are scheduled.

The system can be represented by a graph G(V,E) with
|V | = 2n, in which a couple of vertices v1

i ,v2
i is associated to

each node i of the network. Graph G(V,E) is embedded into
the three dimensional domain On × [1, n], being vertices v1

i

and v2
i respectively placed at points (Xh

i , i) and (Y hi , i). An
edge of unitary capacity joins v1

i and v2
i . Edges of capacity

n−ν join pair of vertices belonging to the same cluster (i.e.
with the same projection on On).

We now compute an upper bound on the network transport
capacity adopting a standard technique that resorts to the
evaluation of the capacity of graph cut-sets (see Appendix B).
In our case we consider the cut-set induced by a vertical plane
(i.e., orthogonal to On) that divides the network area On in two
congruent parts A and B. We observe that the capacity crossing
the considered plane, denoted by µcross, by construction equals
the number of nodes having one home-point in A and one in
B; thus, µcross is a random variable over the σ-field defined by
the location of the nodes’ home-points; however, using standard
concentration results (see [21]), it can be shown that, w.h.p.,
when n→ ∞ this random variable takes a value which is equal,
in order sense, to its mean (averaged over all configurations of
home-points in the area).

The computation of E[µcross] can then be reduced to the
evaluation of the probability that a node having its primary
home-point in A has its secondary home-point in B. We have:

E[µcross] = 2nPr{Y hi ∈ B,Xh
i ∈ A} =

4
∫
A

Pr{Y hi ∈ B | Xh
i = (x, y) ∈ A}ρ0 dxdy

where ρ0 = n1−2α is the average node density within On.
After some calculations it results:

µcross =




Θ(n) ζ < 1
Θ(n1+(1−ζ)ν/2) 1 < ζ < 2
Θ(n1−ν/2) ζ > 2

Dividing by the number of source/destination traffic relations
whose source home-point lies in A and destination home-point
in B, which is Θ(n), we obtain the following upper bounds on
the per-node capacity:

ĥ(n) =




Θ(1) ζ < 1
Θ(n(1−ζ)ν/2) 1 < ζ < 2
Θ(n−ν/2) ζ > 2

(5)

It can be shown that no tighter bound can be found by selecting
other surfaces (for example horizontal planes) and computing
the capacity crossing the surface. Thus, exploiting the result in
Appendix B, we obtain that a routing/forwarding scheme exists
such that the per-node capacity is

h(n) = Ω
( ĥ

log n

)
Comparing the result in (5) with that in (4), we see that,

when E[d] scales with n (δ < 3), the case of two home-points
provides a higher capacity, in order sense, than in the case of
a single home-point provided that (1− ζ)ν/2 > α(2− δ). This
is precisely the condition under which the average separation
between primary and secondary home-points is larger than the
average distance reached by a node around one home point (see
expressions of E[z] and E[d] in Section II-A). For the same
reason, since E[d] = Ω(1), we observe that the case of two-
home-points is beneficial only when E[z] does not tend to zero
as n increases. In particular, for ζ ≥ 2, this implies that we
must be in the case of α > ν/2, i.e., in the sub-critical regime.

We remark that it can be rather easily verified that allowing
transmissions between nodes belonging to different clusters
does not increase the overall capacity: even if inter-cluster
transmissions could be scheduled in addition to intra-cluster
ones, the dominant contribution would still be given by a
scheme employing only intra-cluster transmissions.

B. Extension to Cluster Random and Uniform models

The above results can be extended to the case of the Cluster
Random model. The extension is trivial when r = Θ(1), i.e.,
the physical span of clusters does not scale with n. Indeed,
in this case, even if nodes belonging to the same cluster do
not share anymore the same home-point, they frequently come
in contact for effect of mobility. A virtual communication link
of capacity Θ(n−ν) is still established between every pair of
nodes belonging to the same cluster, by the adoption of simple
scheduling policies. Thus the scheme described in the previous
section allows to achieve the same capacity results.

When r = ω(1), contacts among nodes belonging to the
same cluster become more sporadic, thus potentially deter-
mining a degradation of system performance; this because
capacities among nodes belonging to the same cluster are not
anymore homogeneously equal (in order sense) to Θ(n−ν).
¿From an analysis of the system, however, it emerges that, for
any ν < 1, the intra-cluster transport capacity never becomes
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the network bottleneck (i.e., cut-sets induced by horizontal
planes of G(V,E) do not provide tighter limits to the network
capacity w.r.t. to vertical planes).

For the Uniform model (ν = 1), instead, a small throughput
degradation of order log n occurs in the case ζ < 1 and
α = 1/2. We have:

ĥ(n) =




Θ(1) ζ < 1, α < 1/2
Θ(1/ log n) ζ < 1, α = 1/2
Θ(n(1−ζ)/2) 1 < ζ < 2
Θ(n−1/2) ζ > 2

In the Uniform model, a scheme that obtains optimal through-
put can be devised by dividing the domain On into squarelets
of size 1 × 1 (for α < 1/2) or 4

√
log n × 4

√
log n (for

α = 1/2), and allowing transmissions only between nodes
whose home-points reside in the same squarelet (in practice,
nodes whose home-points fall within the same squarelet can
be thought to belong to a virtual cluster equivalent to those of
the Random Cluster Model). When α < 1/2, Θ(n1−2α) nodes
fall within each squarelet; in addition, being the squarelets
of unitary surface, nodes whose home-points belong to the
same squarelet come frequently in contact; as a consequence
a virtual communication link of capacity Θ(1/n1−2α) exists
between every pair of nodes within the same squarelet (to
apply Lemma 1, a transmission range RT = nα−1/2 is to be
selected in this case). When α = 1/2, the number of nodes
within each squarelet is Θ(log n); in this case, a transmission
range RT =

√
log n must be selected. This because there

are nodes in the network whose home-points have minimum
distance Ω(log n) from any other node home-point; as a result,
the capacity of the virtual communication link between node
pairs within the same squarelet becomes Θ(1/ log2 n) for effect
of interference among transmissions.

VI. CONCLUSIONS

In this paper, we have considered clustered, sparse networks
of heterogeneous mobile nodes, in which the shape of the
spatial distribution of each node around one or more home-
points plays a fundamental role in determining the overall
transport capacity. Complementing results in [21], we have
offered a complete view of the system behavior in the sub-
critical regime, for general spatial distributions. We have also
analyzed the case in which the average distance reached by
a node from a home-point is not independent of n (in order
sense), but scales itself with the network size. At last, we have
extended the analysis to the interesting case in which a node has
two or more home-points variably distributed over the network
area and moves from one to another over time.
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APPENDIX A
PROOF OF OPTIMALITY

An abstract representation of the network is provided by a
capacitated di-graph G(V,E, µ), (i.e. a directed graph in which
a non-null capacity µij is associated to every edge (i, j)).
Vertex i ∈ V corresponding to node i is placed at home-point
Xh
i . Quantities µij represent the long term mean rate at which

data are sent from node i to node j according to the adopted
scheduling/routing strategy.

Information flow s → d can follow different paths in
G(V,E, µ) from s to d, each path corresponding to a different
sequence of intermediate relay nodes.
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Proposition 1: Defined dhij = ‖Xh
i − Xh

j ‖, if traffic Λ is
sustainable, then:

λ
∑
sd

λsdd
h
sd ≤

∑
ij

µijd
h
ij

Proof: The proof descends from the continuity constraints
on routing. Indeed for any source-destination pair (s, d), traffic
λsd must be routed in graph G(V,E, µ) through paths connect-
ing s and d. The length of these paths, by triangular inequality,
cannot be shorter than dhsd, thus the assert follows.

We introduce the cumulative quantity

T (d) = −
∑
i

∑
j

µijIdh
ij>d

representing the average aggregate rate exchanged among all
nodes i and j, such that dhij > d. From its definition T (d +
∆) − T (d) =

∑
i

∑
j µijId<dh

ij<d+∆, and thus∑
i

∑
j

µijd
h
ij =

∫
xdT (x)

As a consequence, if we are able to lower bound T (d) with
a function S(d), with S(Ln) = 0 (i.e., to find S(d) such that
T (d) ≥ S(d) ∀d), then we are able to upper bound the network
throughput. Indeed, by integration per parts it can be easily
shown that: ∫

xdT (x) ≤
∫
xdS(x)

which implies:
λ
∑
sd

λsdd
h
sd ≤

∫
xdS(x)

In our case, for sufficiently large n, being dhsd = Θ(nα), w.h.p.
it results:

λ = O
( 1
nα+1

∫
xdS(x)

)
To obtain an expression for S(d), consider two mo-

biles i and j whose home-points are Xh
i and Xh

j , and let
‖Xh

i −Xh
j ‖ = dij ; the event {dij(t) < RT }, by construction

{dij(t) < RT } ⊆
{
‖Xi(t) −Xh

i ‖ >
d−RT

2

}
∪{

‖Xj(t) −Xh
j ‖ >

d−RT
2

}
i.e.,

Pr{dij(t) < RT } ≤ Pr

{
‖Xi(t) −Xh

i ‖ >
d−RT

2

}
+

Pr

{
‖Xj(t) −Xh

j ‖ >
d−RT

2

}
=

2Pr

{
‖Xi(t) −Xh

i ‖ >
d−RT

2

}
= 2

∫
On

φ(x)I
x>

d−RT
2

dx

Indeed, the aggregate number of transmissions T (d) that
can potentially occur between nodes whose home-points are
separated by a distance greater than or equal to d, satisfies:

T (d) ≥ −
∑
i

E[I‖Xi(t)−Xh
i ‖> d−RT

2
]

since for any such transmission at least one of the two nodes
must be at a distance greater than or equal to d−RT

2 from its
home-point. Therefore,

T (d) ≥ −2n
∫
On

φ(x)I
x>

d−RT
2

dx = S(d)

Now, considering that the minimum distance between nodes
belonging to different clusters is d = dC = nα−ν/2, and
that RT = o(d), we obtain as upper-bound to the per-node
capacity 6

λ = O(n(α−ν/2)(2−δ)−ν/2)

which proves the optimality (in order sense) of the schedul-
ing/routing scheme described in section IV-A for δ > 3.

The same reasoning can be employed to prove the optimality
of the scheduling/routing scheme for the case of δ < 3, and
for the Clustered Random model.

APPENDIX B
GRAPHS CUT-SETS AND NETWORK CAPACITY

Consider a communication network admitting a representa-
tion in terms of an associated capacitated di-graph G(V,E, µ),
i.e., a directed graph in which a non-null capacity µij is
associated to every edge (i, j).

The maximum transport capacity of the network under traffic
matrix Λ = λ[λsd], can be formalized in terms of a Maximum
Concurrent Flow (MCF) problem [24] over G(V,E, µ), i.e.,
in terms of the following multi-commodity flow problem over
G(V,E, µ).

Having defined for every flow (s, d), and every (i, j) ∈ E
variables fsdij ∈ [0, 1], representing the average fraction of
traffic from node s to node d, which is routed through edge
(i, j), find:

maxλ

subject to the constraints:

λ
∑
s

∑
d

λsdf
sd
ij ≤ µij

∑
i

fsdij −
∑
k

fsdjk =




1 for j = d
0 for j �= d and j �= s
−1 for j = s

(6)

The set {fsdij } univocally defines the corresponding routing
strategy in the network/graph.

Unfortunately, MCF problems are, in general, hard to solve;
an upper bound to λ can be obtained in terms of graph cuts:

Proposition 2: Traffic λΛ is sustainable only if, for any
partition (S,D) of the nodes, it results:

λ
∑
s∈S

∑
d∈D

λsd ≤
∑
i∈S

∑
j∈D

µnij (7)

It has been proven in [24] that, in undirected graphs, traffic is
guaranteed to be sustainable if the ratio between the minimum
value of the r.h.s. and the maximum value of the l.h.s. in (7)
is Ω(log k), being k the number of flows.

6Indeed, notice that i) transmission between nodes residing in the same
cluster are not effective to make information advance along its path s → d
in graph G(V, E, µ); ii) if one selects RT = Θ(d) the system performance
gets severely degraded for effect of interference, resulting in the same per-node
capacity as that of a static network, i.e., Θ(nν/2−1)
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