
Merging Roles in Coordination and in
Agent Deliberation

Guido Boella1, Valerio Genovese1, Roberto Grenna1, and
Leendert van der Torre2

1 Dipartimento di Informatica, Università di Torino,
guido@di.unito.it, valerio.click@gmail.com, grenna@di.unito.it

2 University of Luxembourg, Luxembourg,leendert@vandertorre.com

Abstract. In this paper we generalize and merge two models of roles usedin
multiagent systems which address complementary aspects: enacting roles and
communication among roles in an organization or institution. We do this by
proposing a metamodel of roles and specializing the metamodel to fit two ex-
isting models. We show how the two approaches can be integrated since they
deal with complementary aspects: Boella [1] focuses on roles as a way to specify
interactions among agents, and, thus, it emphasizes the public character of roles.
Dastani [2] focuses instead on how roles are played, and thus it emphasizes the
private aspects of roles: how the beliefs and goals of the roles become the beliefs
and goals of the agents. The former approach focuses on the dynamics of roles in
function of the communication process. The latter focuses on agents’ internal dy-
namics when they start playing a role or shift the role they are currently playing.

keywords: Roles, Organizations, O.O. Modeling, MAS, Security.

1 Introduction

In the last years, the usefulness of roles in designing agentorganizations has been
widely acknowledged. Many different models have been designed. Some of them use
roles only in the design phases of a MAS [3], while other ones consider roles as first
class entities which exist also during the runtime of the system [4]. There are approaches
that underline how roles are played by agents [2], other ones on how roles are used in
communication among agents in organizations [1]. This heterogeneity of the way roles
are defined and used in MAS risks to be a danger for the interoperability of agents in
open systems, since each agent entering a MAS can have a radically different notion
of role. Thus, the newly entered agents cannot be governed bymeans of organizations
regulating the MAS. Imposing to all agent designers a singlenotion of role is a strategy
that cannot have success. Rather, it would be helpful to design both multiagent infras-
tructures that are able to deal with different notions of roles, and to have agents which
are able to adapt to open systems which use different notionsof roles in organizations.
This alternative strategy can be costly if it is not possibleto have a general model of
role that is compatible, or can be made compatible with otherexisting concepts.

In this paper we generalize and merge two models of roles usedin multiagent sys-
tems, in order to promote the interoperability of systems. The research question is: How

to combine the model of role enactment by Dastani [2] with the model of communica-
tion among organizational roles of Boella [1]?

We answer these questions by extending to agents a metamodelof roles developed
for object oriented systems [5]. The relevant questions, in this case, are: how to in-
troduce beliefs, goals and other mental attitudes in objects, and how to pass from the
method invocation paradigm to the message passing paradigm.

Then we specialize the metamodel to model two existing approaches and we show
how they can be integrated in the metamodel since they deal with complementary as-
pects. We choose to model the proposals of Boella [1] and Dastani [2] since they are
representative of two main traditions. The first tradition is using roles to model the in-
teraction among agents in organizations, and the second oneis about role enactment,
i.e., to study how agents have to behave when they play a role.

From one side, organizational models are motivated by the fact that agents playing
roles may change, for example a secretary may be replaced by another one if she is ill.
Therefore, these models define interaction in terms of rolesrather than agents. In Boella
[1] roles model the public image that agents build during the interaction with other
agents; such image represents the behavior agents are publicly committed to. However,
this model leaves unspecified, how given a role, its player will behave. This is a general
problem of organizational models which neglect that when, for example, a secretary
falls ill, there are usually some problems with ongoing issues (the new secretary does
not know precisely the thing to be done, arrangements already made etc.). So having
a model of enacting and deacting agents surely leads to some new challenges, which
could not be discussed, simulated or formally analyzed without this model.

In contrast, the organizational view focuses on the dynamics of roles in function of
the communication process: roles evolve according to the speech acts of the interactants,
e.g. the commitment made by a speaker or the commands made by other agents playing
roles which are empowered to give orders. In this model rolesare modeled as sets of
beliefs and goals which are the description of the expected behavior of the agent. Roles
are not isolated, but belongs to institutions, where constitutive rules specify how roles
change according to the moves played in the interactions by the agents enacting them.

Dastani [2] focuses, instead, on how roles are played by an agent, and, thus, on
the private aspects of roles. Given a role described in termsof beliefs, goals, and other
components, like plans, the model describes how these mental attitudes become the
beliefs and goals of the agents. In this approach roles are fixed descriptions, so they do
not have a dynamics like in the model of [1]. Moreover, when roles are considered inside
organizations new problems for role enactment emerge: for example, how to coordinate
with the other agents knowing what they are expected to do in their role, and how to
use the powers which are put at disposal of the player of the role in the organization.
The same role definition should lead to different behaviors when the role is played in
different organizations.

In contrast, it specifies the internal dynamics of the agentswhen they start play-
ing (or enacting in their terminology) a role or shift the role they are currently playing
(called the activated role). So they modelrole enacting agents: agents that know which
roles they play, the definitions of those roles, and which autonomously adapt their men-
tal states to play the roles.

Despite the apparent differences, the two approaches are compatible since they both
attributes beliefs and goals to roles. So we study by means ofthe metamodel how they
can be combined to have a more comprehensive model of roles.

The paper is structured as follows. In Section 2 we describe the requirements on
agents and roles in order to build a metamodel; in Section 3 weformally define the
metamodel for roles together with its dynamics; in Section 4we define the basic notions
to model agents that play roles; Section 5 deals with the modeling of enacting agents
as in Dastani [2]; Section 6 introduces and models roles to deal with coordination in
organizations; in Section 7 we merge Dastani [2] and Boella [1] into the framework
introduced in Section 3; Conclusions end the paper.

2 Agents and roles

Since the aim of this paper is to build a metamodel to promote interoperability, we make
minimal assumptions on agents and roles.

The starting point of our proposal is a role metamodel for object orientation. The
relation of objects and agents is not clear, and to pass from object to agents we take in-
spiration from the Jade model [6]. Agents, differently than objects, do not have methods
that can be invoked starting from a reference to the object. Rather, they have an iden-
tity and they interact via messages. Messages are deliveredby the MAS infrastructure,
so that agents can be located in different platforms. The messages are modeled via the
usual send-receive protocol. We abstract in the metamodel from the details of the com-
munication infrastructure (whether it uses message buffers, etc.). Agents have beliefs
and goals. Goals are modeled as methods which can be executedonly by the agent it-
self when it decides to achieve the goal. As said above, we propose a very simple model
of agents to avoid controversial issues. When we pass to roles, however, controversial
issues cannot be avoided. The requirements to cope with bothmodels of roles we want
to integrate are:

– Roles are instances, associated in some way to their players.
– Roles are described (at least) in terms of beliefs and goals.
– Roles change over time.
– Roles belong to institutions, where the interaction among roles is specified.
– The interaction among roles specifies how the state of roles changes over time.

In Boella [1] roles are used to model interactions, so agents exchange messages
according to some protocol passing via their roles. This means that the agent have to
act on the roles, e.g., to specify which is the move the role has to play in certain moment.
Moreover, roles interact with each other. Dastani’s [2] model specifies how the state of
the agent changes in function of the beliefs and goals of the roles it plays. However, it
does not consider the possibility that the state of the role change and, thus, it ignores
how the agent becomes aware of the changes of beliefs and goals of the role.

To combine the two models we have to specify how the interaction between an
agent and its role happens when the agent changes the state ofthe role or the state of
the role is changed by some event. A role could be considered as an object, and its
player could invoke a method of the role. However, this scenario is not possible, since

the roles are strictly related to the institution they belong to, and we cannot assume that
the institution and all the agents playing roles in the institution are located on the same
agent platform. So method invocation is not possible unlesssome sophisticated remote
method invocation infrastructure is used. Moreover, the role has to communicate with
its player when its beliefs and goals are updated. Given thatthe agent is not an object,
the only way is that a role sends a message to its player. As a consequence, we decide
to model the interaction between the agent and the role by means of messages too.

Finally, we have to model the interaction among roles. Sinceall roles of an institu-
tion belong to the same agent platform, they do not necessarily have to communicate
via messages. To simplify the interaction, we model communication among roles by
means of method invocation.

The fact that roles belong to an institution has another consequence. According to
the powerJava [7] model of roles in object oriented programming languages, roles, seen
as objects, belong to the same namespace of the institution.This means that each role
can access the state of the institution and of the sibling roles. This allows to see roles
as a way to specify coordination. In a sense, roles are seen both as objects, from the
internal point of view of the institution they belong to, andas agents, from the point
of view of their players, with beliefs and goals, but not autonomous. Their behavior is
simply to: (1) receive the messages of their players, (2) execute the requests of their
player of performing the interaction moves according to theprotocol allowed by the
institution in that role, (3) send a message to their playerswhen the interaction move
performed by the role itself or by some other role results in achange of state of the role.

3 A Logical Model for Roles

In Genovese [5] the model is structured in three main levels: universal, individual and
dynamic; here we decide not to talk about the universal leveland concentrate ourself on
agents dynamics. We define the formalism of the framework in away as much general
as possible, this gives us an unconstrained model where special constraints are added
later.

3.1 Individual level

This level is composed by asnapshot modelthat describes in a particular moment the re-
lationships between individual players contexts and roles, and a dynamic model which
links snapshots and actions modeling how the system changeswhen an action is exe-
cuted. In the formalization of the model we useobjectsas basic elements upon which
the model is based.

Definition 1 A snapshot modelis a tuple

< O,R types, I contexts, I players, I roles,Val, I contraints
IRoles, I Attributes, I Operations, IAttr >

– O is adomainof objects, for each objecto is possible to refer to its attributes and
operations throughπI Attr(o) andπI Op(o), respectively.

– R types is a set of types of roles.
– I contexts ⊆ O is a set of institutions (referred asinstitutions).
– I players ⊆ O is a set of actors (referred asactors).
– I roles ⊂ O is a set ofroles instances(referred asroles instances).
– I Attributes is the set of attributes.
– I Operations is the set of operations.
– Val is a set ofvalues.
– I constraints is a set of integrity rules that constraint elements in the snapshot.

The snapshot model has also a few functions:

– IRolesis arole assignment functionthat assigns to each roleRa relation onI context
x I players x I roles.

– IAttr is anassignment functionwhich it takes as arguments an objectd ∈ O, and an
attribute p∈ πI Attr(d), if p has a valuev∈ Val it returns it, /0 otherwise.

Generally, when a role instancex is an individual of the typeD, we write x :: D.
If a∈ πI Attr(x) we writex.a ∈ I Attributes as the attribute instance assigned to object
x, the same holds for elements inI Operations. (i,a,o)∈ IRoles(R) means: “the objecto
represents agenta playing the roleR in institution i”, often writtenR(i,a,o), ando is the
role instance.

3.2 The dynamic model

The dynamic model relies on the individual level and defines astructure to properly
describe how the framework evolves as a consequence of executing an action on a
snapshot. In Section 4 and 5, we describe how this model constraints agents’ dynamics.

Definition 2 A dynamic modelis the following tuple

< S,TM,Actions,Requirements,D constraints, IActions, IRolest πReq, IRequirementst >

– S is a set ofsnapshots.
– TM ⊆ S x IN: it is a time assignment relationship, such that each snapshot has an

associated unique timet.
– Actions is a set of actions.
– Requirements is a set of requirements for playing roles in the dynamic model.
– D contraints is a set of integrity rules that constraints the dynamic model.
– IActions maps each action fromActions to a relation on a set of snapshotsP. IActions(s,a,t)

tells us which snapshots are the result of executing actiona at timet from a certain
snapshop.1 This function returns a couple in TM that binds the resultingsnapshot
with time t +1. In general, to express that at timet is carried actiona we writeat .

1 Notice that given an action, we can have several snapshots because we model actions with
modal logic in which, from a world it is possible to go to more than one other possible world.
This property is often formalized through theaccessibility relationship. Thus, each snapshot
can be seen as a possible world in modal logic.

– About IRolest , Rt(i,a,o) is true if there exists, at a timet, therole instance R(i,a,o).
– πReq(t,R) returns a subset ofRequirements present at a given timet for the role of

typeR, which are the requirements that must be fulfilled in order toplay it.
– IRequirementst is a function that, given (i,a,R,t) returns True if the actora fills the

requirement inπReq(t,R) to play the roleR in the institutioni, False otherwise. We
often writeReqt(i,a,R).

Intuitively, the snapshots in S represent the state of a system at a certain time. Looking
at IActions is possible to identify thecourseof actions as an ordered sequence of actions
such thata1;b2;c3 represents a system that evolves due to the execution ofa, b andc at
consecutive times. We refer to a particular snapshot using the timet as a reference, so
that for instanceπI Attrt refers toπI Attr in the snapshot associated witht in TM.

Actions are described using dynamic modal logic [8], in paricular they are modelled
throughprecondition lawsandaction lawsof the following form:

2(A∧B∧C⊃ 〈d〉⊤) (1)

2(A
′
∧B

′
∧C

′
⊃ [d]E) (2)

Where the2 operator expresses that the quantified formulas holds in allthe possible
words.Precondition law(1) specifies the conditionsA,B andC that make an atomic
actiond executable in a state. (2) is anaction law2 which states that if preconditions
A
′
,B
′
andC

′
to actiond holds, after the execution ofd alsoE holds.

In addition we introducecomplex actionswhich specify complex behaviors by
means ofprocedure definitions, built upon other actions. Formally a complex action
has the following form:〈p0〉ϕ ⊂ 〈p1; p2....; pm〉ϕ ; p0 is a procedure name, “;” is the
sequencing operatorof dynamic logic, and thepi ’s, i ∈ [1,m], are procedure names,
atomic actions, or test actions3.

Now we show some examples of actions that can be introduced inthe dynamic
model in order to specialize the model.

Role addition and deletion

For role addition and deletion actions we use, respectivelyR, i →֒t a, andR, i ←֓ t a.
Then using the notation of dynamic logic introduced above, we write:2(Reqt(i,a,R)⊃
〈R, i →֒t a〉⊤) to express that, if actora fills the requirements at timet (Reqt(i,a,R) is
True),a can execute the role addition action that let him play role oftype R.

The above definition gives us the possibility to model that a role assignment intro-
duces a role instance:2(⊤ ⊃ [R, i →֒t a]∃xRt+1(i,a,x)), or the fact that ifa does not
already play the roleR within institution i, then the role assignment introduces exactly
one role instance:2(¬∃xR(i,a,x) ⊃ [R, i →֒t a]∃!xRt+1(i,a,x))

2 Sometimes action laws are calledeffect rulesbecause E can be considered the effect of the
execution of d.

3 Test actions are of the form〈ψ?〉ϕ ≡ ψ ∧ϕ.

Methods

There are other actions through which is possible to change the model as well, for
instance agents may assign new values to their attributes [5].

Here, we will focus on the case in which the attribute’s values can be changed by
theobjects themselves. What we will do is to definemethodsof objects with which they
can change attributes of their own or those of others. Actually, to simplify the model,
we define one single primitive action:sett(o1,o2,attr,v), which means that objecto1

sets the value ofattr on objecto2 to v at timet. If o1 ando2 are autonomous agents, the
set(o1,o2,attr,v) can be executed only wheno1 = o2.

Now, we will of course have that:2(⊤⊃ [sett(o1,o2,attr,v)]attrt+1(o2) = v), which
means that in any state, after the execution ofset, if the action of setting this attribute
succeeds, then the relevant object will indeed have this value for that attribute.

Operations

Elements of our framework come withoperationsthat can be executed at the indi-
vidual level in order to change the model dynamically, the semantics of each operations
can be given exploiting the actions defined for the dynamic model. Suppose, for in-
stance, to have an object individualx :: Personwith x.mail address attribute, and an
operationx.change mail that changes the value ofx.mail address to its argument. Us-
ing theset primitive is possible to define how the model evolves after the execution of
x.change mail operation trough the following axiom:

[x.change mailt(s)]ϕ ≡ [sett(x,x,mail adress,s)]ϕ

, wherex.change mailt(s) identifies the action carried byx at time t to execute the
instance operationx.change mail; objects can execute only operations that are assigned
to them by IOS relation. In Section 5 we defineexec of certain operations as complex
actions because we have to describe a more complex semantics.

4 Enact and Deact Roles

In Dastani [2], the problem of formally defining the dynamics of roles, is tackled identi-
fying the actions that can be done in aopen systemsuch that agents can enter and leave.
Here, four operations to deal with role dynamics are defined:enactanddeact, which
mean that an agent starts and finishes to occupy (play) a role in a system, andactivate
anddeactivate, which means that an agent starts executing actions (operations) belong-
ing to the role and suspends the execution of the actions. Although is possible to have
an agent with multiple roles enacted simultaneously, only one role can beactiveat the
same time. Before diving into modeling the four basic operations to deal with roles, we
need to match our framework with a few concepts defined in [2], following we report a
list of elements together with their definition and then how they fit in our meta-model:

– Multiagent system: In [2] roles are taken into account at the implementation level
of open MAS, they belong to the system which can be entered or left by agents

dynamically. In our framework is possible to view a system asa context to which
are linked all roles that can be played by the agents.

– Agent role: A role is a tuple〈σ ,γ,ω〉. Whereσ are beliefs,γ goals andω rules
representing conditional norms and obligations. This definition specifies a role “in
terms of the information that becomes available to agents when they enact the role,
the objectives or responsibilities that the enacting agentshould achieve or satisfy,
and normative rules which can for example be used to handle these objectives” [2].
With this view we define, forroles of our framework, a set of complex attributes
{beliefs,goals,plans, rules} ∈ I Attr togheter with theoperationsthat represent ac-
tions that an agent can carry out when itactivatesthe roles instance choosing it
from the set of roles it is playing.

– Agent type: We consider an agent type “as a set of agent roles with certain con-
straints and assume that an agent of a certain type decides itself to enact or deact
a role”. To talk about agent types we useclassesintroduced in the framework as a
specification of agent instances at the individual level, with this in mind we use the
PL relationship to linkagent classesto agent roles(role’s classes) so that the set of
roles that an agent can enact (play), is constrainted byI PL.

– Role enacting agent: “We assume that role enacting agents have their own mental
attitudes consisting of beliefs, goals, plans, and rules that may specify their condi-
tional mental attitudes as well as how to modify their mentalattitudes. Therefore,
role enacting agents have distinct objectives and rules associated to the active role
it is enacting, and sets of distinct objectives and rules adopted from enacted but
inactive roles”. In our framework we define arole enacting agentas a instancex
having a set of attributesA that represent the internal structures used to deliberate.

A = {beliefsa,objectivesa,plansa, rulesa,enacted roles[],active role} ∈ πI Attr(x)

The enacted roles attribute is a role ordered record where each entry with index
i corresponds to a triple〈σi ,γi ,ωi〉 which represents the set of beliefs, objectives,
plans and rules associated to roles instancei enacted byx.

As introduced above, the model in [2] identifies four operations to deal with role
dynamics, in order to to grasp the fundamental ideas proposed in the cited paper, we
redefine theenact, deact, activateanddeactivateoperations respecting their original
meaning. Given an agentx, a role instancei :: Rplayed byx in contextc s. t.,

{beliefsr,objectivesr,plansr, rulesr} ∈ πI Attr(i)
{beliefsa,objectivesa,plansa, rulesa,enacted roles[],active role} ∈SAπI Attr(x)

{enact,deact,activate,deactivate} ∈ πI Op(x)

Next we report the semantics of each operation exploiting the set primitive:

〈x.enactt(i)〉ϕ ⊂ 〈R,s →֒ x;sett(x,x,beliefsa,beliefsa∪beliefsr);

sett(x,x,enacted roles[i],< objectivesr,plansr, rulesr >)〉ϕ
(3)

〈x.deactt(i)〉ϕ ⊂ 〈R,s ←֓ x;sett(x,x,enacted roles[i],null)〉ϕ (4)

〈x.activatet(i)〉ϕ ⊂ 〈sett(x,x,active role,enacted roles[i])〉ϕ (5)

〈x.deactivatet(i)〉ϕ ⊂ 〈sett(x,x,active role,null)〉ϕ (6)

5 The public dimension of roles

In Boella-Van der Torre [9] roles are introduced inside institutions to model the interac-
tion among agents. In Boella [1] the model is specifically used to provide a semantics
for agent communication languages in terms of public mentalattitudes attributed to
roles.

The basic ideas of the model are: (1) roles are instances withassociated beliefs
and goals attributed to them. These mental attitudes are public. (2) The public beliefs
and goals attributed to roles are changed by speech acts executed either by the role or
by other roles. The former case accounts for the addition of preconditions and of the
intention to achieve the rational effect of a speech act, thelatter one for the case of
commands or other speech acts presupposing a hierarchy of authority among roles. (3)
The agents execute speech acts via their roles.

In order to maintain the model simple enough, we model message passing extending
the dynamic model with two actions (methods)send(x,y,sp) andreceive(y,x,sp). Where
send(x,y,sp) should be read as the action carried byx of sending a speech act (sp) to y
andreceive(y,x,sp) is the complementary action ofy receiving the message fromx. It
must be underlined that argumentsx andy can be agents or roles. A role only listens for
the messages sent by the agents playing it:

〈listen(r)〉ϕ ⊂ 〈P;played by(r,x)?;receive(r,x,sp);D〉ϕ

These rules define apatternof protocol whereP andD have to be read as possible
other actions that can be executed before and after thereceive. The reception of a mes-
sage from the agent has the effect of changing the state of other roles. For example, a
command given via a role amounts to the creation of a goal on the receiver if the sender
has authority (within the system) over it.

2(authoritysys(r, request⊃ [receive(r,x, request(r, r
′
,act)))]Gr

′

t (act))4

To produce a speech act, the agent has to send a message to the role specifying the
illocutive force, the receiver and the content of the speechact:

〈communicate(a)〉ϕ ⊂ 〈P;send(x, r,sp);D〉ϕ

6 The combined model

The two models presented above model complementary aspectsof roles: the public
character of roles in communication and how agents privately adapt their mental atti-
tudes to the roles they play.

In this section we try to merge the two approaches using the metamodel we pre-
sented. On the one hand, Boella’s model [1] is extended from the public side to the
private side, by using Dastani [2] as a model of role enacting. In this way, the expec-
tations described by the roles resulting from the interaction among agents can become

4 request(r, r
′
,act) means: roler asks tor

′
’s player to doact. authoritysys(r, request) expresses

that roler has the authority to make arequest within systemsys.

a behavior of agents and they do not remain only a description. On the other hand,
Dastani’s model [2] is made more dynamic. In the original model the role is givenas
a fixed structure. The goals of agent can evolve according to the goal generation rules
contained in it, but the beliefs and goals described by the role cannot change. This is un-
realistic, since during the activity of the agent enacting its role, it is possible that further
information are put at disposal of the role and that new responsibilities are assigned,
etc.

In order to merge the two models within the same framework, weneed to add (com-
plex) actions which are able to grasp the dynamics introduced in [1] and [2]. Interactions
among agents is done through message passing and, in particular, through actionssend
andreceive introduced in section 6. Next we are going to introduce all the speech-acts
and complex actions which are needed to grasp the combined model and then we intro-
duce a running example to clarify their use defining acourseof actions in the dynamic
model defined in section 3.2. An agent who wants to play a role within anopen system
has to ask to the system for a role instance; this process is handled by two speech act:
ask to play(R) andaccept to play(r,A), where the first one is sent from the agent to
the system in order to ask to play a role of type R, whereas the second is sent from the
system to the agent, together with the identifier of the role instance r and a set A of
other role instances present in the system, in order to inform the agent with which roles
is possible to interact. Next we report the twoeffect rulesassociated:

2(⊤⊃ [receive(s,x,ask to play(R);send(s,x,accept to play(r,A)]

played bysys(r,x,s)
(7)

2(⊤⊃ [send(x,s,ask to play(R); receive(x,s,accept to play(r,A)]

played byag(r,x,s))
(8)

Wheres is the system,x the agent, andr a role instance of typeR. In this section we use
x,y,z. . . to denote agents, s for the system andr, r

′
, r
′′
. . . for role instances. Notice that

played bysys(r,x,s) andplayed byag(r,x,s) refer to two different infrastructures; in Rule
7 is thesystem that, after having acknowledged the agent request, knows thatx is going
to playr, whereas in Rule8 is the agent that becomes aware of the play relation between
x andr. To link the two predicates with the logical model introduced in Section 3 we
have that:played bysys(r,x,s)∧played byag(r,x,s)→ R(s,x, r). When we are dealing
with a single system we can omits writing played bysys(r,x) andplayed byag(r,x). To
enact a role, an agent, provided the identifier of the role instance it wants to enact, has
to send a message to the role and to wait till the role replies with the information about
the state of the role: its beliefs, goal, plans, etc. When thestate is received, the agent can
enact the role in the same way described by Rule3 in Section 5. In order to model such
interaction we introduce two complex actionstell enact, accept enact and two speech
actsaccept enact andinform enact.

〈tell enact(x, r)〉ϕ ⊂ 〈played byag(r,x)?;(send(a1, r1,enact(x, r))〉ϕ (9)

〈accept enactment(r,x)〉ϕ ⊂ 〈receive(r,x,enact(x, r));played bysys(r,x)?;

send(r,x, inform enact(< beliefsr,objectivesr,plansr, rulesr >))〉ϕ
(10)

When the agent receives the specification of the role he wishes to enact, it can internal-
ize them as in Rule3:

2(⊤⊃ [receive(x, r, inform enact(< beliefsr,objectivesr,plansr, rulesr >))]

Bx(beliefsr)∧ x.enacted roles[r] =< objectivesr,plansr, rulesr >)5 (11)

In this combined view is possible that role’s specificationschange dynamically, in
that case it is up to the role to send a message to its player each time its state is updated:

〈udpate state(r,x)〉ϕ ⊂ 〈played bysys(r,x)?;(¬Gr
t(q)∧Gr

t+1(q))?;

send(r,x, inform goal(q))〉ϕ
(12)

Last but not least, we need to model the deactment of a role respecting the for-
malization as in Rule4, therefore we introduce two speech actsdeact, ok deact and a
complex actionconfirm deact defined as follows:

〈confirm deact(r,x)〉ϕ ⊂ 〈receive(r,x,deact);played bysys(r,x)?;

send(r,x,ok deact)〉ϕ
(13)

After sendingok deact, the system will not consider anymore agentx as player ofr:

2(⊤⊃ [confirm deact(r,x)]¬played bysys(r,x) (14)

If it is possible for the agent to deact the role, it will receive anok deact from its role:

2(⊤⊃ [receive(x, r,ok deact)]x.enacted roles[r] = null∧¬played byag(r,x)) (15)

1

2

3

6

7

9
8

agent_A

agent_B

system_C

r1::R1

r2::R2

5

4

Fig. 1.Roles in MAS

Fig. 1 depicts two agents which interact through roles in an open system. At time
t the system has alreadyagent B that enacts roler2 as represented by the black arrow
which goes fromagent B to r2. Following the course of actions that describe how the
system evolves:

1. At time t+1agent A asks to institutionsystem C to play a role of type R1:

sendt+1(agent A,system C,ask to play(R1))

2. At time t+2system C replies toagent A assigning to him the role instancer1:

sendt+2(system C,agent A,accept to play(r1,{r2}))

3. At time t+3agent A wants to enact (internalize) roler1: tell enactt+3(agent A, r1)
4. At time t+4 roler1 receives the speech act fromagent A asking for enactment and

accepts it, replying toagent A with its specifications:accept enactmentt+4(r1,agent A)
5. Once thatagent A has enacted the role as in Rule3 it decides, at time t+5, to acti-

vate it6 and then to ask to the agent playingr2 to do an actionact. In other words:
sendt+5(agent A, r1, request(r1, r2,act)) When r1 receives a send fromagent A
asking for anact of r2, first it checks if the sender has the authority in the system
to ask such an act, if sor2 acquires the goal to doact:

2(authoritysys(r
′
,act)⊃ [receive(r,agent A, request(r, r

′
,act))]Gr

′

(act))

Is important to underline that because role internals are public to other roles in the
same system, it is always possible for r1 to check or modify r2’s goals. So, at time
t+6 we have:receivet+6(r1,agent A, request(r1, r2,act))

6. Now thatr2 has updated its internal state (i.e. its goals) it must inform its player
agent B: update statet+7(r2,agent B), where updatestate is modeled as in Rule
12

7. At time t+8agent A decides to deact the roler1: sendt+8(agent A, r1,deact)
8. Finally, at time t+9, r1 confirm the deact:confirm deactt+9(r1,agent A)

7 Conclusions and Further Works

In this article we merged two representative role’s models in MAS by introducing a
metamodel taken from Genovese [5] and adapting it to agents. In particular, we added
representations of typical agents’ mental attitudes and a framework to deal with mes-
sage passing. The model has been specialized in order to describe both public and pri-
vate dimensions of roles (Boella, Dastani[1,2]). Finally, we merged the two dimensions
defining a group of actions together with their semantics andwe modeled a running
example to show a possible course of events.

Further works point in two main directions: adapting the proposed metamodel to
other roles approaches like Omicini [10], and introducing a formal proof theory of roles’
actions dynamics and related aspects starting from Baldoniet al [8].

References

1. G. Boella, R. Damiano, J. Hulstijn, L. van der Torre: Acl semantics between social commit-
ments and mental attitudes. In Procs. of Workshop on Agent Communication (2006)

6 Activating a role means to take into account its specification during the private agent delibera-
tion process, so there is no need to introduce a public actionin the dynamic model to represent
the activation of a role.

2. Dastani, M., van Riemsdijk, B., Hulstijn, J., Dignum, F.,Meyer, J.J.: Enacting and deacting
roles in agent programming. In: Procs. of AOSE’04, New York (2004) 189–204

3. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: The Gaia
methodology. IEEE Transactions of Software Engineering and Methodology12(3) (2003)
317–370

4. Colman, A., Han, J.: Roles, players and adaptable organizations. Applied Ontology (2007)
5. Valerio Genovese: Towards a general framework for modelling roles. In: Normative Multi-

agent Systems. Number 07122 in Dagstuhl Seminar Proceedings (2007)
6. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with a FIPA-

compliant agent framework. Software - Practice And Experience31(2) (2001) 103–128
7. Baldoni, M., Boella, G., van der Torre, L.: Roles as a coordination construct: Introducing

powerJava. ENTCS Procs. of the First International Workshop on Methods and Tools for
Coordinating Concurrent, Distributed and Mobile Systems (MTCoord 2005)150 (2006) 9–
29

8. M. Baldoni, C. Baroglio, A. Martelli, V. Patti: Reasoningabout interaction protocols for
customizing web service selection and composition. Journal of Logic and Algebraic Pro-
gramming, special issue on Web Services and Formal Methods,70(1):53-73 (2007)

9. Boella, G., van der Torre, L.: The ontological propertiesof social roles in multi-agent sys-
tems: Definitional dependence, powers and roles playing roles. Artificial Intelligence and
Law Journal (AILaw) (2007)

10. Omicini, A., Ricci, A., Viroli, M.: An algebraic approach for modelling organisation, roles
and contexts in MAS. Applicable Algebra in Engineering, Communication and Computing
16 (2005) 151–178

	Merging Roles in Coordination and in Agent Deliberation

