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Abstract

This paper is part of a research program centered around argumentation net-
works and offering several research directions for argumentation networks, with a
view of using such networks for integrating logics and network reasoning.

In Section 1 we introduce our program manifesto. In Section 2we motivate
and show how to substitute one argumentation network as a node in another argu-
mentation network.

Substitution is a purely logical operation and doing it for networks, besides
developing their theory further, also helps us see how to bring logic and networks
closer together.

Section 3 develops the formal properties of the new kind of network and Sec-
tion 4 offers general discussion and comparison with the literature.

1 Overview

1.1 Logic and networks — a manifesto

In the past half century various formal tools have been proposed for the study of human
behaviour in daily life. Such tools were developed in computer science, communica-
tion, artificial intelligence, language study, law, analytic philosophy, psychology and
cognition, among others. Main among these tools are the formal logical systems (clas-
sical logic, non-monotonic logics, modal and temporal logics, etc, etc.) and various
network models such as argumentation networks, neural networks, Bayesian networks,
inheritance networks, and more. There is no unifying view for all these tools, and in
fact they are developed by completely different international communities with very
little common ground and communication and yet (see below) all of these features of
human behaviour (logics and networks) do reside coherentlyin the individual human
mind and enable him to function intelligently in his day-to-day activity.
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There is some realisation among a few of these diverse communities that commu-
nication between them needs to take place and unifying principles are indeed sought.
Unfortunately not much is known and certainly no coherent and successful unifying
view exists. The mission of this manifesto to provide such a view.

To explain what we have in mind, we start with a simple example.

Example 1.1 (The Messy Room)Mother goes into her teenage daughter’s bedroom.
Her instant impression is that it is a big mess. There is stuff scattered everywhere.

Mother’s impression is that it is not characteristic of the girl to be like this.

What has happened?

Conjecture: The girl has boyfriend problems.

Further Analysis: Mother noticed a collapsed shelf. Did the girl smash it? Upon
further observation, mother notices that the pattern of chaos shows that a shelf has
collapsed because of excessive weight and scattered everything around, giving the im-
pression of a big mess. But, actually, it is not a mess, it doesmake some (gravitational)
sense.

There are several modes of reasoning:

1. Neural nets type of reasoning.
She recognises the mess instantly, like we recognise a face.

2. Nonmonotonic deduction.
Mother reasons from context and her knowledge of her daughter that the girl is
not disorganised like this. She asks ‘what happened?’.

3. Abduction/conjecture.
She offers a reasonable explanation that the girl has boyfriend problems. This is
common to that age.

4. She then applies a database AI deduction and recognises that the mess is due
to gravity. This deduction is no longer a neural net impression. It is a careful
calculation.

4*. Item (4) could have been a neural net impression.
For example, a man who sees many shelf collapsing mess cases may recognise
the pattern like it were a face (in which case it would be a neural net-like recog-
nition).

2*. Item (2) could have been a Bayesian network.

Clearly all of these reasoning tools are working together inthe mother’s mind. Can
we give a unified model? What does it look like in principle?

Furthermore, suppose both mother and father have seen the room. Father may reach
different conclusions about the girl and demand some action. A dialogue, argumenta-
tion and negotiation between the parents will follow with a view to reaching a merged
knowledge base and an agreed course of action.
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The value of a unified model goes beyond just a unifying formaltheory. Even
if we take the view that each of these components model a different aspect of the
human (constructed as a model for the purpose of installing on a computer or a robot)
a unified theory can help extend their range of applicabilityand help integrate them
better. But we hope for more. We hope that such a model built upcarefully might give
us a better insight on how people actually reason. Somethingof great interest to the
philosopher, psychologist, linguist and cognitive scientist. A unified theory would be a
better, sharper tool in their hands.

First let us list what systems (and communities studying them) are involved.
We have:

A. Networks:
neural nets, argumentation nets, Bayesian nets, fuzzy nets, biological predator-
prey networks, transportation networks, flow networks, inheritance nets, math-
ematical graphs, Kripke models, Description logics, Electrical networks, legal
jurisdiction nets, social networks, input-output nets, and more.

B. Logics:
classical logic, modal and temporal logics, nonmonotonic logics, logic program-
ming, Labelled deductive systems, and more.

C. Mechanisms:
abduction, belief revision and merging, consistency/paraconsistency, meta-level
vs.object level, and more.

D. Metalevel principles:
fibring and combining systems, communication between systems, and more.

A quick analysis of this task immediately shows how huge the problem is. There
is a lot of work to be done just in providing a unifying view between networks, let
alone making a connection with logics. The rich variety of networks and the different
research communities supporting them have different underlying assumptions, different
ranges of applicability1 and different kinds of mathematics involved. How do we bring
them together?

A simple working procedure seems successful. We first identify characteristic
movements in each kind of network and then see whether we can generalise the other
networks with similar features. Iterating this process will hopefully lead us to a general
notion of network which can specialise to the various existing networks. Once we have
that, we can try and see how this general network notion can unify with ordinary logics
and other mechanisms.

This procedure has the advantage of extending and generalising each network we
work with in a meaningful way. Thus each research area will benefit incrementally. Our
understanding of characteristic movement existing in one source network (e.g. loops,
feedback, aggregation) will be enhanced by developing its counterpart manifestations

1It is regrettable that the communities involved have not studied the range of applicability of their tools.
To compare with, e.g. painkillers offered by the pharmaceutical community, it is always made clear in what
circumstances one can or cannot use them.
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in other target networks, with the added benefit of meaningful generalisations in the
target networks.

The task is not only a scientific problem but also a social problem.
The diverse communities of research in particular networks(e.g. Bayesian com-

munity, neural community, argumentation community, logic, etc.) are all immersed
in their own areas and are not likely to respond to unifying theories. Our scientific
strategy must be such that it is compatible with the social situation and is likely to
generate enthusiasm and response from a significant group ofresearchers. This is why
we proceed from the ground up as described above. Furthermore, it is fortunate that
one type of network, the argumentation network is open to further generalisation and
research in a natural and large scale way. Features existingin other networks can be
naturally (though not easily) brought into argumentation networks and these features
do have a natural meaning there. Furthermore the argumentation community itself is
open-minded and is in fact desiring to expand their field. Many of their individual
members have background in logic and will therefore easily see and respond to a gen-
eral unifying theory with logic. So our strategy is as follows.

1. Assume the current state of argumentation networks isS

2. Study other networks and identify featuresF1, F2, . . . existent in such networks
but not inS.

3. Extend the theory ofS to newSF by incorporating and generalising all of these
features in a meaningful way. This is not simple. It is real research which will
be meaningful to the argumentation community. It will also generate further
generalizations to be exported to other networks.

4. Emerge with a generalised theory of network, saySnew ⊃ SF .

5. SpecialiseSnew into other networks (e.g. networkT) to show thatSnew is general
enough to unify big chunks of other networks. Get, for example,Tnew. Chances
are thatTnew will naturally and intuitively suggest new features to be exported
back toSnew to formS1

new.

6. Generalise further to a unified theory with logic, call itSL.

7. Iterate the entire process to obtainS2
new, T2

new, S2
L, . . . etc.

The following table lists features from other networks which can be imported into
argumentation networks.
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Network Properties
Neural Feedback loops. Numerical weights on arcs. Real

number values, function approximation and learning
emphasis.

Argumentation Nodes attacking nodes. Also sometimes supporting
nodes. Loops is an issue with currently no consensus.
Logic programming way of thinking. Nodes have log-
ical content.

Bayesian Loops forbidden. Probabilistic approach.

Fuzzy Real number values and aggregation.

Biological Emphasis on loops and cycles through the loops.

Transportation Emphasis on paths and costs through paths.

Flow Emphasis on flows and counterflows through paths
and nodes. Nodes are sources and Sinks.

Inheritance Emphasis on persistence and exceptions.

Graphs Mathematical theory. Counting of nodes, topology on
connectivity. Pure mathematics point of view.

Kripke models Propagation of values for evaluating formulas.

Description logic nets Similar to Kripke models but with different emphasis.
A fragment of predicate logic.

Electrical networks Feedback loops. Equational approach. Network gen-
erates equations to be solved.

Legal jurisdiction network Movability of data across jurisdiction.

Social networks Information propagation.

Input-output networks Nodes are logic processors.

To give the reader an idea of whatSF might look like, we present a diagram, Figure
1 of a generalised argumentation network and discuss its features.

This is a complex diagram with the following generalisation:

1. It has both attack and support. Each argument has strengthand there is a rate of
transmission. For example, nodec (strengthw) supportsb and the transmission
rate ise3.

2. There is feedback from nodes to arcsu : d attacks the attack arc fromx : a to
y : b
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x : a y : b

e2 attack

u : d

e3 support

w : c = net= a′ → b′

e6 attack

indirect attack
because ofe1

x1 : ♦k

e1 attack

e4 attack

e5 attack

Figure 1: fig1

3. Arcs can attack or support other nodes or arcs. E.g. the arce3 attacks the arce2

with strengthe6.

4. There are indirect attacks, for example, ofa on c becausee supportsb anda
attacksb.

5. There are loops, becausec attacksx1 : ♦k which attacksx : a. If c is weakened
then the attack ofx1 : ♦k may succeed and hencex : a fails. So by attacking
y : b, the nodex : a opens itself to attack fromx1 : ♦k because it weakensw : c.

6. The entire system can be temporal if the strength and transmissions are time
dependent and the language of the arguments is temporal. Thenodex1 : ♦k is
temporal becausex1 depends on time and♦k says there is the (future) possibility
of argumentk.

7. The net contains a subnet.c is the subneta′ → b′. So we can also fibre nets
within nets. This is also a problem of communication betweennetworks.

8. We need algorithms to propagate values within the net to get the emerging win-
ning arguments. We need theory of aggregating values and handling loops. We
need to combine with temporal logic and change and we need to know how to
substitute one net inside the other.
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p r

p∧ q→ r

p∧ q

q

Figure 2: fig2

b c

a ♦q

q

Figure 3: fig3

Connection with logic

We will present logic data as networks. So the basic semantical notions will be in the
diagram: In Logic

formula theoryevaluatedsemantic model

In our generalisedSL

master networkevaluatedslave network

This will include the logic case as a special case.
This is integrating with logic through the semantics. Prooftheory can also be de-

veloped as rules of syntactical manipulation of networks. The framework for doing so
is that of Labelled Deductive Systems[1].

To give the reader an idea of how we perceive logic as a network, consider the
formulap∧ q→ r. Its construction tree is Figure 2

If we give valuesp = 1, q = 1, r = 0 to the atoms, then we can propagate them
down the tree. Our conclusion from this that a formulaA is a network. Now examine
how we evaluate♦q at a 3-node Kripke model, Figure 3.

First we give joint values of 0 or 1 to pairs (x, q) (meaningx � q). Then we jointly
and inductively propagate the values down both networks.

So if α is a node in one network andE is a node in another network we define the
valueα � E by recursive induction on the known values of the rest of the pairsα′ � E′.
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The ‘formulas’ correspond to one network and the ‘semantics’ is the other network.
This way we can define the notion of one network being true in another.M � N1.

Suppose we get that a semantics is a family of networks for evaluation. If we have
∀M[M � N1 → M � N2] we can develop rules for transformingN1 into N2. This is
proof theory, LDS style.

Sample problems to be addressed

1. Aggregation of values. A node is attacked and supported byother nodes. How
do we aggregate? Joint attacks and disjunctive attacks. Nodes have strength and
arcs have transmission values.

2. General theory of attack absorption and its relation to belief change.

3. Temporal dynamics . The effect of temporal change in each network. We need
to add a temporal language to the net as well as make all parameters time depen-
dent.

4. Contents and fibring of networks. Giving nodes a content, e.g. a theory, or
another network etc.

5. Feedback, e.g. nodes attacking connections.

6. Handling loops.

7. Procedures and theories for propagating values in networks and extracting infor-
mation from networks.

8. Metalevel, object level of networks, hierarchies.

9. Logic viewed as networks. A logical theory becomes a network.

10. Evaluating one network in another. One is the “theory” and the other is the
semantical “model”.

11. Proof theories for networks.

1.2 General view of argumentation networks

Having discussed our general manifesto in the previous subsection, let us outline our
view of argumentation networks in general and the place of fibring within this outline.

There are several ways of viewing and handling argumentation networks. Main
among them are the logic programming approach, the classical (first-order or higher-
order) logic approach and the algebraic equational approach.

For the purpose of fibring networks, the algebraic equational approach is the most
convenient.

Let us take as our starting point a classical model (S,R) of a binary relationR on a
non-empty setS. This is basically a directed graph. We can readxRyas an arrow from
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x to y: x→ y. If we view (S,R) as an argumentation network thenxRymeansx attacks
y.

(S,R) in general can be a basis for many types of networks. To give it a more spe-
cific character, we need more annotations. Let us add the unary predicatesQ0, . . . ,Qn.
So Qi(x) is some property ofx. Specific types of networks will have some axioms
relating the relationR to the predicatesQ0, . . . ,Qn.

For example, for argumentation networks we have three predicatesQ0,Q1,Q2, cor-
responding to the three values{in, out, undecided} in a Caminada labelling of argu-
ments, and the relationships between them andR is governed by a theory∆ formalising
the Caminada rules. See Definition 2.1 and see[18] for a survey and further results.

In the more general case, we have a theory∆(R,Q0, . . . ,Qn) governing the relation-
ship betweenRand{Qi}. Any model of∆ will be a properly presented network of type
∆.

The kind of questions one can ask in this context is the existence of models of
certain types, the existence and nature of models with maximal or minimalQi , and
relationships between different models.

The mathematical answers we obtain for the above questions will have quality
meaning in the context of the particular network we are studying. For example for
argumentation network,Q1 is the set of winning arguments and so the members ofQ1

give the ‘logical content’ of the network. For the general case the above questions are
purely mathematical.

We can therefore employ general formal logical techniques to get answers to these
questions.

For example, we can use second-order logic to ask for minimalmodels forQ0. We
write the wff

θ(Q0 minimal)= ∆(R,Q0, . . . ,Qn) ∧ ∀Q′0, . . . ,Q
′
n(∆(R,Q′0, . . . ,Q

′
n)→ Q0 ⊆ Q′0)

(S,R) � θ says that out of all possible models forQi based on (S,R), our model is
the one withQ0, . . . ,Qn where withQ0 minimal. To express this we need to quantify
over subsets. There are also methods for eliminating second-order set quantifiers or
for finding fix point solutions for them. See[5]. These methods can also be profitably
employed here, see[20].

First-order logic is not sufficient to express the situation in Figure 1. This is not
because the figure contains several types of arrows (attack and support). The different
types of arrows give rise to different binary relations. Also the annotations of nodes and
arrows is not a problem. We can add parameters to the relations (so unary predicates
become binary, binary relations become ternary, etc.). Theproblem is arrows leading
to arrows.

For example in Figure 1 we have an arrow emanating fromc → b going to the
arrow emanating fromd and attacking the arrowa→ b.

Writing this in full would yield a relation between 5 elements. This is too com-
plicated to be natural, since these arrows can be iterated toany higher level. Thus a
different approach is required if we are seriously dealing with complex networks as
displayed in Figure 1.

The second approach is the equational algebraic approach. We regard the predicates
Qi(x) as algebraic values attached to the nodesx. Let x = ai mean thatQi(x) holds. We
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x1

xn

... b

Figure 4: 1-a

now consider the axioms of∆ as a vehicle usingR to formulate a system of equations
on the algebraA = {ai}. Of course suitable operations onA need to be defined. These
operations should arise from∆ and respect the declarative content of∆. To see how
this is done for the case of argumentation networks see the discussion in Section 2.2.
It is not known what sufficient conditions we can put on a general network of type∆
to ensure that some algebraic equations can be extracted. This approach is better for
networks with many levels of arrows attacking arrows. This is because the ‘higher
order’ logic part gets processed into the equations and we just end up with complex
equations on the nodes. So from this point of view the networkis just an instrument
for formulating equations.

The third approach is the logic programming approach. In fact in Dung’s original
paper[14], the words ‘logic programming’ are in the title. Consider the network in
Figure 4. The nodesx1, . . . , xn are all the nodes attackingb. The Horn clause corre-
sponding to it is

b if
∧

i

¬xi

where¬ is negation as failure
Given a network (S,R), we translate it into a set of Horn clauses by taking he

clauses
y if

∧

{x|xRy}
¬x

for all y ∈ S.
This translation, originally presented in[15] and further studied in[16] gives a

logic program with two special properties.

1. Each literal is the head of at most one clause.

2. All literals in a body of clauses are negated.

Given a logic program with properties (1) and (2) we can regain the corresponding
argumentation network by defining

xRyiff (definition)x appears in the body of the clause with heady.
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The general question of how to find a corresponding argumentation network for
any general logic program, for example

y if a∧ ¬b
y if c∧ ¬d

(which does not satisfy (1) and (2) above), is studied in[16]. We use the notion of a
critical subset of an argumentation network introduced in Definition 3.3.

Given a general logic program, we can represent it as a classical model of the
form (S,R±1 , . . . ,R

±
k ). The elements ofS are the literals of the program. The relation

xR+i y, xR−i y mean that the literalx appears positiely (resp. negated) in theith clause
with heady.

So we have

clasuei with heady: y if
∧

xR+i y x∧∧zR−i y z

1.3 Overview of our approach to fibring

Given a network (S,R) with a nodex ∈ S, we want to view it as a variable for which
we can substitute values. This question is a logical question and can be asked of any
system of any sort provided it allows for atomic elements.

The notion of fibring of networks arises when we substitute for x another network,
see Figure 5. There are two options here

• General fibring: we substitute any other network in any network, e.g. substitute
a neural network for a nodex in argumentation network.

• Self fibring: substitute networks of the same type. So in our case substitute an
argumentation netwrok for a node in another argumentation network.

We are faced with two immediate problems

• Give meaning to the substitution

• Generalise the notion of the network so that it is closed under substitution.

We discuss the meaning of the substitution and its properties in Sections 2.1 and
2.2. In section 2.3 we generalise the notion of argumentation network so it is closed
under substitution and we study its properties. We call these networkshigher-level
networks.

These are networks with conunctive and disjunctive attacks. The results in section
2 give rise to methodological considerations and these are studied in Section 3. Our
aim in Section 3 is to show the existence of labellings on our new networks. We do this
by reducing the new networks to ordinary networks.

Section 4 compares our results with the literature and discusses further research
possibiliteis.
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y

c

d

N

b

a q

N′
x

Figure 5: fig4

2 Fibring argumentation networks

2.1 The fibring problem

On comparing general logics with networks, we find that certain logical operations,
which are basic and widespread in logic, do not occur in networks. One such oper-
ation is substitution. Given a logical formulaA(q1, . . . , qk) built up from the atoms
q1, . . . , qk we can takeq1 and substitute for it another formulaB(p j, qi) to obtain
A(B(p j, qi), q2, . . . , qk). The analogous operation in networks of any kind is to take
a nodeq1 in a networkN and substitute for the node another networkN′. This kind
of operation is not naturally done in networks. If we want to integrate logics with net-
works, it might be helpful if we try to make sense of this operation for the cases of the
various networks available such as neural nets, Bayesian nets, argumentation nets, etc.

Figure 5 shows the basic situation
We substituteN′ for the nodeq in the networkN, to obtainN(q/BN′). The nodeq

is connected to the nodesc andd in N and nodesa andb are connected to it. The exact
nature of the connection is not relevant and it depends on thenature of the network. In
N′ we also have internal nodes such asx andy and there is a connection fromx to y.
These nodes now become nodes in the new networkN(q/N′).

Our problem here is to make reasonable sense of this situation. We need to address
the following questions:

Question 1

How do we understand connections froma, b into N′? Do they connect in any way to
the internal nodesx and/or y?

Question 2

How do we understand connections emanating fromN′ to other points inN? Do they
emanate from some nodes inN′?
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Question 3

What do we do with nodes occurring in bothN andN′?

These connections were originally going to and fromq of N, but now we have
substitutedN′ for q, and so we need to answer question 1, 2, and 3. We also have to
decide what to do withq itself. Do we leave it inN or is it out being replaced byN′?

Question 4

Some networks have several options internally for what can happen toq. Do we treat
the substitution ofN′ differently by case analysis depending on what happens toq?
(This is how we do it in Bayesian nets.)

We have already analysed this situation for the case of Bayesian nets and for the
case of neural nets. We found natural solutions to the above questions but the solutions
vary from network to network. The solution is completely different for neutral nets
from the case of Bayesian nets. See[6] for a summary.

We now try to figure out a solution for argumentation nets and see what we can get.

2.2 A fresh look at argumentation networks

We quickly recall some basic definitions in order to present anew point of view on
argumentation networks.

Definition 2.1

1. An argumentation network has the formP = (S,R) where S, ∅ is the set of
arguments and R⊆ S2 is the attack relation.

2. A Caminada labelling onP is comprised of three subsets of S,Q0,Q1,Q2 ⊆ S
satisfying the following axioms∆:

(a) ∀x[Q0(x) ∨ Q1(x) ∨ Q2(x)]

(b) ∼ ∃x[Qi(x) ∧ Q j(x)] for i , j, i, j = 0, 1, 2.
Q0 is the set ofoutarguments.
Q1 is the set ofin arguments
Q2 is the set ofundecidedarguments.

(c) ∀y[∀x(xRy→ Q0(x))→ Q1(y)]

(d) ∀y[∃x(xRy∧ Q1(x))→ Q0(y)]

(e) ∀y[(∀x(xRy→ (Q0(x) ∨ Q2(x))) ∧ ∃x(xRy∧ Q2(x))→ Q2(y)]

3. A network may have more than one Caminada labelling to its nodes, which sat-
isfies∆, see Figure 17. Each such option is called an Extension.

4. Q1(x) says that x is labelledin (or x = in), Q0(x) says x is labelledout (or x =
out) and Q2(x) says that x is undecided (or x=?).
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The basic idea of the Caminada labelling can be expressed in the following general
terms. Assumexi are nodes, which we callunits. (Since these nodes might end up, after
substitution, as networks, we prefer to call them units.) These units execute among
other things, an attack in the direction of the unity.

The labelling must satisfy the following conditions:
We use the same numbering as in Definition 2.1, namely: items 2c, 2d and 2e of

Definition 2.1.

2.1.2c For the unity to bein, all attacking unitsx in the direction ofy must beout as
far as the direction ofy is concerned.

2.1.2d For the unity to beout it is sufficient that one of its attacking unitsx is in as far
as the direction ofy is concerned.

2.1.2e For a node to beundecidedwe must have that all the attackers in its direction
areoutor undecidedwith at least one of them beingundecided.

Argumentation networks (called Argumentation Frames) were introduced by Dung
in 1995 through a logic programming point of view. This pointof view persists until
this day and is adopted in the majority of papers on the subject. Given a network
(S,R) as in Definition 2.1, one seeks subsets ofS called extensions, satisfying certain
fixed point properties. This is parallel to the various extensions of logic programming.
Caminada was the first, as far as I know, to present the labelling point of view, as given
here in Definition 2.1. However, the Caminada labelling point of view is still tied in
with the logic programming extensions point of view.

We need to break away from this point of view and think in termsof labels as
functions, giving values to the nodes in some algebraic or numerical range (usually the
complex or real numbers). This is the point of view of[7] and[13] and this is what
we need for the results of this paper. We are not rejecting or even criticising the logic
programming point of view, we simply need the functional point of view to be able
to prove some theorems and be able to compare argumentation networks with other
networks, following our agenda of unifying logic and networks.

Our point of view is best explained via some examples.
Consider Figure 17. The labelling/extensions point of view will say that this net-

work has three extensions or three Caminada labellings.

1. a = in, b = out, c = out

2. a = out, b = in, c = out

3. a = ?,b = ?,c = ?.

The functional approach will say that we are looking for a numerical or algebraic
labelling functionλ(q) of nodesq ∈ S , giving values in a field of values (the complex
numbers will do) satisfying the conditions of Definition 2.1, (written appropriately for
λ) as a set of equations.

The conditions to satisfy are:

(*1) if x1, . . . , xn are all the attackers ofy thenλ(y) =
∏

i(1− λ(xi))
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(*2) if y has no attackers thenλ(y) = 1.

To presentλ for Figure 17 we use values in{0, 1, 1
2} or values over the complex

numbers.
We get the following system of equations, using (*1) and (*2)to present the equa-

tions:

1. λ(a) = 1− λ(b)

2. λ(c) = (1− λ(a))(1− λ(b))

To solve the equations, letλ(a) = t
We get

1. λ(b) = 1− t

2. λ(c) = (1− t)t.

If we let t range over the values{0, 1, 1
2} we get the Caminada extensions (with1

2 =

undecided).
We can also use values in an algebra. We define the algebraCamas follows:

Let {in, out, ?} be 3 values and define the operations of inverse and multiplication in
Camas follows:

x 7→ x̄ (we also write ¯c ≡ (1− x))
x, y 7→ x · y

¯in = out
ōut = in
?̄ = ?
in ·x = x· in = x
out ·x = x· out= out
?·?=?

Note that inCam, x2 = x, for all x.
Let us now look at Figure 18. Here, we get the equation

λ(a) = 1− λ(a)
λ(a) = 1

2 .

The difference between the two points of view can be clearly separated by the
following three examples, as depicted in Figures 6, 7 and 8.

For Figure 6 we get the equations

1. λ(a) = 1− λ(c)

2. λ(c) = 1− λ(b)

3. λ(b) = 1− λ(a)

The only solution isλ(a) = λ(b) = λ(c) = 1
2 in the complex numbers and ? inCam.

For Figure 7 we get the equations
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a

c b

Figure 6: 2A

a

c b
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ba
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¯̄b

Figure 8: 2C
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1. λ(a) = 1− λ(c)

2. λ(c) = 1− λ(b)

3. λ(b) = (1− λ(a))(1− λ(b))

To solve, we get

4. λ(b) = (1− λ(b))2

If our range of values is the algebraCamthen we can solve the equations by giving the
unique solution

λ(a) = λ(b) = λ(c) =?

If our range of values is the complex numbers, we can continueto solve forλ in the
complex numbers. We get the equation

λ(b)2 − 3λ(b) + 1 = 0

and solve
λ(b) = 1.5±

√
1.25

The other values forλ(a) andλ(c) can be calculated.
The important point is that we can tell the difference between Figure 6 and 7, by

choosing the right range forλ.
The Caminada labelling will give the nodesa, b, cvalue ?= undecidedin both cases

and will not be able to tell the difference. The argumentation theorist may not care
about the difference between the two figures. Both are incoherent. He may concede
that the functional point of view may be of interest in comparing with other networks
but as far as the area of argumentation itself is concerned, he may believe that we do
not need this new point of view.

In fact, however, the functional point of view does make a difference for argumen-
tation theory itself. Figure 8 is the example for that.

Let us write the equations:

1. λ(b) = 1− λ(a)

2. λ(b̄) = 1− λ(b)

3. λ(¯̄b) = 1− λ(b̄) = λ(b).

4. λ(c) = (1− λ(b))(1− λ(¯̄b)) = (1− λ(b))(1− λ(b)).

Note that from (2) and (3) we get that

5. λ(c) = (1− λ(b))2

Working in the complex numbers, letλ(a) = t and use it as a parameter. Then

1. λ(b) = 1− t

2. λ(b̄ = t
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3. λ(¯̄b) = 1− t

4. λ(c) = t2

Working inCamwe observe the following when comparing Figure 8 with Figure17.
Ignoring the nodes̄b and ¯̄b, we get that Figure 17 is a subnetwork of Figure 8. In

fact the equations we get for Figure 8 for the nodesa, b, c would be the same equations
as those of Figure 8 provided that (1− λ(b)) · (1− λ(b)) = (1− λ(b)) holds. Indeed, this
equation does hold forCam. So as far asCamis concerned Figure 8 is a conservative
extension of Figure 17. Anyλ on {a, b, c} can be uniquely extended to aλ∗ on Figure 8
in a consistent manner. The equations for figure 8 give the same solutions to the nodes
of Figure 17 as the solutions to the equations of Figure 17.

Let us consider another example, that of Figure 50.
We get the following equations:

1. λ(x̄) = 1− λ(x)

2. λ(ā) = 1− λ(a)

3. λ(c̄) = 1− λ(c)

4. λ(e(x, a)) = (1− λ(ā))(1− λ(x̄) = λ(a)λ(x)

5. λ(e(x, c)) = (1− λ(x̄))(1− λ(c̄)) = λ(x)λ(c)

6. λ(¯̄a) = 1− λ(ā)

7. λ(¯̄c) = 1− λ(c̄)

8. λ(e(x)) = (1− λ(¯̄a))(1− λ(¯̄c))(1− λ(x̄))

9. λ(a) = (1− λ(e(x)))(1− λ(e(x, c)))

10. λ(c) = (1− λ(e(x)))(1− λ(e(x, a))).

Simplifying, we get

4. λ(e(x, a)) = λ(a) · λ(x)

5. λ(e(x, c)) = λ(c) · λ(x)

6. λ(¯̄a) = λ(a)

7. λ(¯̄c) = λ(c)

8. λ(e(x)) = (1− λ(a))(1− λ(c))λ(x)

9. λ(a) = [1 − [λ(x)(1− λ(a))(1− λ(c))]] · [1 − λ(x)λ(c)]

10. λ(c) = [1 − [λ(x)(1− λ(a))(1− λ(c))] · [1 − λ(x)λ(a)]
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Figure 9: fig5

Let us, for example, see what we get if we substitute in the equations the values
x =?a = in andc =?.

First note that from equations (1)–(8) we get that the valuesfor x̄, ā, c̄, e(x, a), e(x, c), ¯̄a, ¯̄c
ande(x) are uniquely determined. The problem we face is whether ourchoice of the
above values for{x, a, c} is fortunate so that equations (9) and (10) also hold.

Let us check. We get

1. x̄ =?

2. ā = out

3. c̄ =?

4. e(x, a) = (1− out)(1−) = in·?=?

5. e(x, c) = (1−?)(1−?)=?·?=?

6. ¯̄a = in

7. ¯̄c =?

8. e(x) = (1− in)(1−?)(1−?)= out ·?= out

9. a = (1− out)(1−?)= in·?=?

10. c = (1− out)(1−?)= in·?=?

We get that equation 9 is contradictory. So we guessed wrong!

2.3 Joint and disjunctive attacks

We are faced with the need to make sense of situation illustrated in Figure 9 as an
example.

We got Figure 9 by substituting the network of Figure 10 for the positionq in the
network of Figure 11.

We need to answer Questions 1, 2, 3 and 4 for this case. It is a simple case since
the substituted network of Figure 10 has no loops and so it hasa clear message, only
one extension:a is in, c is in andb is out.

So effectivelyb is out and plays no active ‘in’ role in the network. Shall we just
ignore it? Let us call this approach Option 1 (i.e. ignore allout nodes) and check
whether it is workable. We shall later reject this option butit is instructive to see why!
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Figure 10: fig6

x q y

Figure 11: fig7

Let us ignore theb, since it isout, and regard the network of Figure 9 as in Figure
12.

Figure 12 has two problematic parts,{a, c} attackingy and x attacking{a, c}, as
shown in Figure 13.

In this case it makes sense to regard Figure 13 as ajoint attack ony. Thus the unit
‘a andc’ is in only when botha andc arein.

Therefore any nodex attacking the unit ‘a andc’ must attack eithera or c. We get
Figure 14

The split arrow —րց is adisjunctiveattack and the joined arrow\/→ is ajoint attack.
We must clarify our concepts at this junction: Figure 9 showsa substitution of the

network of Figure 10 at positionq of Figure 11.
The first choice of options we have to do is to ask

(*1) Do we process the network of Figure 10 first, i.e. choose an extension for it and
then and only then substitute the result forq in Figure 11? (Call this Option 1.),

or

(*2) We substitute Figure 10 as is, as a network, and define whatever is supposed to
happen (call this Option 2).

If we follow option 1 for the network of Figure 10, we get the network of Figure
12. It is as if we substitute the set{a, c} for the nodeq in Figure 11.

Having decided on Option 1 and obtained the formal network ofFigure 12 we still
need to decide how to define the concepts of attacks (see Figure 13).

(*3) What does it mean for a unit (argument)x to attack a set{a, c}? (disjunctive
attack)

(*4) What does it mean for a set{a, c} to attack a unit (argument)y?

a, c yx

Figure 12: fig8
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Figure 13: fig9
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c
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Figure 14: fig10

The case (*4) is easy. For{a, c} to bein we must have botha andc in. In this case
y is out. See Figure 13.

For the case of (*3), when the unit{a, c} is attacked byx, we have two possibilities:

Possibility 1 for (*3)
x must attack one of the elements of the set i.e. eitherx attacksa or x attacksb.

Possibility 2 for (*3)
x attacks the “in” status of{a, b}, that is we need to have eithera outor b out.

Possibility 2 is the symmetrical counterpart to (*4). For{a, c} to be in we must
have “a is in andb is in”, therefore for{a, c} to beout we must have “a is out or c is
out”.

The two possibilities are not equivalent.
This will be discussed in detail at the beginning of Section 3and in Section 4.2. We

shall see later that Nielsen and Parsons[10; 11] proposed joint attacks, which is coming
from a completely different point of view, follows possibility 1. We shall compareour
approaches in Section 4.2.

Remark 2.2 (Joint and disjunctive attacks) To summarise, we adopt possibility 2 for
(*3). So the definition is as follows (see Figure 15).

• x attacks{e1, . . . , em} (disjunctively) means:
x = in implies

∨m
i=1 ei = out

(especially this can mean that if x isin then several or more ei areout).

• {e1, . . . , em} (jointly) attack y means:∧m
i=1 ei = in implies y isout.

• {e1, . . . , em} is in iff
∧m

i=1 ei = in

• {e1, . . . , em} is out iff
∨m

i=1 ei = out

Example 2.3 (Caminada–Gabbay labelling for joint and disjunctive attacks) We il-
lustrate/define our labelling using the typical case of Figure 15.
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Figure 15: fig11

1. If x is labelledin and ej , j = 1, . . . , k are the nodes being disjunctively attacked
from x then at least one of ej must beout.

2. If y is jointly attacked from ej , j = 1, . . . , k and all of ej are in then y must beout.

3. Suppose q is targeted by a disjunctive attack from x1, . . . , xn. How can q be
undecided? To see what must be done consider Figure 16 showing a typical
situation, where q is attacked from two different directions.

In Figure 16, q is being attacked from two different directions. One attack is ema-
nating from x and one attack emanating from y. The attack emanating from x involves
also v1 and v2 which are also being disjunctively attacked and the attack emanating
from y involves also w1 and w2. We imagine Figure 16 as a subnetwork of a larger
networkN. So it is quite possible that x or vi or w j are being attacked from other parts
of the network. We assume that q is being attacked only from x and y.

Let us consider an arbitrary attack on q, emanating from a node z and involving
nodes u1, . . . , uk which are also attacked. Thus to be explicit, z disjunctively attacks
{u1, . . . , uk, q}.

Let us use the terminology that q is subject to an attack emanating from z. We now
want to define three concepts describing this attack.

(♯1) the attack on q emanating from z is not a threat to q.

(♯2) the attack from q emanating from z forces qout

(♯3) the attack on q emanating from z makes qundecided.

Let us define these three concepts:

(♯1) This attack is not going to be a threat to q if one of u1, . . . , uk is out. Say ui is out
because of an attack on it from the rest of the networkN, in which Figure 16 is
embedded. If one of the ui is out then the attack succeeds without ‘hitting’ q. So
this attack is no threat to q and q can have any value,in, outor undecided.

(♯2) the attack on q from z forces q out if z= in and all of u1, . . . , uk are in.

(♯3) when do we say that the attack on q from the direction of z makes q undecided?
There are two cases:
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(a) z itself is undecided. So we do not know whether z isin or out. If some ui is out
then it does not matter that z is undecided. q is not threatened. If all of ui are not
out, but are eitherin or undecided, then there is a real possibility of attack on q.
If z and all of ui turns out to bein then q must beoutand if one of{z, u1, . . . , uk}
is out then q can bein. Thus we must make qundecided.

Now we ask can u1 be in? Well, it cannot bein because from the point of view
of u1, we see the same situation as that which we saw from q. We see z=?
and u1, . . . , uk and q are notout. So u1 must also beundecided. So to maintain
coherence of our rules we must declare (*) below:

(*) If a disjunctive attack emanates from z in the direction of u1, . . . , uk, q and
z is undecidedand none of u1, . . . , uk, q is out (u1, . . . , uk, q can beout
owing to attacks from the rest of the network) then u1, . . . , uk, q are all
undecided. Let us refer to this situation as ui , q becomeundecidedbecause
of a disjunctive attack on it emanating from an undecided z.

(b) Let us now check what happens if z= in. Can we still get q= undecided? The
answer is yes. Suppose u1, . . . , uk are all attacked from some respective z1, . . . , zk

which are all undecided. This will make u1, . . . , uk undecidedaccording to (*)
above.

So if u1 . . . or . . . uk ends upout, then q is safe, and if all of u1, . . . , uk end upin,
then q has to beout. Thus we must declare q undecided. So we get rule (**)
below:

(**) If a disjunctive attack emanates from z in the directionof u1, . . . , uk, q and
at least one of ui is undecided (because for example of a disjunctive at-
tack on ui emanating from an undecided zi) then all of u1, . . . , uk, q are all
undecided.

We can now define what it means for q to be undecided, by using (*) and (**):

(***) q is undecided if
(1) q is not forced out by any attack on it emanating from any z.
(2) q can be shown undecided by repeated applications of (*) and (**)
above.

Let us now check when v1 can be undecided in Figure 16 v1 can be undecided in
Figure 16 if for example x is undecided and there are no attacks that force any
of v1, v2 or q out.

v1 can be undecided if x= in but y is undecided and there are no attacks forcing
any of v1, v2, q,w1,w2 out.

Now having adopted our notion of disjunctive and joint attacks in Remark 2.2,
we are ready to discuss further whether to adopt Option 1 for network substitution,
namely whether to adopt Option 1 for network substitution, namely whether to choose
an extension for the network first before we substitute and then substitute only the
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qv2v1

Figure 16: fig12

c

a b

Figure 17: fig14a

nodes that arein in that extension. (I suppose we choose only extensions which have
some argumentsin.)

The above considerations explained what happens when the substituted network
has no loops so it has no undecided nodes and therefore it has only one extension.
What do we do when the substituted network has loops? There are two typical cases to
consider, as shown in Figures 17, 18.

Figure 20 is obtained by substituting Figure 17 into Figure 19 at nodeq and Figure
21 is obtained by substituting Figure 18 into Figure 19, at nodeq.

In the first case we have two options for the network, the extensions{a, c} and{b, c}.

a

Figure 18: fig14b
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Figure 19: fig15a

c

a b

x y

Figure 20: fig14

a

x y

Figure 21: fig15
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a, c yx

Figure 22: fig18-new

yx b, c

Figure 23: fig15b

Which one do we take? This is not really a problem because we can push the problem
onto the labelling. So depending on the labelling we get either Figure 19

or Figure 23 we still have the problem of how do we represent the original network?
Let us try the representation as in Figure 24.
If a is in andc is in, we have a case of{a, c} and so sincex must bein, its attack on

{a, c}must take one of{a, c} out. Similarly if b is in andc is in, we have a case of{b, c}
and so sincex must bein, its attack on{b, c}must take one of{b, c} out.

We immediately see that we have a problem with the proposed representation of
Figure 24. In the figure we put in the entire network of Figure 17 into Figure 19. Thus
whenb is in, a is out and whena is in we have thatb is out. So formally, for the
case let us say, that{a, c} arein andb is out, we set that the attack fromx is formally
successful, because in our diagrams for this caseb isoutso{a, c} can stayin, contrary to
our intentions! Similarly, since always eithera or b is out then the substituted network
can never attack anything as represented in the diagram of Figure 24 because formally
the joint attack from{a, b, c} always has one node out (eithera or b). Obviously, we
need first to calculate the result for the substituted network of Figure 17 and get say that
{a, c} arein andb is out and only afterwards address the attack fromx and the attack
ony.

But then in this case we must make it clear thatb, beingoutdoes not play a role in

a

c

b

x y

Figure 24: fig16
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y

Figure 25: fig17

a

x

Figure 26: fig18

the considerations of these attacks.
‘Making things clear’ means additional labels. Maybe several kinds of annotated

‘out’ with information when each ‘out’ is to be taken into account.
The labelling and the substitutions become hierarchical.
This is not good, not only because of complexity considerations but also conceptu-

ally. When we substitute we allow ourselves to use any arguments, so thisb in question
could bex. Now what do we do? In the hierarchical evaluation theb = x inside Figure
17 as substituted isout while theb = x originally outside the figure isin. But they are
the sameb = x! So what do we do?

Let us look at Figure 21 and see if we can get a clue as to what to do. Figure 18, as
substituted into Figure 19 is both attacking (Figure 25) andis being attacked (Figure
26). So what do we do with Figures 25 and 26?

The latter, Figure 26 is clear,x can takea out.
On the other hand, we look at Figure 25, then sincea is undecided, we must give

y undecided. Now we can see that the proposed hierarchical evaluation, when applied
to Figure 21 is no good. Evaluating hierarchically will makea undecided, y undecided
and x in which is not a good solution for Figure 21. However, evaluating directly
without any hierarchical considerations gives us thatx is in, since it is not attacked,a
is outandy is in. All nice and clear.
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N′ = ba

Figure 27: fig19

The above discussion shows that we had better reject Option 1and view any sub-
stituted networkN′ into another networkN at a pointq ∈ N, in whichq attacks another
nodey ∈ N, as a joint attack fromall the arguments ofN′. If some of them areout
in N′ then we regardN′ as not conflict-free. Thus the network of Figure 27 is not
conflict-free.

The reason we take this view is because when we substituteN′ of Figure 27 into
another networkN, b anda may be inN in other places and we do not know what can
happen,a may end upoutor b in.

The above is our Option 2 which we shall adopt.
We now have an agreed sequence of definitions.

Definition 2.4 (Higher level networks)

1. Let S, ∅ be a set of nodes. Let S0 be the family of all finite non-empty subsets
of S , identify the singleton{x} with x for simplicity of notation.

2. A higher level argumentation network has the form(S,S0,R) where S and S0

are as above and R⊆ S0 × S0 is the attack relation.

XRY represents a joint attack from the set X disjunctively attacking the set Y.
When X= {x} and Y= {y} we get an ordinary point to point attack and so when
R⊆ S × S we get the usual network definition.

We represent the situation as in Figure 28

X = {x1, . . . , xn}.
Y = {y1, . . . , yn}.

or perhaps Figure 29 is more clear.

3. We understand Figure 28 as saying that the set{x1, . . . , xn} is jointly mounting a
disjunctive attack on the set{y1, . . . , ym}. So only if all the xi are in can the attack
go forward and in which case we expect at least one of the yj to beout.

We now want to define substitution of one such higher level network into another.
The result will again be a higher level network.

We will understand better how to define the substitution after we do some examples.

Example 2.5 (Network substitution) Start with a simple network of Figure 30
Now substitute Figure 31 for y and substitute Figure 32 for x and get Figure 33.
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Figure 28: fig20

Disjunctive
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Figure 29: fig21

x y

Figure 30: fig22

u v

Figure 31: fig23

u a

Figure 32: fig24

u a u v

Figure 33: fig25

u va

Figure 34: fig26
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a x

Figure 35: fig27

ax
2 1

a v

3

3

3
3 3

Figure 36: fig28

Figure 33 should be written as Figure 34
Now substitute Figure 35 for u in Figure 34 and get Figure 36.
Note that in Figure 36 we have a joint attack of a and ‘a→ x’ on some target.

According to our Option 2, we regard this as a joint attack from {a} ∪ {a, x} on the
target, i.e. a joint attack from{a, x}.

Of course Figure 36 needs to be simplified since a is written twice. We get Figure
37.

We numbered the attacks in Figures 36 and 37 so it will be clearwhat attack in
Figure 36 became what attack in Figure 37.

We try as an exercise to substitute for u in Figure 34, a new figure, Figure 38. So
instead of substituting Figure 31 as we did above, we substitute Figure 38.

In this case we get Figure 39.
Now this figure needs to be simplified to Figure 40. In Figure 40we have:

1 is a joint attack of{a, v} on v
2 is a joint attack of{a, v} on a
3 is a joint attack of{a, v} which disjunctively targets a and v.

Remark 2.6 We can see that the graphs can get very complex. We note, however, that
we cannot get everything, just by repeated substitution. For example, we believe we

x v

a

2

3

3
3

3

1

Figure 37: fig29
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Figure 38: fig30
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Figure 39: fig31
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3

Figure 40: fig32
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x b

Figure 41: Z4

a c

x b

Figure 42: Z2

cannot get Figure 41 by mere substitutions:
We cannot get thatx sends a disjunctive attack in the direction ofa and in the direc-

tion of c but the attack disjunct going towardsc joins forces and becomes conjunctive
with the attack fromb onc.

The only possibilities we can generate are Figures 42 and 43
Figure 41 is perfectly OK, but I don’t think we can get it by repeated substitution

of ordinary networks. Figure 41 has three extensions:

1. x = in, a = out, b = in, c =out

2. x = in, a = in, b = in, c =out

3. x = in, a = out, b = in, c = in.

a c

x b

Figure 43: Z3
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It is debatable whether extensions (2) and (3) are acceptable. This depends on how
we understand Figure 41. See section 4 for a discussion.

We must bear in mind that we are not just defining generalisations of argumenta-
tion networks from a mathematical point of view. We are following the methodological
manifesto of Section 1 and there are good reasons for substituting one network in an-
other. We asked ourselves in Section 2 what general notion ofnetworks we need to
allow for substitution. That is when we substitute such a network in another such net-
work, we get a result of the same kind. We found that we need thenotion of higher
level network of Definition 2.4. So generalising the definition of higher level networks,
to allow for Figure 41 requires independent conceptual justification. Substitution is
justified intuitively. Joint attacks exists in common sensearguments. Attacking joint
attacks also makes sense and this gives rise to disjunctive attacks. How can the mathe-
matical situation of Figure 41 be justified or explained?

We can intuitively say that the disjunctive attack arises from an attack on a joint
unit such asx attack on{a, c} in Figure 13. To be successful,x wants eithera or c to
beout. So why not joint forces with someb to attackc and increase his chances? This
makes sense. We get Figure 41.x will not insist onc = out if his attack ona succeeds.
In Figure 43,{x, b} insist onc = out even ifa = out. In Figure 43,{x, b} attack onc is
not part of a joint attack.

Let us postpone this to the discussion to Section 4.

We can now define higher level substitution

Definition 2.7 Let Pi = (Si ,S0
i ,Ri) for i = 1, 2 be twofinite higher level networks. Let

x ∈ S1 be a node. We want to define the network

P = P1(x/P2)

being the result of the substitution ofP2 for x in P1.
The set of points ofP is S = S1 ∪ S2. We need to define R⊆ S0 × S0. We shall

follow the traditional practice used in substitution in logic and assume that x itself is
not present in S2.

We therefore have two types of available relations.

1. Type 1 fromP1:
{a1, . . . , am, x}R1{b1, . . . , bk, x}

where x may not appear among the ai or not appear among the bj. In this case
we take

{a1, . . . , am} ∪ S2R{b1, . . . , bk} ∪ S2

where S2 will appear wherever x appears.

2. Type 2 fromP2

XR2Y

in which case we take XRY.
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Figure 44: Z5

c
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a

b

Figure 45: Z6

We have thus really defined R to be

R=def R2 ∪ R1(x/S2)

with the understanding that{ej ,S2} = {ej} ∪ S2.

Example 2.8 Let us examine again the network in Figure 41. We claimed thatsuch a
network cannot arise in our definition of higher level networks.

Since clearly a and c are being attacked and x and b are the attacking nodes, then
only the following higher level attacks are possible in the form XRY, as shown in Figure
45.

Figure 45 shows the connections of Figure 44 using points as nodes. It is clear that
the attack pattern of Figure 41 is not present in Figure 45.

Definition 2.9 (Caminada–Gabbay labelling)Let P = (S,S0,R) be a higher order
network.

Letλ be a function giving values in{0, 1, ?} to each s∈ S .
We say this function is a proper labelling iff the following holds.
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1. If XRY holds and∀x ∈ X(λ(x) = 1) then∃y ∈ Yλ(y) = 0).

2. If for every X,Y such that y∈ Y and XRY holds we have that∃x ∈ X s.t.λ(x) = 0
thenλ(y) = 1.

3. If for all X,Y such that y< X∪Y and XRY∪ {y}, we have that∀z ∈ X∪Y(λ(z) ∈
{1, ?}) and∃z ∈ X ∪ Y(λ(z) =?). Thenλ(y) =?.

Remark 2.10 Figure 46. Ifλ(x) = 1 andλ(a) = 0 thenλ(c) can be either 1 or 0. Both
cases are acceptable. If Figure 46 is part of a larger networkand because of attacks
from the larger network eitherλ(x) =? then we cannot haveλ(a) = 1 andλ(c) =?.

3 Methodological results

We now reduce higher level networks to ordinary networks. Wedo this in several
stages.

1. Reduce the disjunctive attacks to joint attacks.

2. Reduce the joint attacks to single attacks.

3. Derive the existence of labellings and extensions from (1) and (2).

3.1 Conceptual analysis of disjunctive attacks

Before we embark on any reductions, we must fully clarify theproperties of disjunctive
attacks.

Consider the disjunctive attack part of Figure 13. We have the following situation
(see Figure 46):

x

ca

Figure 46: figA

• x = in impliesa = outor c = out
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The following are the three possibilities

1. x = in, a = in, c = out

2. x = in, a = out, c = in

3. x = in, a = out, c = out

Figure 46 cannot be reduced to Figure 47 which is properly written as Figure 48.

a

c

x, c

x, a

Figure 47: figB

a x c

Figure 48: figC

Figure 48 does not allow for the extension

4. x = in, a = out, c = out

The meaning of Figure 46 is a disjunctive attack on{a, c} and not any specific attack
on eithera or c. This is also reflected in the problems we had in interpretingFigure 42.

We have three reading of Figure 46.

(r1) x attacks the coalition (joint) of{a, c}. x would be happy to see eithera = out
or c = outbut is not mounting any specific attacks ona or onc. According to
this interpretation Figure 42 does not have meaning.b cannot join any attack
from x ontoc. There is no such attack.

(r2) x sends two attacks, one in the direction ofa and one in the direction ofc. x
is happy if at least one of them is successful, but would also be happy with
both successful.
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(r3) x sends two attacks as in (r2) above but does not want both to succeed, only
one.

(r1) and (r2) above say:

• x = in impliesa = outor c = out

while (r3) says:

• x = in implies (a = out∧c = in) or (a = in andc = out).

Figure 48 corresponds to (r3).
Note that we need not make a choice between (r1) and (r2) for the purpose of this

section. We shall see in Section 4.2 that for the purpose of explaining Figure 41 we
end adopt (r2).

How can we represent (1) or (2)? What is the corresponding figure?
We need auxiliary points. Consider Figure 49:

a x c

¯̄a ¯̄c

Figure 49: figD1

Figure 49 extends Figure 48 by adding two joint attacks from{a = out, c = out}
one ona and one onc. To do this properly we use the help of two new intermediary
points¯̄a and¯̄c. Whena = outandc = out, we get¯̄a =in and¯̄c =in and{¯̄a, ¯̄c} mount the
joint attacks ona andc.

Let us see what happens in Figure 49. Sincex is not attacked,x = in. We now
consider our possibilities fora andc. If at least one of{a, c} is in, the joint attacks of
{¯̄a, ¯̄c} fail and we are back to Figure 48. Figure 48 behaves as we want except in the
case ofa =outandc = out. But in this case,̄̄a = ¯̄b = in and so the joint attacks of{¯̄a, ¯̄c}
ona andc must succeed, thus confirming the assumption thata = b = out.

We can display the situation without joint attacks in Figure50.
We used auxiliary points as follows:

1. With each node involved,x, a, c we added new nodes ¯x, ā, c̄ and¯̄a, ¯̄c.

2. We added the intermediariese(x), e(x, c), e(x, a).
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e(x)

¯̄a ¯̄c

e(x, a) e(x, c)

a ā x x̄ c c̄

Figure 50: figD

Nodesx, a, c attack only via ¯x, ā, c̄ respectively.
e(x, a) is an intermediary doing the job of (x, a) attack onc. Similarly e(x, c) is an

intermediary for representing the attack of (x, c) ona.
These two represent the situation of Figure 48. To get also the option ofx = in, a =

out, c = out, we usē̄a, ¯̄c which attacke(x). ā attacks¯̄a andc̄ attacks̄̄c.

Example 3.1 (Analysis of Figure 50)Figure 50 can be stand-alone or can be embed-
ded inside a larger Figure. If Figure 50 is stand-alone, thenx is the only node which
is not attacked by anything. Hence x= in. Thereforex̄ = out. We now examine four
options for a and c:

1. a= out, c =out

2. a= in, c= out

3. a= out, c = in

4. a= in, c= in

We check consistency of thein–out labelling, for the case x= 1.

Case 1
If a = c = out, we getā = c̄ = in. Therefore e(x, a) = e(x, c) = ¯̄a = ¯̄c = out. Also e(x) =
in.

e(x) attacks a and c confirming they should be out.
So (1) is a consistent labelling.

Case 2
If a = in and c= out thenā = out andc̄ = in. Hence e(x, a) = in (it has not attackers,
both x̄ andā areout) and e(x, c) is out.
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Since e(, a) = in and e(x, a) attacks c it confirms c isout.

Sinceā is out we get¯̄a is in, therefore e(x) is out. Hence a is not attacked by any-
thing (both e(x) and e(x, c) are out), confirming that a isin.

We also get̄̄c is out in c̄ is in. This does not affect e(x), becausē̄a is in and so e(x)
is out.

Case 3
This is the case of a= outand c= in. It is the mirror image of Case 2 and follows from
the symmetry of the Figure with a and c swapped.

Case 4
This is where a= in and c= in. This case should come out inconsistent. Indeed, in this
case both̄a, b̄ areout.

Hence sincēx = out we get e(x, a) and e(x, c) are in and since they attack c and a
respectively, c and a cannot bein. An inconsistency. We also have that¯̄a, ¯̄c are in and
d(x) is out.

We now need to check what happens when Figure 50 is embedded inside a larger
network. Figure 50 arose from the attempt to eliminate the disjunctive attack of Figure
46. So if Figure 46 is part of a larger network then Figure 50 will also be in the larger
network. However, the larger network interacts (attacks oris being attacked) only by
{x, a, c} and not the new points. So it is crucial for us to show that if the labels of
{x, a, c} are fixed by the larger network then the labels of the new points are unique and
they are consistent with the labels of{x, a, c}.

Lemma 3.2 In Figure 50, if we fix the value{in, ?, out} of {a, c, x} then the value of the
other points{ā, c̄, x̄, ¯̄a, ¯̄c, e(x), e(x, a), e(x, c)} are also uniquely fixed, and are consistent
with the values of{a, c, x}.

Proof. We need to show that if the values of{a, c, x} are fixed then the values of the
new points are uniquely determined.

Let N be a general network in which Figure 46 is a subnetwork. This means
that there may be attacks on{a, c, x} from other nodes of the networkN, say from
{d1, . . . , dk} and also that there may be attacks emanating from{a, c, x} individually or
jointly with others onto nodes{d′1, . . . , d′k′} in N.

We are now replacing inN Figure 46 by Figure 50. The word ‘replacing’ is not
accurate. Figure 46 (i.e. the subnetwork ofN comprising of nodes{a, c, x} and the
connections between them) remains inN, we are adding new points and connections to
Figure 46 to form Figure 50 a part ofN.

We want to show that any acceptable labellingλ onN which gives values to{a, c, x}
can be uniquely extended to the new points of Figure 50 in a manner consistent withλ.
Call the new extensionλ∗.

We need to make a case analysis on the values ofλ(a), λ(c), λ(x).
We have to check all cases. We follow the cases in three groupsx = 1, x = 0 and

x =?. For each group we check all cases ofa andc as in Table 1.
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Table 1: TA

case c a
1 out out
2 out in
3 in out
4 in in
5 ? out
6 ? in
7 in ?
8 out ?
9 ? ?

Group x= in
Table 1 suggests 9 cases fora andc. However not all are possible inN. Sinceλ is
an acceptable labelling andx = in, only cases in which eithera = out or c = out are
possible.

Thus we need examine only cases 1, 2, 3, 5, 8. Cases 1, 2, 3 have already been
examined in Example 3.1. They are OK and are internally consistent. Cases 5 and 8
are completely symmetrical (since Figure 50 is symmetricalin a andc). So we need
examine only Case 5.

Case 5
a = out, c =?
First we see which values for the new points are forced by thiscase.

a = out⇒ ā = in
ā = in⇒ ¯̄a = out
ā = in⇒ e(x, a) = out.

Claim
e(x) cannot bein!

Otherwise, sincē̄a = out then if e(x) werein then¯̄c = out, hence ¯c = in hencec is
out. But we are given thatc =?. Soe(x) is not in.

Therefore, sincee(x, a) = out ande(x) is eitherout or ? we have a situation which
is consistent withc =?. We now use the fact thatc =? to getc̄ =? and hencē̄c =?, and
hencee(x) =?. This establishes a unique value fore(x). We continue, since ¯c = outand
c̄ =?, we gete(x, c) =?.

We have thate(x, c) attacksa. Does this contradicta = out? The answer is no.a is
out because of some attack fromN. So we got for Case 5 unique consistent values for
the new points.

Group x= out
Sincex = out, there are no attacks fromx on a andc, therefore all values of{a, c} of
Table 1 are possible. We have to examine all cases.
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We begin by checking what values are forced on the new points by the fact thatx =
out. We get

x = out⇒ x̄ = in
x̄ = in⇒ e(x, a) = e(x, c) = e(x) = out

Since there are no attacks from the new points of Figure 50 on the points{a, c},
their value consistently stand in the expanded network.

Iif λ = 1, 0, ? use the notation 1− λ to mean−, 1, ? respectively. Thus the value of
ā is determined as 1− λ(a) and the value of ¯c is determined as 1− λ(c). Thus the value
of ¯̄a is the same as the value ofa and the value of̄̄c is the same as the value ofc.

Hence for all cases of Table 1 we see that the values of the new points are unique
and are consistent with the values of{a, c} for our group case ofx = out.

Group x=?
If x =? andx disjunctively attacksa andc, we cannot have the case ofa = c = in,
because maybex can bein. Similarly we cannot have the cases ofa = in, c =? nor
a =? andc = in.

So let us see first what we can get which holds for all cases

x =?⇒ x̄ =?

This is all we can get.
We have to check cases 1–3, 5, 8, 9.

Case 1
c = outanda = out.

a = out⇒ ā = in ande(x, a) = out
c = out⇒ c̄ = in ande(x, c) = out
ā = in⇒ ¯̄a = out
c̄ = in⇒ ¯̄c = out
x̄ =? and¯̄a = ¯̄c = out⇒ e(x) =?

Now a andc are out, they are attacked bye(x) =?. This is still consistent.
So this case is OK.

Case 2
c = outanda = in.

¯̄c = out⇒ c̄ = in
c̄ = in⇒ ¯̄c = out
c̄ = in→ e(x, c) = out
a = in⇒ ā = out
ā = out⇒ ¯̄a = in ande(x, a) = out
¯̄a = in⇒ e(x) = out.

We now get unique values for the new points. We have consistency because there
are no attacks on{a, c} from the new points.
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Case 3
c = in anda = out.
This is the symmetrical case of Case 2.

Case 5
c =? anda = out.
We havex =? and ¯x =?

a = out⇒ ā = in
ā = in⇒ e(x, a) = out
c =?⇒ c̄ =?
x̄ =? andc̄ =?⇒ e(x, c) =?
ā = in⇒ ¯̄a = out
c̄ =?⇒ ¯̄c =?
¯̄a = out and¯̄c =?⇒ e(x) =?

We now got unique values for all new points. Do we have consistency?
a = out is attacked by

e(x) = e(x, c) =?

Hencea remainsout. We have consistency here.
c =? is attacked bye(x, a) = out, so we maintain consistency.

Case 8
c = outanda =?
This case is symmetrical with Case 5, witha andc interchanged. By symmetry it is
OK.

Case 9
a =? andc =?
In this case we get everything has value ? and we have no problem. �

The situation of moving from Figure 46 to Figure 50 is typicaland the fact that we
dealt with an attack fromx on {a, c} and we did not deal with attacks from a general
setX = {x1, . . . , xn} on a general setY = {y1, . . . , ym} does not incur any loss of gen-
erality. In the general case we proceed similarly. We need toadd the auxiliary points
¯̄y1(X), . . . , ¯̄ym(X) add attacks ofyi on ¯̄yi(X) and add joint attacks as in Figure 51

3.2 Eliminating disjunctive and joint attacks

We are now ready, following our conceptual discussion in Section 3.1, to give a series of
definitions and Lemmas showing how networks with joint and disjunctive attacks can
be reduced to ordinary Dung networks with only point-to-point attacks. The reduction
is done with the help of auxiliary points, using the intuition described in Figure 52

Definition 3.3 (Critical subsets) LetPi = (Si ,Ri) be two networks. Suppose all points
of networkP2 are embedded inside networkP1. So S2 is a subset of S1. We say that S2
is a critical subset of S1 iff every Caminada labelling on S2 can be extendeduniquely
to a labelling on S1. This means that the additional nodes of S1 only help clarify what
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X ∪ (Y− {y1}) X ∪ (Y− {ym}), . . . ,

y1 ym

¯̄y1(X) ¯̄ym(X). . .

. . .

. . .
Joint attack of
{¯̄y1, . . . , ¯̄ym}

Joint attack of
{¯̄y1, . . . , ¯̄ym}

Figure 51: figE

Network
P1

NetworkP2

Figure 52: figE2

is going on in S2 and do not add any additional information. Any Caminada labellings
of S1 which agree on S2 must be equal.

This sort of characterisation is known from model theory. A set of classical models
M2 in a languageL2 is said to beEC∆ iff it can be characterised as the set of all models
of a first-order theory∆2 of L2. The set of models is said to bePC∆ iff we can extend
the languageL2 such that the set there exists a theory∆1 in the languageL1 such that
any modelm2 ofM2 can be obtained as the restrictionm2 = m1 ↾ L2 toL2 of a unique
modelm1 of ∆1. Furthermore, all restrictions toL2 of models of∆1 are models of∆2.

We are now ready to push on with our reduction.

Definition 3.4 (Eliminating disjunctive attacks) Let P = (S,S0,R). Let S1 = S ∪
{¯̄s(X)|s∈ S,X ⊆ S,X , ∅}.

Let P1 = (S1,S0
1,R1) be defined as follows, see Figure 51:

1. Let XR1a if XRa holds.
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X

b1 . . . bn

Figure 53: fig1A

2. If XRY holds then let X∪ (Y− {y})R1y hold for every y∈ Y.

3. Let sR1¯̄s(X) hold for every s∈ S,X ⊆ S,X , ∅

4. If XRY holds let{¯̄y(X)|y ∈ Y}R1y hold of each y∈ Y.

Lemma 3.5 For anyλ : S 7→ {0, 1, ?} we have thatλ is proper labelling onP iff λ is
proper onP1.

Proof. One can give a direct proof of this theorem by working directly of Figure 51,
converting it to the analog of Figure 50. However a simpler rout is to use Lemma 3.2
for the case of disjunctive attacks involving only two elements. All we need to do is to
convert a disjunctive attack onn ≥ 3 elements, as in Figure 53 to a disjunctive attack
onn− 1 elements as in Figure 54. We use auxiliary points as indicated.

We can therefore assume that we are dealing only with disjunctive attacks on two
points, since all other disjunctive attacks can be reduced to two points by repeated
applications of the above procedure.

The case of disjunctive attacks of two points was dealt with by Figure 50 and
Lemma 3.2.

�

Definition 3.6 (Eliminating joint attacks) Let P = (S,S0R) be a joint attack net-
work. Define an ordinary networkP∗ = (S∗,R∗), with S ⊆ S∗ and S∗,R∗ as follows.
We add to S the following additional groups of points.

GroupG1

For every s∈ S a new nodēs
GroupG2

For every X⊆ S,X finite with two points or more add the node e(X).

Let S∗ = S ∪G1 ∪G2.
Define R∗ on S∗ as follows.
Assume{a1, . . . , an}Rbj hold for n ≥ 2, j = 1, . . . , k, where b1, . . . , bk are all the

nodes jointly attacked by{a1, . . . , an}. Figure 55 shows the situation.
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X

e

ē

b1 bn−1 bn. . .

Figure 54: fig1B

an

. . .

b1 bm

{a1, . . . , an}Rb1, . . . , {a1, . . . , an}Rbm

a1 , . . . ,

Figure 55: fig33
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, . . . ,

a1 , . . . , an

b1 bn

{a1, . . . , an}R{b1, . . . , bm}

Figure 56: fig33a

Note that we cannot represent this situation by writing Figure 56 because that
would be a disjunctive attack.

We define R∗ according to Figure 57. Thus Figure 55 with R becomes Figure 57
with R∗.

We have that the following hold in R∗:

1. sR∗ s̄ for any s∈ S .

2. tR∗s whenever{t}Rs

3. If {a1, . . . , an}Rbj, holds with n≥ 2, and j = 1, . . . ,m then letāiR∗e(a1, . . . , an)
hold for i = 1, . . . , n and let e(a1, . . . , an)R∗b j hold, for j = 1, . . . ,m.

Lemma 3.7 Let P andP∗ be as in Definition 3.6. Observe the following

1. Since s is the only attacker ofs̄, we have for any Caminada labelling that

λ(s) = 1 iff λ(s̄) = 0
λ(x) =? iff λ(s̄) =?

2. In Figure 57
λ(e(a1, . . . , an)) = 1 iff
λ(a1) = λ(a2) = . . . = λ(an) = 1

3. If λ(ai) = 1 for i = 1, . . . , n, thenλ(b j) = 0, j = 1, . . . ,m.

4. If for some i, λ(ai) = 0 thenλ(e(a1, . . . , an)) = 0 and then there is no attack from
e(a1, . . . , am) on any bj, j = 1, . . . ,m.

5. Any Caminada–Gabbay labelling function onλ∗ on S∗ induces a labellingλ =
λ∗ ↾ S on S .
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an

b1 . . . bm

e(a1, . . . , an)

ā1 ān

a1 . . .

Figure 57: fig34

To explain the relationship betweenP andP∗ we need some general concepts.

Definition 3.8 Let P = (S,R) be ordinary Dung argumentation networks. Let E⊆ S
be a set of nodes. We say that E is acritical set inP iff the following holds:

(*) For any two Caminada labellingλ1 andλ2 on P, if λ1 andλ2 agree on E then
λ1 = λ2

Lemma 3.9 In Definition 3.6, S is critical in(S∗,R∗).

Proof. Follows from Lemma 3.7. �

Remark 3.10 (Labelling of higher order networks) To show the existence of labelling
for higher order networksP = (S,S0,R), we reduce the network to an ordinary network
P∗ = (S∗,R∗) by eliminating first the disjunctive attacks and then the joint attacks.

From our sequence of Lemmas we know that S⊆ S∗ is critical in P∗. Therefore
any labellingλ∗ on S∗ induces a labellingλ = λ∗ ↾ S on S which is acceptable inP.
Furthermore,λ∗ can be uniquely retrieved fromλ and thus anyλ on S can be expanded
to a uniqueλ∗ on S∗.

Example 3.11 Figure 58 displays the following network from[11].

S = {a, b, c, d, e, f }
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e d

f

c

ba

Figure 58: fig35

R is defined as follows
{a, c, d}Rb
{ab}Rc
{b}Rd
{c, e}Rd
{d}Re
{b, f }Re
{a}R f
{d}R f

The grounded extension is{a}. The preferred extensions are{a, b, e} and{a, c, d}.

We now construct our reduct ordinary network. We add pointsā, b̄, c̄, d̄, ēf̄ and
e(a, b, d), e(a, b), e(c, e) and e(b, f ) and get Figure 59.
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b

āa

e(a, c, d)

e(a, b)

f f̄

e(b, f )
c c̄

e ē

d d̄

e(a, c)

b̄

Figure 59: fig36

We have the following attacks:

a→ ā

b→ b̄

c→ c̄

d→ d̄

e→ ē

f → f̄

ā→ e(a, c, d)

c̄→ e(a, c, d)

d̄→ e(a, c, d)

e(a, c, d)→ b

ā→ e(a, b)

b̄→ e(a, b)

e(a, b)→ c

b→ d

c̄→ e(c, e)
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unnamed junction

a1 . . . an

b

Figure 60: fig37

ē→ e(c, e)

e(c, e)→ d

d→ e

b̄→ e(b, f )

f̄ → e(b, f )

e(b, f )→ e

a→ f

d→ f

Graphically it is very easy to convert any joint network to anordinary network as
follows.

1. First replace any node x by x→ x̄ and let any arrows emanating from x to
emanate now from̄x. Any arrows targeting x remain as is.

2. Any joint attack from a1, . . . , an on b have arrows emanating from each ai (now
emanating from̄ai) to an unnamed junction where they all meet and then a single
arrow go to b as in Figure 60.

Name the junction e(a1, . . . , an) and let the arrows be now attacking arrows of
an ordinary network. We get Figure 61.

4 Comparison and discussion

4.1 Comparison with Nielsen and Parsons

We compare this work with the paper of Nielsen and Parsons[10; 11]. Nielsen and
Parsons put forward a system where joint attacks are possible. They introduce attacks
of the formXRywhereX is a non-empty set of arguments andy is an argument.
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an

e(a1, . . . , an)

b b̄

ā1a1 ān, . . . ,

Figure 61: fig38

The attackXRY, whereY is a set of arguments is reduced to

XRYiff XRyfor somey ∈ Y.

This is the same as our approach for the case in which the networks we are dealing
with have no arrows in them and in which there are no disjunctive attacks. The point
of view of Nielsen and Parsons arises from a qualitative argument in favour of joint
attacks. They argue their case convincingly and proceed to develop the theory beauti-
fully in their first paper[10]. In the second paper[11] they continue with an algorithm
for computing extensions.

We arrived at these attacks from a different point of view. We are substituting
one network in another. We thus get a network attacking another network. Since the
networks may have points in common they can internally influence one another.

To obtain the Nielsen and Parsons case our networks should have no internal ar-
rows, and no disjunctive attacks. So we interpret an attack on a network as in Figure 46
reading (r2). Another difference between the two approaches is the reduction we make
of the joint attack networks to ordinary Dung networks. The original network becomes
a critical subset in an ordinary Dung network and so we can compute the extensions of
our original network by computing the extensions of the target network.

We would like to quote and criticise a statement of Nielsen–Parsons in their paper
[10] they say:

We claim that it is never necessary to specify a non-singleton set of
arguments as attacked, as in {A1, . . . ,An} ⊲ {B1, . . . , Bm}: If collective
defeat is taken to heart, the attack can be reformulates as a series of
attacks

{A1, . . . ,An} ⊲ B1
...

{A1, . . . ,An} ⊲ Bm
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It is easily seen that the above attacks would imply the attack, which is
intended, as the validity of the A-arguments would ensure that none of
the B-arguments are valid.

If instead indeterministic defeat is required, the attack an be reformu-
lated as

{A1, . . . ,n , B2, . . . , B,} ⊲ B1,

which ensures that in case the A arguments are valid, then B1 cannot
be a valid argument if the remaining B-arguments are also true, thus
preventing the entire set of B-arguments from being valid at once, if the
A-arguments are true.

Nielsen and Parsons use reading (r3) of Figure 46 (to use our terminology), namely
they use Figure 48. Their notion of ‘collective defeat’ requires reading (r2) and (r3) as
Nielsen and Parsons claim.

4.2 Flow argumentation networks

This subsection deals with Figure 41. To explain Figure 41, we need a consistent point
of view to explain the case of disjunctive attacks as in Figure 46. For Figure 46 we
know that we require that

(*) x = in impliesa = outor c = out

The questions relevant to our understanding of Figure 41 arethe following

Question 1
Doesx attack each ofa andc and expects at least one of them to succeed (reading (r2)
of Figure 41 in Section 31.) or doesx attack only the set{a, c} and expect (*) above to
hold? (Reading (r1) of Figure 41 in Section 3.1).

Obviously to be able to give Figure 41 any meaning we must adopt the view thatx
attacks each ofa andc (reading (r2)).

We now ask our second question.

Question 2
When the attack ofx on one of{a, c} succeeds, e.g.a = out, is x still attackingc? In
other wordsx is still attacking even thoughx does not care ifx attack succeeds? If the
answer is no, and there is no attack onc, then this means that in Figure 41, the labelling

1. x = in, b = in, a = out, c = in

is acceptable, because the success of the attack ona (a = out) entails that there is
no attack fromx ontoc and hence the joint attack withb on c fails becausex is not
attacking and hencec = in.2 If the answer is yes, and indeed there is a attack onc then
(1) is not acceptable and (2) is acceptable.

2. x = in, b = in, a = outandc = out

2In this case,a = outmakesx attack (withb) on c a voluntary attack. We investigate voluntary attacks in
[12].
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Of course, both views will accept (3) below.

3. x = in, b = in, a = in andc = out

We adopt the view thatx sends attacks in the direction ofa andc and expects one
of them to succeed (this is the (r2) reading of Figure 46 in Section 3.1).

Notice the words we use. We talk about ‘xsending attacks in the direction ofy’. We
speak of ‘joint attacks’ and ‘disjunctive attacks’. We needfor formalise our intuitive
model. We found that the best way to represent what is going onis in terms of ‘flow’,
the attacks flow along the edges of the network. So we call these ‘flow argumentation
networks’.

It would help if we consider an example. Consider Figure 62, which is an expansion
of Figure 41, with a new twist to it. The arguments of Figure 62are{x, a, b, c, d, e} and
we also gave names to the flow (flow of attacks) junctions{α, β, γ, δ}. These are not
arguments, just nodes in the graph, to help us follow the attacks flows.

δ

d x b

cae

α γ

β

Figure 62: fig56

In Figure 62,d sends a disjunctive attack through junctionα. The attack splits into
an attack one and an attack in the direction ofa andc. x at the same time sends a
disjunctive attack through junctionγ which splits one in the direction ofa and one in
the direction ofc. Thex attack going toc joins forces with the attack onc emanating
from b. At junctionδ they join and become a joint attack onc.

The attack ofx in the direction ofa meets the attack ofd in the direction ofa and
c at junctionβ and decide to mount a joint attack emanating fromβ on a andc. The
flow from γ to δ is an attack ofx intended fora, atβ it joined the flowd→ α→ β and
became a joint attack fromβ on a and onc. We can sayx did not mind forming this
coalition withd and addingc to the attack becausex is attackingc anyway through the
directionx→ γ→ δ→ c.

The above description is in literary prose, giving intentions to the arrows in terms
of flows. How do we do this formally? And how do we calculate labelling?

Suppose we labelc = out, a = in, e = in. Is this OK withd = x = b = in? Or
maybe we need alsoe= outnote= in?
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We need a formal model which follows the flow usingα, β, γ, δ.
To achieve that we need a slightly different point of view.

To be continued . . .
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