Introduction

Configurability within a multi-agent Web store shell

L.. Ardissono, A. Goy, G. Petrone, M. Segnan
Dipartimento di Informatica, University of Torino
Corso Svizzera 185; 10149 Torino, Italy
Phone: +39 - 011 - 7429111;

{liliana, goy, giovanna, marino }@di.unito.it

- The first and simplest one supports the construction of a

The configurabilty of a Web store shell strongly benefits
from the possibility to create simpler on-line stores, offering
a subset of the functionalities supported by the shell: in
fact, some functionalities may exceed the requirements of
a specific sales domain and, at the same time, they may
impose an overhead on the knowledge to be introduced at
configuration time and on the interaction with the customer.

In this abstract, we sketch the approach we adopted in
the design of SETA [1, 2], a prototype toolkit for the creation
of adaptive Web stores. SETA is based on a multi-agent
architecture and on the definition of a hierarchy of agents
supporting progressively more sophisticated functionalities,
for each main role of the architecture. This approach sup-
ports flexibility in the configuration of a Web store instance,
allowing the store designer to choose, for each main role, the
specific agent offering the desired functionalities.

The SETA architecture [1] includes specialized agents,
devoted to the management of the front-end of an adap-
tive Web store: the SessionManager connects the store to
the Web; the Dialog Manager handles the logical interac-
tion with the customer, deciding which page has to be shown
next. The User Modeling Component handles the user mod-
els; the Product Extractor selects the items to be suggested;
the Personalization Agent generates the Web catalog pages.

2. Classes of agents

The agent-based techniques are very useful to enhance the
configurability of systems: in fact, they support the exten-
sion of a system with new agents filling supplementary roles;
moreover, they support the definition of agent hierarchies to
exploit inheritance mechanisms for sharing data structures
and behavior. In particular, we distinguish the services of-
fered by an agent from its functionalities: services depend on
the role filled by the agent and correspond to the requests
which the agent can receive and reply to. Functionalities
concern how the agent processes the incoming messages and
carries out the related activities. Two agents offering the
same services may support different functionalities; e.g., the
management of the user models can be filled by a hierarchy
of alternative User Modeling Components (UMCs):

©Copyright 1999 by the Association for Computing Machinery,
Inc. Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or
to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Publications Dept, ACM Inc., fax
+1 (212) 869-0481, or permissions@acm.org.

generic user model, the same for every user.

- The second agent exploits stereotypical information about
customer classes to predict the user’s preferences.

- The third agent tracks the user behavior to dynamically
update the user model during the interaction.

More complex agents can be obtained by merging the
functionalities offered by these basic agents; e.g., when stereo-
typical and dynamic user modeling have to be combined.

The agents of SETA are characterized by different behav-
iors, imposed by their roles; some agents autonomously carry
on internal activities, by interleaving them with the provi-
sion of services (e.g., the UMC); others interact with other
agents, as well as with the user (e.g., the Dialog Manager);
others only work when a service is requested (e.g., the Per-
sonalization Agent). To obtain a uniform framework, where
all these types of agent can be designed, we have defined a
general model of agent behavior, which is inherited by each
agent of the system and supports the selection and execu-
tion of the agent activities, autonomously, or in response
to service requests. Our approach is integrated in the en-
vironment of an agent-building tool (Objectspace Voyager),
which we have used to wrap our agents, enabling them to
run in parallel and to communicate by means of synchronous
and asynchronous messages.

3. A model of agent behavior

We have adopted an action-based model of agent behav-
ior to describe our agents in a declarative way, supporting
the inheritance of behavior and the possibility to represent
types of agent like those mentioned above: an “Agent” class
provides the basic data structures and methods for specify-
ing the agent behavior; then, the individual agents can be
designed by extending such class with specific information
about the actions that the agent can perform, and so forth.
The “Agent” class is characterized as follows:

a) The state describes the environment of the agent with re-
spect to a specific user session! and evolves while the agent
sends or receives messages or performs actions. For instance,
the state of the UMC specifies whether the user model has
been created or not, the user’s personal data have been set,
and so forth.

b) The actionsinclude the tasks to be performed in response
to the invocation of services by the other agents, as well as
the internal activities to be carried on by the agent; e.g.,
revising the user model on the basis of the user behavior.
The actions have the following slots: the goal of an action is
the goal resulting from its execution and is the basic infor-
mation exploited for selecting the actions to be performed
when a service is requested. The preconditions are appli-
cability conditions that the agent state must satisfy for the

' The agents handle parallel user sessions.



Pendi ngTasks Msgl
I 1 [

‘ I k2

Msgl
Pendi ngTasks
v T
RUN 1
t
9e I RUN
/7
- return|val ue
d <2
ut 7 =
put, =
» get :, NOTI FY
put >
Pendi ngTasks
AGT1 pendi ng |ist AGT2
Pendi ngTask ‘

Figure 1: Interpreter threads within an agent.

action to be executable. The body represents the sequence
of steps to be performed in order to complete the action.
As a result of the execution of an action, the agent state
changes (so, no postconditions are explicitly represented).
The type distinguishes actions associated to public services
from internal activities.

¢) The interpreter describes the agent behavior: it selects
the actions to be performed, on the basis of the agent state
and of the requests to be satisfied. Notice that checking the
preconditions of actions is the basis for the coordination of
the activities that the agent has to carry on.

Since both the internal activities and the service provi-
sion tasks are represented as actions, they can be selected
and performed by the interpreter in a uniform way. The
crucial issue is how to trigger the internal activities: in fact,
while the services are requested by the other agents via suit-
able messages, these activities have to be autonomously car-
ried on, whenever their preconditions are true. For unifor-
mity, the execution of internal activities is also triggered by
means of request messages. Thus, an agent both receives
service requests as messages from other agents and sends
messages to itself for triggering its own internal activities.

We have integrated our agent model with the Voyager
thread environment by exploiting asynchronous messages
and defining a one-shot interpreter for processing their con-
tents: when the agent receives a message, it runs the in-
terpreter as a thread of the main agent process, to satisfy
the request included in the message. At the beginning of
the execution, each interpreter thread launches (by message
invocation) the pending tasks that the agent is supposed to
carry on: these tasks include the internal activities and the
suspended service requests, which could not be processed
because the preconditions of the related actions were false
at the time the agent received the related messages. Figure
1 shows the situation of an agent (“AGT1”) where three in-
terpreter threads are active: “Msgl” has been generated to
process a service request by “AGT2”; the other two (“pend-
ingTasks”) have been generated to handle the pending tasks.

Given a message to be processed, the interpreter selects
a suitable action to be performed (either a service provision
action, or the “pendingTasks” action). Then it checks its
preconditions: if they are true (“executable”), the action
is performed (“RUN”) and the thread ends; otherwise, the
thread stores the action into a list of pending tasks (“pend-
ing list”) and suspends (“WAIT”). The thread sleeps un-
til the state of the agent evolves to a situation where the
preconditions of the action are true and some other thread
wakes it up (“NOTIFY?”). The “notify” signals are generated
by the interpreter threads invoked to perform the pending
tasks. In particular, the execution of the “pendingTasks” ac-
tion requires that an interpreter thread selects an executable

action from the pending list and processes it, performing
the action, if it is an internal activity, or notifying the sus-
pended thread, if it is a service provision action. Moreover
the thread generates another “pendingTasks” message, to
guarantee that the agent will inspect the pending list again.?

4. Configurability issues

We have defined a model of agent behavior supporting the
management of service provision and of internal agent ac-
tivities, whose execution has to be carried on by the agent
in a transparent way with respect to the rest of the system.
Individual agents can be defined by extending this model,
possibly overriding parts of it (e.g., an individual agent in-
herits the structure of the state, the interpreter and the
“pendingTasks” action; moreover, it has to define all the
actions implementing its own activities).

A declarative representation of the activities to be car-
ried on by the agent as actions with goals and preconditions
has several advantages: e.g., internal activities and service
requests can be handled by means of the same message-
interpretation mechanism, thus simplifying the coordination
of the various tasks. Moreover, the agents can be easily up-
dated to offer new functionalities: for instance, an individual
agent activity can be introduced (removed) by defining (re-
moving) the related action. Furthermore, constraints may
be added to the preconditions of actions if supplementary
constraints are needed to coordinate their execution (e.g.,
to impose partial orders in the execution of the various ac-
tions). Finally, hierarchies of agents inheriting certain ac-
tions and overriding other actions can be defined, in order
to offer a family of alternative agents filling the same role.

We have exploited our agent model to enhance the config-
urability the SETA Web store shell, which we have revised
by defining the state and the activities of all the system
agents. For some of the main roles of the architecture, we
have defined a hierarchy of alternative agents which can be
selected to create a Web store instance providing only the
desired functionalities. For instance, we have defined a hi-
erarchy of UMCs inheriting the general agent behavior and
implementing the activities to handle progressively sophis-
ticated user models. When the store designer creates a new
Web store, she can select a specific UMC on the basis of
the needed type of user model (e.g., static, stereotypical,
dynamic, etc.).

This work is developed in the project “Servizi Telematici
Adattativi”, (http://www.di.unito.it/” seta) carried on at
the CS Department of the University of Torino in the initia-
tive “Cantieri Multimediali”, granted by Telecom Italia.

REFERENCES

[1] L. Ardissono, C. Barbero, A. Goy, and G. Petrone.
An agent architecture for personalized web stores. In
Proc. 8rd Int. Conf. on Autonomous Agents (Agents
’99), pages 182-189, Seattle, WA, 1999.

[2] L. Ardissono and A. Goy. Tailoring the interaction with
users in electronic shops. In Proc. 7th Int. Conf. on User
Modeling, pages 35-44, Banff, Canada, 1999.

2In this way, the agent can generate a thread to handle the internal
activities every time it receives a message and every time an action is
selected from the pending list for execution. Moreover, no messages
are sent when the list is empty, or it does not contain any executable
actions, in order to limit the attempts to perform them before the
agent state changes.



