
A SOA-based Model Supporting Adaptive Web-based Applications

L. Ardissono, R. Furnari, A. Goy, G. Petrone and M. Segnan
Dipartimento di Informatica - Università di Torino

Corso Svizzera 185, 10149 Torino - Italy
�liliana,furnari,goy,giovanna,marino�@di.unito.it

Abstract

Service Oriented Architecture (SOA) supports the inte-
gration of distributed and heterogeneous services by offer-
ing Web Service composition standards which describe ser-
vice composition as a business process. However, the com-
position model proposed in SOA does not explicitly deal
with personalization and context-awareness. In order to
address such limitations, we have developed the CAWE con-
ceptual framework. In this paper, we describe the person-
alization support offered by our framework to the develop-
ment of context-aware, adaptive web-based systems. CAWE
handles the integration of heterogeneous services and infor-
mation sources; moreover, it manages long-lasting interac-
tions with multiple cooperating users and it personalizes the
business logic of the application by adapting the workflow
activities to be carried out.

1. Introduction

In the last decade, personalization has become a central
feature of Web-based systems, in order to address the “one-
size-fits-all” issue and to support the “one-to-one” interac-
tion with the user. User modeling and adaptation techniques
have thus been developed in order to personalize interactive
systems; e.g., see [7]. Moreover, adaptation has been ex-
tended to deal with context information [1]. The introduc-
tion of new adaptation features has gradually increased the
complexity of applications, leading to the development of
modular systems which integrate components offering ad-
vanced personalization features. However, such systems are
typically based on closed architectures and they integrate
homogeneous components in rigid business logics.

The introduction of Web Services [2], based on standard
languages for the specification of operations (e.g., WSDL
[17]), has offered an excellent opportunity to reuse adaptive
systems in distributed applications. Indeed, a new personal-
ization perspective is to employ the architectural flexibility
offered by Service Oriented Architecture (SOA) [15] to de-

velop personalized distributed systems.
In this paper we propose a specialized SOA architec-

ture extending Web Service composition with personaliza-
tion features. Our SOA architecture has been exploited to
design the CAWE (Context Aware Workflow Execution)
conceptual framework, which supports the development of
context-aware, Web-based applications adapting the busi-
ness logic and the interaction with the users to various types
of context information.

Standard Web Service composition languages, such as
WS-BPEL [14], represent the service composition as a busi-
ness process. Thus, our approach involves the management
of context-aware processes and their interaction with Intel-
ligent User Interface components. Being based on a work-
flow model, our approach naturally supports the following
types of interaction with the user:

� The coordination of human and automated actors fill-
ing different user roles.

� The management of interactions aimed at executing
activities which take a long time to complete.

� The management of interruptions in the execution of
activities.

The CAWE framework manages the adaptation to multiple
users and to the surrounding context by extending the work-
flow engine with two modules: the first one customizes the
business logic of the application and the second one person-
alizes the interaction with the user and generates a device-
dependent User Interface. We have utilized the CAWE
framework in the development of an e-service which co-
ordinates doctors, nurses and administration staff in the ex-
ecution of a medical guideline monitoring the health state
of patients affected by heart diseases; see [5, 3].

In the following, Section 2 sketches the workflow adap-
tation features and presents the interaction support offered
by our framework. Section 3 discusses our experience in ap-
plying the CAWE framework to the implementation of our
e-service. Section 4 compares our approach to the related
work and Section 5 concludes the paper.

Dialog
Manager

Context-Aware Workflow Manager
Workflow Specification
Knowledge Base

CtxMgr WS WS supplier

Workflow
Engine

Workflow
Adaptation
Module

CM UM RM
Context

UI KB

Figure 1. Architecture of the CAWE framework.

2. The CAWE conceptual framework

Figure 1 depicts the architecture of the CAWE frame-
work. The main modules, listed in the following, offer stan-
dard Web Service interfaces, depicted as thick lines.

The Context Manager Web Service (CtxMgr WS) man-
ages the information about the users of the application,
the execution context and the environment surrounding the
users; see Section 2.1. The Context-Aware Workflow Man-
ager manages the interaction with the user and the business
logic of the application taking the context information into
account; see Sections 2.2 and 2.3. Other Web Service sup-
pliers may be invoked.

���� ������� 	�
����	�� ��������

In order to support multi-user cooperation and to adapt
the application accordingly, the CAWE framework struc-
tures the context information by explicitly modeling the ac-
tors (role fillers) participating to the service. During the ex-
ecution of the application, the CtxMgr WS handles a Con-
text including a Role Model, a User Model and a Context
Model for each person actively or passively involved in the
interaction with the application; see Figure 1:

� The Role Model (RM) stores domain-dependent, de-
fault information about the role; e.g., access rights.
For instance, an important role in our e-Health applica-
tion is the patient one, as the execution of the medical
guideline is tailored to her health status.

� The User Model (UM) stores information about an in-
dividual user filling the role; e.g., the person filling the
patient role. User Models include information such as
expertise, preferences, and individual capabilities; e.g.,
physical and mental capabilities.

� The Context Model (CM) stores information about the
context surrounding the user and relevant data about
the execution context. For instance, the device utilized
by the user, bandwidth, light conditions, and noise.

The RMs, UMs and CMs are represented as XML docu-
ments specifying a list of � �������� ��	��
 pairs.

During the execution of the application, the components
of the Context-Aware Workflow Manager interact with the
CtxMgr WS (by means of SOAP messages invoking WSDL
operations) in order to request/provide the CtxMgr WS with
information about the users and their context. The CtxMgr
WS initializes and updates the UMs and the CMs with infor-
mation collected by interacting with the users via the User
Interface of the application. Specifically, the Dialog Man-
ager component of the Context-Aware Workflow Manager
provides the CtxMgr WS with data about a user and her con-
text; e.g., clickstream data, user information input by means
of a form, and the device utilized by the user. The Context
Models may also be updated with information collected by
other information sources, such as sensors.

The preferred user modeling inference techniques,
needed to acquire information about the user from her be-
havior, strongly depend on the application. Thus their defi-
nition is not part of the CAWE framework, but they should
be selected at application design time. To this purpose, we
have designed the CtxMgr WS as a Web Service, decoupled
from the rest of the system. The modularity of the archi-
tecture supports a seamless integration of a user modeling
component in the CtxMgr WS. Moreover, the Web Service
might invoke a User Modeling Server [11] and other infor-
mation sources to retrieve additional information about the
users. For instance, in our e-Health application, the CtxMgr
WS invokes a Clinical Record Manager WS to retrieve de-
tailed information about the patient.

���� �����	�� �
 ��� ���	���� ���	�

The business logic of the application is adapted by se-
lecting the courses of action to be enacted during the exe-
cution of the application. The selection is done by taking
into account the users (User-Role Models) involved in the
process and their Context Models.

� The business logic is represented as an abstract work-
flow, stored in the Workflow Specification Knowledge

start

evaluateResults
(patient,date,bloodResults,)

SendToHospital(patient)end

no yes
eval=OK?

onMessage:
bleeding or
fainting

onAlarm (interval)

pick

setUrgency(patient, "high")

emailPatient(date, therapy)

EVAL

ManageBloodCollection
(patient, date, time, appCode,) BLOODRESULTS

storeTherapy(patient,date,)THERAPY

eval(date, time,)INTERVAL

BookBloodTest(patient, date,)TIME, APPCODE

setFirstBloodTest(patient,)DATE
T(patient)

T(patient)

T(doctor)

T(doctor)

Figure 2. Abstract workflow describing the business logic of our e-Health application.

Base (see Figure 1), which separates the high-level
description of the activities to be performed from
their context-dependent details. In the following, we
shortly describe the workflow representation and man-
agement; see [4] for technical information.

� An abstract workflow is a workflow whose activities
may be either regular activities, or abstract activities.
An abstract activity is a complex activity which can be
exploded in alternative, context-dependent courses of
action.1 Each course of action is suitable to achieve
the result of the abstract activity in a different contex-
tual condition. To this purpose, the course of action
has an applicability condition for the evaluation of its
suitability to the current Context. A course of action
may be a an abstract workflow itself; thus, hierarchies
of abstract workflow may be defined.

� The applicability conditions are boolean conditions
on the state of the UMs, RMs and CMs. The
dot-notation is adopted to specify the model to be
considered for the evaluation of the condition; e.g.,
(UM�����.f�=v� � CM�����.f�=v�) is true if fea-

1The syntactic extensions to the workflow representation language are
embedded in the bodies of the activities; therefore, they can be managed
by a standard workflow engine. See [4].

ture f� of the UM����� model has value v� and feature
f� of the CM����� model has value v�. Otherwise, the
condition is false. Notice that the applicability con-
ditions may concern any of the users involved in the
workflow (not only those interacting with the system).
Thus, the business logic can be adapted to the over-
all context. For instance, in our e-Health application,
the patient’s health conditions influence the business
logic (execution of the medical guideline), although
she does not necessarily interact with the system.

Figure 2 depicts the abstract workflow of our e-Health
application: the abstract activity names start with an up-
percase letter; e.g., BookBloodTest. Moreover, thick
bordered rectangles represent tasks and the assigned roles
T(role). Figure 3 sketches the specification of two al-
ternative courses of action for the execution of the Book-
BloodTest abstract activity. The specification includes
the definition of the courses of action, the identifier (ID),
the abstract activity (Implements field) and the Appli-
cability condition field. For simplicity, the figure
graphically sketches the workflows and it omits the fields
reporting the input and output arguments of the courses of
action and other technical information; see [4] for details.

Given the context-sensitive workflow specification, the
Context-Aware Workflow Manager adapts the business

ID: sub-process1
Implements: AbstractActivityX
...
Applicability condition: Cond1 AND Cond2

ID: sub-process2
Implements: AbstractActivityX
...
Applicability condition: NOT (Cond1 AND Cond2)

Figure 3. Alternative courses of action describing the context-aware execution of an abstract activity
(BookBloodTest).

logic by retrieving the context information from the CtxMgr
WS. As shown in Figure 1, the Context-Aware Work-
flow Manager includes a Workflow Engine and a Workflow
Adaptation Module:

� The Workflow Engine executes the abstract workflow
as if it were a standard workflow; however, when the
Engine encounters an abstract activity, it invokes the
Workflow Adaptation Module in order to retrieve the
course of action to be enacted.

� When the Workflow Adaptation Module is invoked on
an abstract activity, it evaluates the applicability con-
ditions of the courses of action implementing the ac-
tivity in order to identify the one suitable for the Con-
text. To evaluate the conditions, the module interacts
with the CtxMgr WS. For instance, in the execution of
BookBloodTest, the Workflow Adaptation Module
would select MovBBT if UMpatient.movable is
true, Not-MovBBT otherwise.

The abstract workflows are organized in hierarchies which
compactly represent different behaviors, therefore provid-
ing the flexibility required in order to handle context-aware
interactions. For instance, different Web Service suppli-
ers may be invoked to request ad hoc services. More-
over, multiple courses of action may be defined to represent
operations which can be normally skipped, but should be
performed in particular situations, or to represent different
recipes for the achievement of a goal. As a concrete exam-
ple, in our e-Health application, the steps to be performed in
order to reserve a blood test are specified as two alternative
courses of action of the BookBloodTest abstract activ-
ity. The first one has the UMpatient.movable=true
applicability condition and it is suitable for patients who
can go to the lab for the test by car. The second one has the
opposite applicability condition and it includes additional
steps aimed at organizing the collection of the blood sam-
ple at the patient’s home.

���� �����	�� �
 ��� ���� �����
�� ��
�
 ��� 	������	�� �	�� ��� ����

In workflow systems, communicative activities aimed at
questioning the filler of a role and/or at presenting some in-
formation are specified as tasks assigned to the role. The
task specifies the information to be asked/presented as a list
of input/output parameters. When, during the workflow ex-
ecution, the workflow engine encounters the task, it starts
it and waits for its completion. The active tasks are asyn-
chronously managed by a Task Manager, which waits that
the target users connect to the application and then gener-
ates the User Interface (UI) pages on demand.

In the CAWE framework, the interaction with the user
is carried out in context-aware mode by exploiting a Dialog
Manager component which extends standard task manage-
ment behavior with personalization features. Specifically,
the Workflow Engine schedules the tasks to be completed in
standard way, during the execution of the context-sensitive
workflow which represents the business logic of the appli-
cation. However, the task execution is controlled by the
Dialog Manager module, which extends the default Task
Manager by applying personalization rules aimed at gener-
ating context-dependent UI pages. When the user connects
to the application in order to complete the task, the Dia-
log Manager generates one or more UI pages displaying the
information specified in the task (both input and output pa-
rameters). The Dialog Manager interacts with the CtxMgr
WS to retrieve the context information and handles the page
generation as follows:

1. It selects the stylesheet (XSL) to be applied, depending
on the user features and preferences, and on the char-
acteristics of her device. The stylesheet specifies the
layout properties; e.g., font size and background color.

2. It groups the information items to be displayed in sub-
sets, in order to fit the size of the screen and to comply

with user features such as her receptivity and interests;
see [3]. In this way, possibly more that one UI page
will be presented in order to complete the task.

3. For each subset, it fills in an XML page template with
the content to be displayed. Then, it applies (XSLT)
the stylesheet to the filled template, in order to generate
the page code. Notice that the stylesheet selection and
the splitting of contents are tailored to the target user;
therefore, the pages can be customized to each of the
users cooperating to the service execution.

4. It cycles sending the generated pages to the user device
and retrieving the responses, until it collects the last
response (i.e., until all the input and output parameters
specifyed in the task have been elicited/displayed).

5. It returns the collected information to the Workflow
Engine, which ends the task and continues the work-
flow execution.

3. Implementation and preliminary evaluation

As a preliminary evaluation of the CAWE conceptual
framework, we implemented its execution model and we
applied it to a specific application. The CAWE prototype is
implemented in the jBPM environment [12], which offers a
graph-based workflow representation language supporting
a clean definition of workflows, thanks to the fact that it is
based on the Petri Net process model [16]. See [4] for im-
plementation details.

We instantiated the CAWE prototype on an application
supporting the management of a clinical guideline for the
home assistance of patients affected by heart diseases. Clin-
ical guidelines are an excellent testbed for multi-user adap-
tivity and context-awareness. In fact, they are long-lived
processes, they involve actors playing different roles (e.g.,
doctors and administration staff) and they rely on external
service providers, such as nursery and transportation ser-
vices. Moreover, the activities to be performed vary de-
pending on context conditions such as the patient’s health
status and mobility. Our e-Health application supports doc-
tors, para-medical and administrative personnel by coordi-
nating the completion of tasks and by performing automated
activities. The application may be accessed from the inter-
net, by using a PC or a Smart Phone client.

The development of our e-Health application provided
us with the following feedback:

� As far as the business logic adaptation is concerned,
the context-sensitive workflow representation formal-
ism supports a synthetic description of a very differ-
ent context-dependent behaviors. In fact, the applica-
bility conditions of the courses of action are complex

boolean conditions; moreover, the courses of action
may be abstract workflows themselves and can be or-
ganized in specification hierarchies. Notice also that
the declarative style of the representation formalism
facilitates the introduction of new adaptive behaviors:
a new course of action can be added to the Workflow
Specification Knowledge Base without modifying the
rest of the system.

� As far as the adaptation of the interaction is con-
cerned, the workflow-based management of the inter-
action with the user does not support the high flexi-
bility of traditional dialog systems, which may tailor
each interaction turn on a goal basis. However, our
approach suits the typical requirements of page-based
interaction, as it supports the dynamic generation of
personalized, device-dependent pages.

The development of the medical application also pro-
vided us with relevant feedback about the applicability of
the framework when instantiating it on a specific application
domain. In particular, the specification of the features char-
acterizing the Role, User and Context Models is a standard
task to be performed in personalized systems and requires
limited technical skills. Moreover, thanks to the clarity of
the jBPM representation language, the design of a context-
sensitive workflow as a hierarchy of abstract workflows is
not problematic for the designer, if the workflow hierarchy
is moderately deep. In general, the hierarchical representa-
tion supports the specification of a synthetic workflow, more
readable than the equivalent flat one, which becomes very
large if several alternative behaviors are represented. In-
deed, the specification of complex applicability conditions
challenges the designer, who is required to be moderately
familiar with logic. Currently, this task is even more dif-
ficult because the conditions have to be defined in internal
format (dot-notation and boolean expressions). However,
we plan to develop a design tool to the purpose.

4. Related work

Workflow systems mainly focus on Quality of Service
(QoS) management and on the adaptation to the user’s de-
vice; e.g., see [6], [10]. See also [8], which extends WebML
to model multi-channel, context-aware Web applications.
In comparison, the CAWE framework supports applications
which adapt to user preferences (possibly including QoS),
as well as to context-aware aspects such as the physical en-
vironment or the available resources. Moreover, the frame-
work supports the adaptation to multiple cooperating users.

In the research about context-aware systems, user model-
ing ontologies have been introduced to allow services share
information about the user, the device employed to inter-
act with the system, etc.; e.g., GUMO [13]. As a matter

of fact, our Context Manager Web Service does not adhere
to such ontologies (the User, Role and Context models are
simple XML documents). However, as discussed in Section
2.1, the CAWE architecture is highly modular and the Web
Service can be configured to invoke external servers for the
management and processing of that kind of information.

Our work differs from other workflow-based adaptive
systems (e.g., [9]) in the following aspects: first, it handles
the adaptation to multiple users cooperating to the service
execution, including users who do not interact with the ap-
plication but are the recipients of the services. Second, our
framework personalizes the workflow to the users and their
context, while in [9] the workflow underlying the system
behavior is the same for all the users and contexts.

Finally, hierarchical workflows are usually related to the
specification of compositional workflows; e.g., see see WS-
BPEL [14] and process languages such as Petri Nets [16].
Instead, our proposal introduces a specialization hierarchy
supporting the actuation of the same abstract activity in dif-
ferent ways.

5. Conclusions

In this paper, we have described the architecture and the
adaptation features offered by the CAWE conceptual frame-
work, which supports the development of context-aware
Web-based applications based on a Service Oriented Archi-
tecture (SOA). The applications based on this framework
adapt the business logic, the interaction and the User Inter-
face to a complex context which explicitly models multiple
human actors involved in the service execution.

As a preliminary evaluation of the CAWE conceptual
framework, we developed a prototype system supporting
the execution of context-sensitive workflows and we uti-
lized it to develop a Web-based e-service. This activity pro-
vided us with positive feedback concerning the adaptivity
features offered by our framework. However, it highlighted
the need of design tools supporting the administrator in the
specification of context-sensitive workflows and personal-
ization information. In our future work, we will develop
such tools and we will test them with real users.

This work is supported by the EU (project WS-Diamond,
grant IST-516933) and by MIUR (project QuaDRAnTIS).

References

[1] G. Abowd and E. Mynatt. Charting past, present and future
research in ubiquitous computing. ACM Transactions on
Computer-Human Interaction, Special Issue on HCI in the
new Millennium, 7(1):29–58, 2000.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Ser-
vices - Concepts, architectures and applications. Springer-
Verlag, 2004.

[3] L. Ardissono, R. Furnari, A. Goy, G. Petrone, and M. Seg-
nan. Context-awareworkflow management. In LNCS 4607,
Web Engineering. Proc. of ICWE 2007, pages 47–52, Berlin
Heildelberg New York, 2007. Springer.

[4] L. Ardissono, R. Furnari, A. Goy, G. Petrone, and M. Seg-
nan. A framework for the management of context-aware
workflow systems. In Proc. of WEBIST 2007 - Third Inter-
national Conference on Web Information Systems and Tech-
nologies, pages 80–87, Barcelona, Spain, 2007.

[5] L. Ardissono, A. D. Leva, G. Petrone, M. Segnan, and
M. Sonnessa. Adaptive medical workflow management
for a context-dependent home healthcare assistance service.
Electronic Notes in Theoretical Computer Science (ENTCS),
146(1):59–68, 2006.

[6] D. Benlismane, Z. Maamar, and C. Ghedira. A view-based
approach for tracking composite Web Services. In Proc. of
European Conference on Web Services (ECOWS-05), pages
170–179, Växjö, Sweden, 2005.

[7] P. Brusilovsky, A. Kobsa, and W. Nejdl. The Adaptive Web:
Methods and Strategies of Web Personalization, LNCS, Vol.
4321. Springer-Verlag, 2007.

[8] S. Ceri, F. Daniel, and M. Matera. Extending webml for
modeling multi-channel contextaware web applications. In
WISE - MMIS’03 IEEE Computer Society Workshop, 2003.

[9] S. Holden, J. Kay, J. Poon, and K. Yacef. Workflow-based
personalized document delivery. International Journal on
E-Learning, 4:131–148, 2005.

[10] M. Keidl and A. Kemper. Towards context-aware adaptable
Web Services. In Proc. of 13th Int. World Wide Web Con-
ference (WWW’2004), pages 55–65, New York, 2004.

[11] A. Kobsa. Generic user modeling systems. In P. Brusilovsky,
A. Kobsa, and W. Nejdl, editors, The Adaptive Web: Meth-
ods and Strategies of Web Personalization, LNCS, Vol. 4321,
pages 136–154. Springer-Verlag, 2007.

[12] J. Koenig. JBoss jBPM white paper.
http://www.jboss.com/pdf/jbpm whitepaper.pdf, 2004.

[13] A. Krüger, J. Baus, D. Heckmann, M. Kruppa, and
R. Wasinger. Web-based mobile guides. In P. Brusilovsky,
A. Kobsa, and W. Nejdl, editors, The Adaptive Web: Meth-
ods and Strategies of Web Personalization, LNCS, Vol. 4321,
page 521–549. Springer-Verlag, 2007.

[14] OASIS. OASIS Web Services Business Pro-
cess Execution Language. http://www.oasis-
open.org/committees/documents.php?wg abbrev=wsbpel,
2005.

[15] M. Papazoglou and D. Georgakopoulos, editors. Service-
Oriented Computing, volume 46. Communications of the
ACM, 2003.

[16] W. van der Aalst. Making work flow: on the application
of Petri Nets to Business Process Management. In Proc. of
23rd Int. Conf. on Applications and Theory of Petri Nets,
pages 1–22, Adelaide, South Australia, 2002.

[17] W3C. Web Services Definition Language.
http://www.w3.org/TR/wsdl, 2002.

