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Abstract

This paper is part of a research program centered aroundnargation net-
works and dfering several research directions for argumentation nésyaevith a
view of using such networks for integrating logics and netweasoning.

In Section 1 we introduce our program manifesto. In Sectiame2motivate
and show how to substitute one argumentation network as @& inaghother argu-
mentation network.

Substitution is a purely logical operation and doing it f@tworks, besides
developing their theory further, also helps us see how tegddgic and networks
closer together.

Section 3 develops the formal properties of the new kind ofzagk and Sec-
tion 4 ofers general discussion and comparison with the literature.

1 Overview

1.1 Logic and networks — a manifesto

In the past half century various formal tools have been psegdor the study of human
behaviour in daily life. Such tools were developed in compstience, communica-
tion, artificial intelligence, language study, law, anelyihilosophy, psychology and
cognition, among others. Main among these tools are thedlogical systems (clas-
sical logic, non-monotonic logics, modal and temporal ésgietc, etc.) and various
network models such as argumentation networks, neurabmk$yBayesian networks,
inheritance networks, and more. There is no unifying viewdbthese tools, and in
fact they are developed by completelyffdrent international communities with very
litle common ground and communication and yet (see beldivgfdhese features of
human behaviour (logics and networks) do reside coherantlye individual human
mind and enable him to function intelligently in his dayeday activity.



There is some realisation among a few of these diverse coitigsithat commu-
nication between them needs to take place and unifying iptexare indeed sought.
Unfortunately not much is known and certainly no coheremt sunccessful unifying
view exists. The mission of this manifesto to provide suclesy

To explain what we have in mind, we start with a simple example

Example 1.1 (The Messy RoomMother goes into her teenage daughter’'s bedroom.
Her instant impression is that it is a big mess. There ig'steattered everywhere.
Mother’s impression is that it is not characteristic of thi ¢p be like this.

What has happened?
Conjecture The girl has boyfriend problems.

Further Analysis Mother noticed a collapsed shelf. Did the girl smash it? dpo
further observation, mother notices that the pattern ofashahows that a shelf has
collapsed because of excessive weight and scattered kiver@round, giving the im-
pression of a big mess. But, actually, it is not a mess, it dosge some (gravitational)
sense.

There are several modes of reasoning:

1. Neural nets type of reasoning.
She recognises the mess instantly, like we recognise a face.

2. Nonmonotonic deduction.
Mother reasons from context and her knowledge of her daungfds the girl is
not disorganised like this. She asks ‘what happened?’.

3. Abductioytonjecture.
She gfers a reasonable explanation that the girl has boyfriendyems. This is
common to that age.

4. She then applies a database Al deduction and recognis¢shih mess is due
to gravity. This deduction is no longer a neural net impressilt is a careful
calculation.

4*. Item (4) could have been a neural net impression.
For example, a man who sees many shelf collapsing mess cayagoognise
the pattern like it were a face (in which case it would be a aénet-like recog-
nition).

2*. Item (2) could have been a Bayesian network.

Clearly all of these reasoning tools are working togethénénmother’s mind. Can
we give a unified model? What does it look like in principle?

Furthermore, suppose both mother and father have seentime Father may reach
different conclusions about the girl and demand some actionalaglie, argumenta-
tion and negotiation between the parents will follow withiewto reaching a merged
knowledge base and an agreed course of action.



The value of a unified model goes beyond just a unifying forthabry. Even
if we take the view that each of these components modeftardnt aspect of the
human (constructed as a model for the purpose of installing computer or a robot)
a unified theory can help extend their range of applicabditg help integrate them
better. But we hope for more. We hope that such a model buidtugfully might give
us a better insight on how people actually reason. Sometifiggeat interest to the
philosopher, psychologist, linguist and cognitive sda&n# unified theory would be a
better, sharper tool in their hands.

First let us list what systems (and communities studyingih&re involved.

We have:

A. Networks:
neural nets, argumentation nets, Bayesian nets, fuzzy lmetsgical predator-
prey networks, transportation networks, flow networksgimitance nets, math-
ematical graphs, Kripke models, Description logics, Eleat networks, legal
jurisdiction nets, social networks, input-output nets] arore.

B. Logics:
classical logic, modal and temporal logics, nonmonotargids, logic program-
ming, Labelled deductive systems, and more.

C. Mechanisms
abduction, belief revision and merging, consistgpayaconsistency, meta-level
vs. object level, and more.

D. Metalevel principles:
fibring and combining systems, communication between systand more.

A quick analysis of this task immediately shows how huge ttablem is. There
is a lot of work to be done just in providing a unifying view teten networks, let
alone making a connection with logics. The rich variety dfneks and the dferent
research communities supporting them hakedent underlying assumptionsfigirent
ranges of applicabilifyand diferent kinds of mathematics involved. How do we bring
them together?

A simple working procedure seems successful. We first iflectiaracteristic
movements in each kind of network and then see whether weerzralise the other
networks with similar features. Iterating this procesd hadpefully lead us to a general
notion of network which can specialise to the various engstietworks. Once we have
that, we can try and see how this general network notion cidp with ordinary logics
and other mechanisms.

This procedure has the advantage of extending and gemnegatiach network we
work with in a meaningful way. Thus each research area wilkieincrementally. Our
understanding of characteristic movement existing in angce network (e.g. loops,
feedback, aggregation) will be enhanced by developingatsterpart manifestations

Lit is regrettable that the communities involved have nodisiti the range of applicability of their tools.
To compare with, e.g. painkillerstered by the pharmaceutical community, it is always made aeahat
circumstances one can or cannot use them.



in other target networks, with the added benefit of meaninggneralisations in the
target networks.

The task is not only a scientific problem but also a social @b

The diverse communities of research in particular netw¢eks. Bayesian com-
munity, neural community, argumentation community, logtc.) are all immersed
in their own areas and are not likely to respond to unifyingotties. Our scientific
strategy must be such that it is compatible with the soctalsion and is likely to
generate enthusiasm and response from a significant graepedrchers. This is why
we proceed from the ground up as described above. Furtheritds fortunate that
one type of network, the argumentation network is open tth&urgeneralisation and
research in a natural and large scale way. Features existiotper networks can be
naturally (though not easily) brought into argumentatietworks and these features
do have a natural meaning there. Furthermore the argunemtaimmunity itself is
open-minded and is in fact desiring to expand their field. Wahtheir individual
members have background in logic and will therefore easityand respond to a gen-
eral unifying theory with logic. So our strategy is as follw

1. Assume the current state of argumentation networks is

2. Study other networks and identify featufes F», . .. existent in such networks
but not inS.

3. Extend the theory db to newSk by incorporating and generalising all of these
features in a meaningful way. This is not simple. It is reakaach which will
be meaningful to the argumentation community. It will alsengrate further
generalizations to be exported to other networks.

4. Emerge with a generalised theory of network, Sgy > Sk.

5. Specialis&,eyinto other networks (e.g. netwoflk) to show thaSyey is general
enough to unify big chunks of other networks. Get, for examplew. Chances
are thatThey Will naturally and intuitively suggest new features to beested
back toSpew to form St

6. Generalise further to a unified theory with logic, calbijt
7. lterate the entire process to obt&f,, T2, S, ... etc.

The following table lists features from other networks whaan be imported into
argumentation networks.



Network

Properties

Neural

Argumentation

Bayesian
Fuzzy
Biological
Transportation

Flow

Inheritance

Graphs

Kripke models

Description logic nets

Electrical networks

Legal jurisdiction network
Social networks

Input-output networks

Feedback loops. Numerical weights on arcs. Real
number values, function approximation and learning
emphasis.

Nodes attacking nodes. Also sometimes supporting
nodes. Loops is an issue with currently no consensus.
Logic programming way of thinking. Nodes have log-
ical content.

Loops forbidden. Probabilistic approach.

Real number values and aggregation.

Emphasis on loops and cycles through the loops.
Emphasis on paths and costs through paths.

Emphasis on flows and counterflows through paths
and nodes. Nodes are sources and Sinks.

Emphasis on persistence and exceptions.

Mathematical theory. Counting of nodes, topology on
connectivity. Pure mathematics point of view.

Propagation of values for evaluating formulas.

Similar to Kripke models but with dierent emphasis.
A fragment of predicate logic.

Feedback loops. Equational approach. Network gen-
erates equations to be solved.

Movability of data across jurisdiction.
Information propagation.

Nodes are logic processors.

To give the reader an idea of wia¢ might look like, we present a diagram, Figure
1 of a generalised argumentation network and discuss itsriEs
This is a complex diagram with the following generalisation

1. It has both attack and support. Each argument has strandtthere is a rate of
transmission. For example, nodéstrengthw) supportsh and the transmission

rate ises.

2. There is feedback from nodes to atcs d attacks the attack arc from: ato

y:b
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Figure 1: figl

. Arcs can attack or support other nodes or arcs. E.g. theyaitacks the are,
with strengthes.

. There are indirect attacks, for example,aobn c becausee supportsh anda
attacksb.

. There are loops, becausattacksx; : ¢k which attacks« : a. If c is weakened
then the attack ok; : 0k may succeed and henge: a fails. So by attacking
y : b, the nodex : a opens itself to attack from, : 0k because it weakens: c.

. The entire system can be temporal if the strength andrtrias®ons are time
dependent and the language of the arguments is temporalndde; : ok is
temporal because depends on time angk says there is the (future) possibility
of argumenk.

. The net contains a subnet.is the subnet’ — b’. So we can also fibre nets
within nets. This is also a problem of communication betweetworks.

. We need algorithms to propagate values within the nettithgeemerging win-
ning arguments. We need theory of aggregating values ardlihghoops. We
need to combine with temporal logic and change and we needdw kow to
substitute one net inside the other.



©
o]
=

pAqg
pAqQ—T
Figure 2: fig2
b c q
a oq
Figure 3: fig3

Connection with logic

We will present logic data as networks. So the basic senmantations will be in the
diagram: In Logic

formula theory-®vavaedsemantic model
In our generalise®,
master networlevaluateds|gve network

This will include the logic case as a special case.

This is integrating with logic through the semantics. Pribwfory can also be de-
veloped as rules of syntactical manipulation of networkse framework for doing so
is that of Labelled Deductive Systerfid.

To give the reader an idea of how we perceive logic as a netvaarksider the
formulap A g — r. Its construction tree is Figure 2

If we give valuesp = 1,q = 1,r = 0 to the atoms, then we can propagate them
down the tree. Our conclusion from this that a formAla a network. Now examine
how we evaluateq at a 3-node Kripke model, Figure 3.

First we give joint values of 0 or 1 to pairg,() (meaningx £ g). Then we jointly
and inductively propagate the values down both networks.

So if @ is a node in one network arfelis a node in another network we define the
valuea £ E by recursive induction on the known values of the rest of thiesp’ = E’.



The ‘formulas’ correspond to one network and the ‘semaniscthe other network.
This way we can define the notion of one network being true otteer.M £ Nj.

Suppose we get that a semantics is a family of networks fduatian. If we have
YM[M E N; = M e Ny] we can develop rules for transformimg into N,. This is
proof theory, LDS style.

Sample problems to be addressed

1. Aggregation of values. A node is attacked and supporteattgr nodes. How
do we aggregate? Joint attacks and disjunctive attacksedioave strength and
arcs have transmission values.

2. General theory of attack absorption and its relation tebehange.

3. Temporal dynamics . Thefect of temporal change in each network. We need
to add a temporal language to the net as well as make all pteesiiene depen-
dent.

4. Contents and fibring of networks. Giving nodes a contemnt, @ theory, or
another network etc.

5. Feedback, e.g. nodes attacking connections.
6. Handling loops.

7. Procedures and theories for propagating values in nkssord extracting infor-
mation from networks.

8. Metalevel, object level of networks, hierarchies.
9. Logic viewed as networks. A logical theory becomes a nekwo

10. Evaluating one network in another. One is the “theoryd #ime other is the
semantical “model”.

11. Proof theories for networks.

1.2 General view of argumentation networks

Having discussed our general manifesto in the previousestilog, let us outline our
view of argumentation networks in general and the place afifiowithin this outline.

There are several ways of viewing and handling argumemtatéworks. Main
among them are the logic programming approach, the cldg§iis&order or higher-
order) logic approach and the algebraic equational approac

For the purpose of fibring networks, the algebraic equatiapproach is the most
convenient.

Let us take as our starting point a classical mo&eR) of a binary relatiorR on a
non-empty se§. This is basically a directed graph. We can re&yas an arrow from



xtoy: X — y. If we view (S, R) as an argumentation network theRymeansx attacks

(S,R) in general can be a basis for many types of networks. To tj@eriore spe-
cific character, we need more annotations. Let us add thg pnadicateo, . . ., Qn.
So Qi(X) is some property ok. Specific types of networks will have some axioms
relating the relatiofR to the predicate®, . . ., Qn.

For example, for argumentation networks we have three pagehiQo, Q1, Qo, cor-
responding to the three valués, out, undecidedlin a Caminada labelling of argu-
ments, and the relationships between themRiisdgoverned by a theord formalising
the Caminada rules. See Definition 2.1 and[d&for a survey and further results.

In the more general case, we have a theqi®, Qo, . . . , Qn) governing the relation-
ship betweeiR and{Q;}. Any model ofA will be a properly presented network of type
A.

The kind of questions one can ask in this context is the exigteof models of
certain types, the existence and nature of models with maxémminimal Q;, and
relationships betweenfiiérent models.

The mathematical answers we obtain for the above questidh&ave quality
meaning in the context of the particular network we are sngly For example for
argumentation networlQ); is the set of winning arguments and so the membef3;of
give the ‘logical content’ of the network. For the generade#he above questions are
purely mathematical.

We can therefore employ general formal logical techniqoeget answers to these
questions.

For example, we can use second-order logic to ask for mirinoalels forQy. We
write the wif

6(Qo minimal) = A(R, Qo, ..., Qn) AVYQp, ... Qu(AR Qg ..., Q) = Qo € Qp)

(S,R) E 6 says that out of all possible models @r based on$, R), our model is
the one withQy, . . ., Q, where withQp minimal. To express this we need to quantify
over subsets. There are also methods for eliminating secoiet set quantifiers or
for finding fix point solutions for them. Sd&]. These methods can also be profitably
employed here, sd@0].

First-order logic is not dficient to express the situation in Figure 1. This is not
because the figure contains several types of arrows (attatkupport). The dierent
types of arrows give rise tofiierent binary relations. Also the annotations of nodes and
arrows is not a problem. We can add parameters to the retatganunary predicates
become binary, binary relations become ternary, etc.). prbblem is arrows leading
to arrows.

For example in Figure 1 we have an arrow emanating foom b going to the
arrow emanating frond and attacking the arroa — b.

Writing this in full would yield a relation between 5 elementThis is too com-
plicated to be natural, since these arrows can be iteratadytdiigher level. Thus a
different approach is required if we are seriously dealing witmglex networks as
displayed in Figure 1.

The second approach is the equational algebraic approactredard the predicates
Qi(x) as algebraic values attached to the naddset x = g mean thatQ;(x) holds. We
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Figure 4: 1-a

now consider the axioms df as a vehicle usin® to formulate a system of equations
on the algebraA = {a;}. Of course suitable operations ghneed to be defined. These
operations should arise from and respect the declarative contentrof To see how
this is done for the case of argumentation networks see Hoaishion in Section 2.2.
It is not known what sfiicient conditions we can put on a general network of t§pe
to ensure that some algebraic equations can be extractéslapproach is better for
networks with many levels of arrows attacking arrows. ThRidbécause the ‘higher
order’ logic part gets processed into the equations and steejud up with complex
equations on the nodes. So from this point of view the netvigjlst an instrument
for formulating equations.

The third approach is the logic programming approach. IhifaDung’s original
paper[14], the words ‘logic programming’ are in the title. Considee thetwork in
Figure 4. The nodex, ..., X, are all the nodes attackirtg The Horn clause corre-

sponding to it is
bif /\ ~x
i

where- is negation as failure
Given a network §, R), we translate it into a set of Horn clauses by taking he

clauses
yif A —X
{XIXRy}

forallye S.
This translation, originally presented [d5] and further studied if16] gives a
logic program with two special properties.

1. Each literal is the head of at most one clause.
2. All literals in a body of clauses are negated.

Given a logic program with properties (1) and (2) we can nedhé corresponding
argumentation network by defining

XRyiff (definition)x appears in the body of the clause with hgad

10



The general question of how to find a corresponding argurtientaetwork for
any general logic program, for example

yif an-b
yif cA -d

(which does not satisfy (1) and (2) above), is studiefllil. We use the notion of a
critical subset of an argumentation network introduced dfiition 3.3.

Given a general logic program, we can represent it as a cissiodel of the
form (S,R;,...,R). The elements of are the literals of the program. The relation
XR"y, xRy mean that the literak appears positiely (resp. negated) in ttreclause
with heady.

So we have

clasuel with heady: yif A\xgy XA AzryZ

1.3 Overview of our approach to fibring

Given a network $, R) with a nodex € S, we want to view it as a variable for which
we can substitute values. This question is a logical questia can be asked of any
system of any sort provided it allows for atomic elements.

The notion of fibring of networks arises when we substitutedfanother network,
see Figure 5. There are two options here

e General fibring: we substitute any other network in any neltwe.g. substitute
a neural network for a nodein argumentation network.

e Self fibring: substitute networks of the same type. So in @secsubstitute an
argumentation netwrok for a node in another argumentattwaork.

We are faced with two immediate problems
e Give meaning to the substitution
e Generalise the notion of the network so that it is closed uadbstitution.

We discuss the meaning of the substitution and its propeini&ections 2.1 and
2.2. In section 2.3 we generalise the notion of argumemateiwork so it is closed
under substitution and we study its properties. We callahestworkshigher-level
networks.

These are networks with conunctive and disjunctive attatke results in section
2 give rise to methodological considerations and thesetarkesl in Section 3. Our
aim in Section 3 is to show the existence of labellings on @ networks. We do this
by reducing the new networks to ordinary networks.

Section 4 compares our results with the literature and diesi further research
possibiliteis.

11



Figure 5: fig4

2 Fibring argumentation networks

2.1 The fibring problem

On comparing general logics with networks, we find that éertagical operations,
which are basic and widespread in logic, do not occur in nekgtoOne such oper-
ation is substitution. Given a logical formuk(qy, ..., qk) built up from the atoms
Ji,....Qx we can takeg; and substitute for it another formuB(p;, g;) to obtain
A(B(pj, Gi). G2, - .., Ok). The analogous operation in networks of any kind is to take
a nodeq; in a networkN and substitute for the node another netwhifk This kind
of operation is not naturally done in networks. If we wantritegrate logics with net-
works, it might be helpful if we try to make sense of this opierafor the cases of the
various networks available such as neural nets, Bayestanargumentation nets, etc.

Figure 5 shows the basic situation

We substituteN’ for the nodeg in the networkN, to obtainN(g/BN’). The nodey
is connected to the nodegndd in N and nodes andb are connected to it. The exact
nature of the connection is not relevant and it depends onahee of the network. In
N’ we also have internal nodes suchxaandy and there is a connection frorto y.
These nodes now become nodes in the new netN¢gkN’).

Our problem here is to make reasonable sense of this situalie need to address
the following questions:

Question 1

How do we understand connections frapb into N’? Do they connect in any way to
the internal nodeg andory?

Question 2

How do we understand connections emanating fiinto other points ifN? Do they
emanate from some nodeshi?

12



Question 3
What do we do with nodes occurring in bathandN’?

These connections were originally going to and frgrof N, but now we have
substituted\’ for g, and so we need to answer question 1, 2, and 3. We also have to
decide what to do witlg itself. Do we leave it ifN or is it out being replaced biy’?

Question 4

Some networks have several options internally for what apphn tog. Do we treat
the substitution ofN’ differently by case analysis depending on what happerg to
(This is how we do it in Bayesian nets.)

We have already analysed this situation for the case of Bayewts and for the
case of neural nets. We found natural solutions to the abe®stipns but the solutions
vary from network to network. The solution is completelyfeient for neutral nets
from the case of Bayesian nets. $6kfor a summary.

We now try to figure out a solution for argumentation nets aehghat we can get.

2.2 Afresh look at argumentation networks

We quickly recall some basic definitions in order to presenew point of view on
argumentation networks.

Definition 2.1

1. An argumentation network has the foBn= (S, R) where S# @ is the set of
arguments and R S? is the attack relation.

2. A Caminada labelling o is comprised of three subsets af(%, Q1,Q2 € S
satisfying the following axioms:

(@) YX[Qo(X) vV Qu(X) v Q2(X)]

(b) ~IQiI(X) A Qj(¥)] fori # j,i,j=0,1,2.
Qo is the set obutarguments.
Q: is the set ofn arguments
Q: is the set ofindecidecarguments.

(€) YY[VX(XRy— Qo(x)) = Qu(y)]
(d) Yy[AX(XRyA Qu1(X)) = Qo(y)]
(€) YYI(YX(xRy— (Qu(X) v Q2(x))) A IX(XRYA Qz(X)) — Qa(Y)]

3. A network may have more than one Caminada labelling todtkes, which sat-
isfiesA, see Figure 17. Each such option is called an Extension.

4. Qu(X) says that x is labelledh (or x = in), Qp(X) says x is labelledut (or x =
ouf) and Q(x) says that x is undecided (or=0).

13



The basic idea of the Caminada labelling can be expresséd fiollowing general
terms. Assume; are nodes, which we calhits (Since these nodes might end up, after
substitution, as networks, we prefer to call them units.)eSéhunits execute among
other things, an attack in the direction of the unit

The labelling must satisfy the following conditions:

We use the same numbering as in Definition 2.1, namely: itecn@@ and 2e of
Definition 2.1.

2.1.2c For the uniy to bein, all attacking units<in the direction ofy must beoutas
far as the direction of is concerned.

2.1.2d Forthe uniy to beoutit is sufficient that one of its attacking unitss in as far
as the direction oy is concerned.

2.1.2e For a node to hendecidedve must have that all the attackers in its direction
areoutor undecidedvith at least one of them beinghdecided

Argumentation networks (called Argumentation Frames)wetroduced by Dung
in 1995 through a logic programming point of view. This padfitview persists until
this day and is adopted in the majority of papers on the stibj€&ven a network
(S,R) as in Definition 2.1, one seeks subset$afalled extensions, satisfying certain
fixed point properties. This is parallel to the various estens of logic programming.
Caminada was the first, as far as | know, to present the laggibint of view, as given
here in Definition 2.1. However, the Caminada labelling poinview is still tied in
with the logic programming extensions point of view.

We need to break away from this point of view and think in tewhdabels as
functions, giving values to the nodes in some algebraic ararical range (usually the
complex or real numbers). This is the point of view[@f and[13] and this is what
we need for the results of this paper. We are not rejecting@n eriticising the logic
programming point of view, we simply need the functionalrgaf view to be able
to prove some theorems and be able to compare argumentatioonnks with other
networks, following our agenda of unifying logic and netk&r

Our point of view is best explained via some examples.

Consider Figure 17. The labellifextensions point of view will say that this net-
work has three extensions or three Caminada labellings.

1. a=in,b=out c=out
2. a=outb=in,c=out
3.a=?,b=?,c=".

The functional approach will say that we are looking for a euical or algebraic
labelling functioni(qg) of nodesq € S, giving values in a field of values (the complex
numbers will do) satisfying the conditions of Definition 2(dvritten appropriately for
A) as a set of equations.

The conditions to satisfy are:

(*1) if xq,..., X, are all the attackers gfthenA(y) = [T;(1 — 1(%))

14



(*2) if yhas no attackers thetfy) = 1.

To presentl for Figure 17 we use values i, 1, %} or values over the complex
numbers.

We get the following system of equations, using (*1) and ¢t2present the equa-
tions:

1. 2(a) =1-a(b)

2. 2(c) = (1 - A(a))(1 - A(b))
To solve the equations, ldta) = t

We get

1. A2b)y=1-t

2. A(c) = (1 -tit.

If we lett range over the valug®, 1, %} we get the Caminada extensions (W§h=
undecided).

We can also use values in an algebra. We define the al@zbreas follows:
Let {in,out ?} be 3 values and define the operations of inverse and mu#tjdit in
Camas follows:

X — X (we also writec = (1 — X))

XYy Xy

in = out
out = in
2 = 9

in-Xx=xin=x
out-x = X- out= out
2.?2="

Note that inCam x? = x, for all x.
Let us now look at Figure 18. Here, we get the equation

Aa) = 1-2(a)
@) = 1.

The diference between the two points of view can be clearly seghiatethe
following three examples, as depicted in Figures 6, 7 and 8.
For Figure 6 we get the equations

1. 2(a)=1-4(c)
2. Ac)=1-a(b)
3. Ab) =1-2(a)
The only solution isi(a) = A(b) = A(c) = % in the complex numbers and ?@am

For Figure 7 we get the equations

15
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1. 2(a)=1-4(c)

2. 2(c) = 1- A(b)

3. A(b) = (1 - 2(a))(1 - (b))
To solve, we get

4. A(b) = (1 - A(b))?

If our range of values is the algeb@amthen we can solve the equations by giving the
unique solution
A(a) = A(b) = A(c) =?

If our range of values is the complex humbers, we can contiog®lve for in the
complex numbers. We get the equation
A(0)2-31(b) +1=0
and solve
A(b) = 1.5+ V1.25

The other values fat(a) and.A(c) can be calculated.

The important point is that we can tell thefférence between Figure 6 and 7, by
choosing the right range far.

The Caminada labelling will give the nodad, c value ?= undecidedn both cases
and will not be able to tell the fiierence. The argumentation theorist may not care
about the dierence between the two figures. Both are incoherent. He magede
that the functional point of view may be of interest in compgwith other networks
but as far as the area of argumentation itself is concerredydy believe that we do
not need this new point of view.

In fact, however, the functional point of view does make féedénce for argumen-
tation theory itself. Figure 8 is the example for that.

Let us write the equations:

1. A(b) = 1- A(a)

2. A(b) = 1- a(b)

3. A(b) = 1 - A(b) = A(b).

4. (0) = (1- AB)(L - (b)) = (1~ A())(1— A(H)).

Note that from (2) and (3) we get that

5. () = (1 - A(b))?

Working in the complex numbers, l@{a) = t and use it as a parameter. Then
1. A(b) = 1t

2. Ab=t
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3. Ab) = 1-t
4. A(c) =t

Working in Camwe observe_the following when comparing Figure 8 with Figlire

Ignoring the nodeb andb, we get that Figure 17 is a subnetwork of Figure 8. In
fact the equations we get for Figure 8 for the nodds c would be the same equations
as those of Figure 8 provided that{1(b)) - (1 - A(b)) = (1 - A(b)) holds. Indeed, this
equation does hold fatam So as far a€amis concerned Figure 8 is a conservative
extension of Figure 17. Any on{a, b, ¢} can be uniquely extended totaon Figure 8
in a consistent manner. The equations for figure 8 give the satutions to the nodes
of Figure 17 as the solutions to the equations of Figure 17.

Let us consider another example, that of Figure 50.

We get the following equations:

1. A% = 1 - A(X)

2. (@ =1-2(a)

3. 2(c) =1-A(c)

4. Ae(x,@) = (1 - @)1 - A(X) = A(a)A(x)

5. A(e(x €)) = (1 - A(X))(1 - A(c)) = AX)A(c)

6. 1@ =1-1a)

7. 2(c) = 1- A(0)

8. A(e(x)) = (1 - A@)(L - AC)(L - A(X))

9. A(a) = (1 - A(e(3)))(1 - A(e(x, )

10. A(c) = (1 - A(e(x)))(1 - A(e(x. &))).-
Simplifying, we get

4. Ae(x, a)) = Aa) - AX)

5. A(e(x, ¢)) = A(c) - A(X)

6. A(a) = A(a)

7. 2(C) = A(0)

8. A(e(x)) = (1 - 2(@))(1 - A(c))A(x)

9. (@) = [1 - [1()(1 - @)L - ()] - [1 - A(x)(c)]

10. A(c) = [1 - [A(})(1 - @)1 - 4(0)] - [1 - A(X)4(a)]

18



q

Figure 9: figh

Let us, for example, see what we get if we substitute in thextgus the values
x=?a=inandc="?.

First note that from equations (1)—(8) we get that the valoes a, C, (x, a), &(x, €),a, C
ande(x) are uniquely determined. The problem we face is whethexchaice of the
above values fofx, a, ¢} is fortunate so that equations (9) and (10) also hold.

Let us check. We get

1. x=?

2

3

4. ¢(x,a) = (1- oud(1-) = in-?="
5. g(x,¢) = (1-?)(1-?)=2?="
6
7
8
9

in

]
Il

?

ol

. e(x) = (1- in)(1-?)(1-?)= out-?= out
.a=(1- oud)(1-?)= in-?="?
10. c=(1- ouh(1-?)= in-?=?

We get that equation 9 is contradictory. So we guessed wrong!

2.3 Joint and disjunctive attacks

We are faced with the need to make sense of situation ilhestren Figure 9 as an
example.

We got Figure 9 by substituting the network of Figure 10 fa gositionq in the
network of Figure 11.

We need to answer Questions 1, 2, 3 and 4 for this case. It mplesicase since
the substituted network of Figure 10 has no loops and so ial@sar message, only
one extensionaisin, cisin andb is out

So dfectivelyb is outand plays no active ‘in’ role in the network. Shall we just
ignore it? Let us call this approach Option 1 (i.e. ignoreaalt nodes) and check
whether it is workable. We shall later reject this option ibig instructive to see why!
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Figure 10: fig6

X —» q —— y
Figure 11: fig7

Let us ignore théd, since it isout, and regard the network of Figure 9 as in Figure
12.

Figure 12 has two problematic par{s, ¢} attackingy and x attacking{a, c}, as
shown in Figure 13.

In this case it makes sense to regard Figure 13jambattack ony. Thus the unit
‘aandc’ is in only when botha andc arein.

Therefore any node attacking the unitéd andc’ must attack eithea or c. We get
Figure 14

The split arrow—{ is adisjunctiveattack and the joined arrow is ajoint attack.

We must clarify our concepts at this junction: Figure 9 shavesibstitution of the
network of Figure 10 at positiog of Figure 11.

The first choice of options we have to do is to ask

(*1) Do we process the network of Figure 10 first, i.e. choasexension for it and
then and only then substitute the resultdan Figure 11? (Call this Option 1.),

or

(*2) We substitute Figure 10 as is, as a network, and defindevhais supposed to
happen (call this Option 2).

If we follow option 1 for the network of Figure 10, we get thetwerk of Figure
12. Itis as if we substitute the s, ¢} for the nodeg in Figure 11.

Having decided on Option 1 and obtained the formal networkigfire 12 we still
need to decide how to define the concepts of attacks (seeesFiGyr

(*3) What does it mean for a unit (argument}to attack a seta, c}? (disjunctive
attack)

(*4) What does it mean for a s@, c} to attack a unit (argumenyp

XH. '

Figure 12: fig8
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Figure 13: fig9

e

Figure 14: fig10

The case (*4) is easy. F¢a, ¢} to bein we must have both andc in. In this case
yisout See Figure 13.

For the case of (*3), when the urd, ¢} is attacked by, we have two possibilities:
Possibility 1 for (*3)

x must attack one of the elements of the set i.e. eidratacksa or x attacksb.
Possibility 2 for (*3)
x attacks theth” status of{a, b}, that is we need to have eith@ioutor b out

Possibility 2 is the symmetrical counterpart to (*4). Rarc} to bein we must
have ‘ais in andb is in”, therefore for{a, c} to beout we must haved is outor cis
out’.

The two possibilities are not equivalent.

This will be discussed in detail at the beginning of Secti@ma in Section 4.2. We
shall see later that Nielsen and Parsidis 11] proposed joint attacks, which is coming
from a completely dterent point of view, follows possibility 1. We shall companer
approaches in Section 4.2.

Remark 2.2 (Joint and disjunctive attacks) To summarise, we adopt possibility 2 for
(*3). So the definition is as follows (see Figure 15).

e X attacksley,. .., ey} (disjunctively) means:
x =inimplies\/", & = out
(especially this can mean that if xiisthen several or more; @re ouf).

e {e1,...,en} (jointly) attack y means:
AL, & =inimplies y isout

o {e,....eq}isinif AT & =in
e {e1,...,en}isoutiff V', & = out
Example 2.3 (Caminada—Gabbay labelling for joint and disjunctive attacks) We il-

lustratedefine our labelling using the typical case of Figure 15.
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Figure 15: figll

1. If xis labelledin and g, j = 1,.. .,k are the nodes being disjunctively attacked
from x then at least one of enust beout

2. Ifyis jointly attacked fromgj = 1,...,k and all of g arein then y must beut

3. Suppose q is targeted by a disjunctive attack fram.x, x,. How can q be
undecide@ To see what must be done consider Figure 16 showing a typical
situation, where q is attacked from twgfdrent directions.

In Figure 16, q is being attacked from twgfirent directions. One attack is ema-
nating from x and one attack emanating from y. The attack eivegnfrom x involves
also v and w which are also being disjunctively attacked and the attatlameating
from y involves also wand w. We imagine Figure 16 as a subnetwork of a larger
networkN. So it is quite possible that x or or w; are being attacked from other parts
of the network. We assume that q is being attacked only frondxya

Let us consider an arbitrary attack on g, emanating from aeadnd involving
nodes y,. .., U which are also attacked. Thus to be explicit, z disjuncyivatacks
{us,..., U Q).

Let us use the terminology that g is subject to an attack etragnrom z. We now
want to define three concepts describing this attack.

(#1) the attack on g emanating from z is not a threat to q.
(#2) the attack from q emanating from z forceswt
(#3) the attack on g emanating from z makesmglecided

Let us define these three concepts:

(#1) This attack is not going to be a threat to q if one @f.u., ux is out Say yis out
because of an attack on it from the rest of the netwdrkn which Figure 16 is
embedded. If one of the is outthen the attack succeeds without ‘hitting’ g. So
this attack is no threat to g and g can have any vaingout or undecided

(#2) the attack on g from z forces q out izin and all of u, ..., ux arein.

(#3) when do we say that the attack on q from the direction of z mgkendecided?
There are two cases:
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(@) zitself is undecided. So we do not know whetheiirzés out If some wis out
then it does not matter that z is undecided. q is not threatetiall of u, are not
out, but are eitheiin or undecidedthen there is a real possibility of attack on q.
If z and all of y turns out to ben then q must beutand if one ofz uy, .. ., Uy}
is outthen g can bén. Thus we must makeundecided

Now we ask canjubein? Well, it cannot bén because from the point of view
of u;, we see the same situation as that which we saw from q. We sée z
and u,...,u and g are nobut So y must also baeindecided So to maintain
coherence of our rules we must declare (*) below:

(*) If a disjunctive attack emanates from z in the directidrug .. . ., u, g and
z is undecidedand none of y...,u, q is out (ug,..., U, q can beout
owing to attacks from the rest of the network) than.u., uy, q are all
undecidedLet us refer to this situation as,u becomeaindecidedecause
of a disjunctive attack on it emanating from an undecided z.

(b) Let us now check what happens i an. Can we still get g= undecide@ The
answer is yes. Supposeg u. ., U are all attacked from some respectivye.z., z
which are all undecided. This will make,u. ., ux undecidedaccording to (*)
above.

Soifw ...or...kends uput, then q is safe, and if all ofyw. . ., ux end upin,
then gq has to beut Thus we must declare q undecided. So we get rule (**)
below:

(**) If a disjunctive attack emanates from z in the directiofruy, . . ., ux, g and
at least one of uis undecided (because for example of a disjunctive at-
tack on y emanating from an undecided then all of u, ..., u, q are all
undecided.

We can now define what it means for g to be undecided, by usjra¢*(**):

(***) qis undecided if
(1) q is not forced out by any attack on it emanating from any z.
(2) g can be shown undecided by repeated applications of rft) @&*)
above.

Let us now check when ean be undecided in Figure 16 ean be undecided in
Figure 16 if for example x is undecided and there are no atahbkt force any
of vi, v, or q out

vy can be undecided if % in but y is undecided and there are no attacks forcing
any of \, vz, g, wi, W, out

Now having adopted our notion of disjunctive and joint dts&ain Remark 2.2,
we are ready to discuss further whether to adopt Option 1 ébwork substitution,
namely whether to adopt Option 1 for network substituticamely whether to choose
an extension for the network first before we substitute ama tsubstitute only the
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Vi Vo q W1 W2

Figure 16: figl2

a b

N

Cc

Figure 17: figl4a

nodes that ar@ in that extension. (I suppose we choose only extensionshitage
some argumenis.)

The above considerations explained what happens when bstitsted network
has no loops so it has no undecided nodes and therefore itrtha®ie extension.
What do we do when the substituted network has loops? Thentsvartypical cases to
consider, as shown in Figures 17, 18.

Figure 20 is obtained by substituting Figure 17 into Fig@efinodeg and Figure
21 is obtained by substituting Figure 18 into Figure 19, atetp

In the first case we have two options for the network, the esttgrs{a, c} and{b, c}.

a

Figure 18: figl4b
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X ™q =y

Figure 19: figl5a

Figure 20: figl4

Figure 21: figls



Figure 22: fig18-new

Figure 23: figl5b

Which one do we take? This is not really a problem because weuash the problem
onto the labelling. So depending on the labelling we geeeifiigure 19

or Figure 23 we still have the problem of how do we represenbtiginal network?

Let us try the representation as in Figure 24.

If aisin andcisin, we have a case ¢&, ¢} and so sincex must bein, its attack on
{a, ¢} must take one ofa, c} out. Similarly ifbisin andcis in, we have a case ¢b, c}
and so sincex must bein, its attack or{b, ¢} must take one ofb, c} out.

We immediately see that we have a problem with the propoge@sentation of
Figure 24. In the figure we put in the entire network of Figurdrito Figure 19. Thus
whenb is in, a is out and whena is in we have thab is out. So formally, for the
case let us say, th&a, c} arein andb is out, we set that the attack froris formally
successful, because in our diagrams for this baseutso{a, c} can stayn, contrary to
our intentions! Similarly, since always eith@or b is outthen the substituted network
can never attack anything as represented in the diagrangofé-24 because formally
the joint attack froma, b, ¢} always has one node out (eitheeor b). Obviously, we
need first to calculate the result for the substituted nétwbFigure 17 and get say that
{a, c} arein andb is out and only afterwards address the attack froend the attack
ony.

But then in this case we must make it clear thabeingoutdoes not play a role in

X
oO— 0= Q
<

Figure 24: figl6
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Figure 25: figl7

Figure 26: fig18

the considerations of these attacks.

‘Making things clear’ means additional labels. Maybe sal/kinds of annotated
‘out with information when eachdut is to be taken into account.

The labelling and the substitutions become hierarchical.

This is not good, not only because of complexity consideratbut also conceptu-
ally. When we substitute we allow ourselves to use any argsnso thid in question
could bex. Now what do we do? In the hierarchical evaluationltthe x inside Figure
17 as substituted isutwhile theb = x originally outside the figure ig1. But they are
the samé = x! So what do we do?

Let us look at Figure 21 and see if we can get a clue as to what.tBigure 18, as
substituted into Figure 19 is both attacking (Figure 25) snloking attacked (Figure
26). So what do we do with Figures 25 and 267

The latter, Figure 26 is cleax,can takea out

On the other hand, we look at Figure 25, then siaég undecidedwe must give
y undecidedNow we can see that the proposed hierarchical evaluatibenapplied
to Figure 21 is no good. Evaluating hierarchically will makandecidedy undecided
and x in which is not a good solution for Figure 21. However, evah@tdirectly
without any hierarchical considerations gives us thatin, since it is not attacked
is outandy is in. All nice and clear.
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N =

Figure 27: fig19

The above discussion shows that we had better reject Optiowd View any sub-
stituted networkN’ into another networl at a pointg € N, in whichq attacks another
nodey € N, as a joint attack fronall the arguments oN’. If some of them ar@ut
in N’ then we regardN’ as not conflict-free. Thus the network of Figure 27 is not
conflict-free.

The reason we take this view is because when we subshitusé Figure 27 into
another networl, b anda may be inN in other places and we do not know what can
happena may end uputorb in.

The above is our Option 2 which we shall adopt.

We now have an agreed sequence of definitions.

Definition 2.4 (Higher level networks)

1. Let S# @ be a set of nodes. Le®®e the family of all finite non-empty subsets
of S, identify the singletofx} with x for simplicity of notation.

2. A higher level argumentation network has the fq@nS° R) where S and &
are as above and R S° x SC is the attack relation.

XRY represents a joint attack from the set X disjunctivetigciing the set Y.
When X= {x} and Y = {y} we get an ordinary point to point attack and so when
R C Sx S we get the usual network definition.

We represent the situation as in Figure 28

X={Xy,..., %n}.
Y ={ys,....¥n}

or perhaps Figure 29 is more clear.

3. We understand Figure 28 as saying that the{ggt . ., X,} is jointly mounting a
disjunctive attack on the s@fy, ..., ym}. So only if all the xarein can the attack
go forward and in which case we expect at least one of flie geout

We now want to define substitution of one such higher levelkosk into another.
The result will again be a higher level network.
We will understand better how to define the substitutiorraftedo some examples.

Example 2.5 (Network substitution) Start with a simple network of Figure 30
Now substitute Figure 31 for y and substitute Figure 32 fong get Figure 33.
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Figure 28: fig20

X1 Y1

Disjunctive

*n Ym
Figure 29: fig21
X — =y
Figure 30: fig22
u ———>= v
Figure 31: fig23

u —— ™ a

Figure 32: fig24

(=)

Figure 33: fig25

A u »V

Figure 34: fig26
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a > X

Figure 35: fig27

Figure 36: fig28

Figure 33 should be written as Figure 34

Now substitute Figure 35 for u in Figure 34 and get Figure 36.

Note that in Figure 36 we have a joint attack of a and-a x’ on some target.
According to our Option 2, we regard this as a joint attacknfrga} U {a, X} on the
target, i.e. a joint attack fronfa, x}.

Of course Figure 36 needs to be simplified since a is writtéoetwWe get Figure
37.

We numbered the attacks in Figures 36 and 37 so it will be cidzat attack in
Figure 36 became what attack in Figure 37.

We try as an exercise to substitute for u in Figure 34, a newdigtigure 38. So
instead of substituting Figure 31 as we did above, we suitstifigure 38.

In this case we get Figure 39.

Now this figure needs to be simplified to Figure 40. In FigurevéCthave:
1lis ajoint attack ofa, vi on v
2 is ajoint attack ofa, v} on a
3 is ajoint attack ofa, v} which disjunctively targets a and v.

Remark 2.6 We can see that the graphs can get very complex. We note, kowleat
we cannot get everything, just by repeated substitution.example, we believe we

Figure 37: fig29
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a >~ v

Figure 38: fig30

Figure 39: fig31

Figure 40: fig32
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a c
Figure 41: z4
X b
a c
Figure 42: 72

cannot get Figure 41 by mere substitutions:

We cannot get that sends a disjunctive attack in the directioraaind in the direc-
tion of ¢ but the attack disjunct going towardgoins forces and becomes conjunctive
with the attack fronb onc.

The only possibilities we can generate are Figures 42 and 43

Figure 41 is perfectly OK, but | don’t think we can get it by egpped substitution
of ordinary networks. Figure 41 has three extensions:

1. x=in,a=o0ut b=in, c=out
2. X=in,a=in,b=in, c =out

3. X=in,a=out b=in,c=in.

Figure 43: Z3
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It is debatable whether extensions (2) and (3) are acceptahls depends on how
we understand Figure 41. See section 4 for a discussion.

We must bear in mind that we are not just defining generatisatof argumenta-
tion networks from a mathematical point of view. We are falilog the methodological
manifesto of Section 1 and there are good reasons for sutirggitone network in an-
other. We asked ourselves in Section 2 what general notioretsforks we need to
allow for substitution. That is when we substitute such awek in another such net-
work, we get a result of the same kind. We found that we needdtien of higher
level network of Definition 2.4. So generalising the defonitof higher level networks,
to allow for Figure 41 requires independent conceptualfjoation. Substitution is
justified intuitively. Joint attacks exists in common seasguments. Attacking joint
attacks also makes sense and this gives rise to disjun¢taeka. How can the mathe-
matical situation of Figure 41 be justified or explained?

We can intuitively say that the disjunctive attack arisesrfran attack on a joint
unit such asc attack on{a, c} in Figure 13. To be successfud,wants eithem or ¢ to
beout So why not joint forces with someto attackc and increase his chances? This
makes sense. We get Figure &will not insist onc = outif his attack ona succeeds.
In Figure 43,{x, b} insist onc = outeven ifa = out In Figure 43{x, b} attack onc is
not part of a joint attack.

Let us postpone this to the discussion to Section 4.

We can now define higher level substitution

Definition 2.7 LetP; = (Si,SiO, R) fori = 1, 2 be twofinite higher level networks. Let
X € S; be a node. We want to define the network

P = P1(x/P2)

being the result of the substitution® for x in P;.

The set of points d?is S = S; U S,. We need to define B S x S°. We shall
follow the traditional practice used in substitution in iogand assume that x itself is
not presentin .

We therefore have two types of available relations.

1. Type 1 fronP;:
{a'].? e a-m» X}Rl{bl7 MR bk7 X}

where x may not appear among theoa not appear among the;bin this case
we take

{ag,...,am} USoR{by,..., b} U S,

where $ will appear wherever x appears.

2. Type 2 fronP,
XRY

in which case we take XRY.
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{a} {c} {a,c}

Figure 44: 75

X

Figure 45: 726

We have thus really defined R to be
R =get R U Ry(X/S2)
with the understanding thag;, Sy} = {ej} U S.

Example 2.8 Let us examine again the network in Figure 41. We claimeddheh a
network cannot arise in our definition of higher level netksor

Since clearly a and c are being attacked and x and b are theldtig nodes, then
only the following higher level attacks are possible in terf XRY, as shown in Figure
45.

Figure 45 shows the connections of Figure 44 using pointsdes. It is clear that
the attack pattern of Figure 41 is not present in Figure 45.

Definition 2.9 (Caminada—Gabbay labelling) Let P = (S, S° R) be a higher order
network.

Let be a function giving values ifd, 1, ?} to each < S.

We say this function is a proper labellingihe following holds.
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1. If XRY holds andx € X(A(x) = 1) then3y € YA(y) = 0).

2. Ifforevery XY suchthaty Y and XRY holds we have thiat € X s.t.A(X) =0
thenA(y) = 1.

3. Ifforall X, Y such thaty XUY and XRYU {y}, we have that¥ze XU Y(1(2) €
{1,?}) anddze XU Y(A(2) =?). Thena(y) =2

Remark 2.10 Figure 46. IfA(x) = 1 andA(a) = 0 thenA(c) can be either 1 or 0. Both
cases are acceptable. If Figure 46 is part of a larger netwankl because of attacks
from the larger network eithet(x) =?then we cannot havga) = 1 andA(c) =2.

3 Methodological results

We now reduce higher level networks to ordinary networks. dbethis in several
stages.

1. Reduce the disjunctive attacks to joint attacks.
2. Reduce the joint attacks to single attacks.

3. Derive the existence of labellings and extensions fropad (2).

3.1 Conceptual analysis of disjunctive attacks

Before we embark on any reductions, we must fully clarifypheperties of disjunctive
attacks.

Consider the disjunctive attack part of Figure 13. We haeefdtlowing situation
(see Figure 46):

a Cc

Figure 46: figA

e X =inimpliesa = outor c = out
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The following are the three possibilities
1. x=in,a=in,c=out

2. Xx=in,a=out,c=in

3. Xx=in,a=out, c=out

Figure 46 cannot be reduced to Figure 47 which is properlftevrias Figure 48.

i

Figure 47: figB

\

Q
x
()

,

Figure 48: figC

Figure 48 does not allow for the extension
4. x =in,a=out, ¢ = out

The meaning of Figure 46 is a disjunctive attackayc} and not any specific attack
on eithera or c. This is also reflected in the problems we had in interprefiggre 42.
We have three reading of Figure 46.

(r1) x attacks the coalition (joint) ofe, ¢}. x would be happy to see eithar= out
or ¢ = outbut is not mounting any specific attacksanor onc. According to
this interpretation Figure 42 does not have meanintannot join any attack
from x ontoc. There is no such attack.

(r2) X sends two attacks, one in the directioraaind one in the direction af x
is happy if at least one of them is successful, but would aésbdppy with
both successful.



(r3) x sends two attacks as in (r2) above but does not want both t@sdconly
one.

(r1) and (r2) above say:
e X =inimpliesa = outor c = out
while (r3) says:
e X =inimplies @ = outAc =in) or (a = in andc = out).

Figure 48 corresponds to (r3).

Note that we need not make a choice between (rl) and (r2) éopuhpose of this
section. We shall see in Section 4.2 that for the purpose pa@xng Figure 41 we
end adopt (r2).

How can we represent (1) or (2)? What is the correspondingd®ju

We need auxiliary points. Consider Figure 49:

Figure 49: figD1

Figure 49 extends Figure 48 by adding two joint attacks ffan out, ¢ = out}

one ona and one orc. To do this properly we use the help of two new intermediary

pointsa andc. Whena = outandc = out, we geta =in andc =in and{a, ¢} mount the
joint attacks ora andc.

Let us see what happens in Figure 49. Sirds not attackedx = in. We now
consider our possibilities fax andc. If at least one ofa, c} is in, the joint attacks of
{a, ¢} fail and we are back to Figure 48. Figure 48 behaves as we waerpein the
case ofa =outandc = out But in this casea = b = in and so the joint attacks ¢4, c}
onaandc must succeed, thus confirming the assumptiondahab = out

We can display the situation without joint attacks in Figbte

We used auxiliary points as follows:

1. With each node involved, a, c we added new nodesa, ¢ anda, c.

2. We added the intermediarie&), &(x, €), &(X, a).
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Figure 50: figD

Nodesx, a, c attack only viax; a, c respectively.

e(x, @) is an intermediary doing the job o%,(a) attack onc. Similarly e(x, c) is an
intermediary for representing the attack &fg) ona.

These two represent the situation of Figure 48. To get alsoption ofx = in,a =
out, ¢ = out, we usea, ¢ which attacke(x). a attacksa andc attacksc.

Example 3.1 (Analysis of Figure 50)Figure 50 can be stand-alone or can be embed-
ded inside a larger Figure. If Figure 50 is stand-alone, theis the only node which

is not attacked by anything. Hence=xin. Thereforex = out We now examine four
options for a and c:

1. a=out c=out
2. a=in,c=out
3. a=outc=in
4. a=in,c=in
We check consistency of time-outlabelling, for the case x 1.

Casel o
If a = ¢ = out, we gefa = c = in. Therefore €, a) = e(x,c) = a= ¢ = out Also €x) =
in.

e(x) attacks a and c confirming they should be out.

So (1) is a consistent labelling.

Case 2
If a = in and c= outthena = outandc = in. Hence €x, a) = in (it has not attackers,
bothx anda areout) and €Xx, c) is out
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Since € a) = in and €Xx, a) attacks c it confirms c isut

Sincea is outwe geta isin, therefore €x) is out Hence a is not attacked by any-
thing (both €x) and €Xx, ¢) are ouf), confirming that a isn.

We also get isoutin Cisin. This does notgect €x), becausea is in and so &)
isout

Case 3
This is the case of & outand c=in. Itis the mirror image of Case 2 and follows from
the symmetry of the Figure with a and ¢ swapped.

Case 4
This is where &= in and c= in. This case should come out inconsistent. Indeed, in this
case botta, b areout

Hence sincex = outwe get €x, a) and €x, ¢) arein and since they attack ¢ and a
respectively, c and a cannot lre An inconsistency. We also have taat arein and
d(x) is out.

We now need to check what happens when Figure 50 is embedsidd i larger
network. Figure 50 arose from the attempt to eliminate tegudctive attack of Figure
46. So if Figure 46 is part of a larger network then Figure 5D also be in the larger
network. However, the larger network interacts (attackis dreing attacked) only by
{x,a,c} and not the new points. So it is crucial for us to show that & thbels of
{x, a, ¢} are fixed by the larger network then the labels of the new pairg unique and
they are consistent with the labels{af a, c}.

Lemma 3.2 In Figure 50, if we fix the valugn, ?, out of {a, c, x} then the value of the

with the values ofa, c, x}.

Proof. We need to show that if the values {@& c, x} are fixed then the values of the
new points are uniquely determined.

Let N be a general network in which Figure 46 is a subnetwork. Thésums
that there may be attacks da, ¢, x} from other nodes of the netwoil, say from
{dy, ..., d} and also that there may be attacks emanating fim x} individually or
jointly with others onto nodefl’, ..., d,} in N.

We are now replacing itN Figure 46 by Figure 50. The word ‘replacing’ is not
accurate. Figure 46 (i.e. the subnetworkMitomprising of nodesa, c, x} and the
connections between them) remainflinve are adding new points and connections to
Figure 46 to form Figure 50 a part dF.

We want to show that any acceptable labellingn N which gives values t¢a, c, x}
can be uniquely extended to the new points of Figure 50 in anetaconsistent with.
Call the new extension’.

We need to make a case analysis on the valuaéf(c), A(x).

We have to check all cases. We follow the cases in three gnoups, x = 0 and
x =?. For each group we check all casesaindc as in Table 1.
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Table 1: TA

case| cC a
1 out | out
2 out| in
3 in | out
4 in in
5 ? | out
6 ? in
7 in ?
8 out| ?
9 2 2

Group x=in

Table 1 suggests 9 cases foandc. However not all are possible iN. SinceaA is
an acceptable labelling and= in, only cases in which eithex = outor c = outare
possible.

Thus we need examine only cases 1, 2, 3, 5, 8. Cases 1, 2, 3 Ineadyabeen
examined in Example 3.1. They are OK and are internally ateisi. Cases 5 and 8
are completely symmetrical (since Figure 50 is symmetiital andc). So we need
examine only Case 5.

Case 5
a=outc="?
First we see which values for the new points are forced bycthse.

out= a=in
in= a= out
in = e(x,a) = out

a
a
a

Claim
€(x) cannot ben!

Otherwise, sinca = outthen if &(x) werein thenc = out, hencec = in hencec is
out. But we are given that =?. Soe(x) is not in.

Therefore, since(x, a) = outande(X) is eitherout or ? we have a situation which
is consistent witte =?. We now use the fact that=? to getc =? and hence =?, and
henceg(x) =?. This establishes a unique value é(x). We continue, since = outand
c =7, we geg(x, c) =7.

We have thag(x, ) attacksa. Does this contradict = out? The answer is n@ is
outbecause of some attack frdxh So we got for Case 5 unique consistent values for
the new points.

Group x= out
Sincex = out, there are no attacks fromon a andc, therefore all values dfa, c} of
Table 1 are possible. We have to examine all cases.
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We begin by checking what values are forced on the new pojntisebfact thatx =
out We get
X= out= x=in
X= in = e(x,a) = g, c) = &x) = out

Since there are no attacks from the new points of Figure 5therpbints{a, ¢},
their value consistently stand in the expanded network.

lif A =1,0,? use the notation4 A to mean-, 1, ? respectively. Thus the value of
aiis determined as 4 A(a) and the value of is determined as 4 A(c). Thus the value
of ais the same as the value@find the value of is the same as the value of

Hence for all cases of Table 1 we see that the values of the newspare unique
and are consistent with the values{afc} for our group case af = out

Group x=?
If x =? andx disjunctively attacks andc, we cannot have the case af= ¢ = in,
because maybg can bein. Similarly we cannot have the casesaf in, ¢ =? nor
a=?andc =in.

So let us see first what we can get which holds for all cases

X=?= x=?
This is all we can get.
We have to check cases 1-3, 5, 8, 9.

Casel
¢ = outanda = out

a= out= a= inande(x,a) = out
c= out= c= inande(x,c) = out
a= in=a= out

C= in=C= out
X=?anda=C= out= ex) =?

Now a andc are out, they are attacked bfx) =?. This is still consistent.
So this case is OK.

Case 2
c =outanda=in.

a= out= a= inande(x,a) = out

We now get unique values for the new points. We have consigteacause there
are no attacks ofa, c} from the new points.
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Case 3
¢ =inanda = out
This is the symmetrical case of Case 2.

Case 5
¢ =? anda = out
We havex =? andx =?

a= out=a=in

a= in=eg(x a)= out
c=?=c=?

X =? andc =? = &(x,¢) =?
a=in=a= out
c=?=cCc=?

a= out andc=?= e(x) =?

We now got unigue values for all new points. Do we have coesst?
a = outis attacked by

&(x) = &(x,¢) =7?

Hencea remainsout We have consistency here.
¢ =7 is attacked bg(x, a) = out, SO we maintain consistency.

Case 8

Cc =outanda="?

This case is symmetrical with Case 5, wihandc interchanged. By symmetry it is
OK.

Case 9
a=?andc =?
In this case we get everything has value ? and we have no pnoble ]

The situation of moving from Figure 46 to Figure 50 is typiaat the fact that we
dealt with an attack fronx on {a, c} and we did not deal with attacks from a general
setX = {xi,..., Xy} on a general sét = {yi,...,ym} does not incur any loss of gen-
erality. In the general case we proceed similarly. We neetitbthe auxiliary points
y1(X),....ym(X) add attacks of; ony;(X) and add joint attacks as in Figure 51

3.2 Eliminating disjunctive and joint attacks

We are now ready, following our conceptual discussion irtiSe@.1, to give a series of
definitions and Lemmas showing how networks with joint argjutictive attacks can
be reduced to ordinary Dung networks with only point-tortaittacks. The reduction
is done with the help of auxiliary points, using the intuitidescribed in Figure 52

Definition 3.3 (Critical subsets) LetP; = (S;, R) be two networks. Suppose all points
of networkP, are embedded inside netwdPk. So S is a subset of & We say that
is acritical subset of $iff every Caminada labelling on,San be extendedniquely
to a labelling on §. This means that the additional nodes gf@ly help clarify what
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Joint atiack of o :Joint gttack of
(V- - V1o Ym)

Figure 51: fige

Network P,

Figure 52: figE2

is going on in $ and do not add any additional information. Any Caminada labgs
of S; which agree on $must be equal.

This sort of characterisation is known from model theoryefdaf classical models
Mz in alanguagé, is said to beEC, iff it can be characterised as the set of all models
of a first-order theory, of L,. The set of models is said to IRC, iff we can extend
the languagé., such that the set there exists a theagyin the languagé.; such that
any modem; of M, can be obtained as the restriction = m; | L, to L, of a unique
modelm; of A;. Furthermore, all restrictions o, of models ofA; are models of\,.

We are now ready to push on with our reduction.

Definition 3.4 (Eliminating disjunctive attacks) LetP = (S, SOR). LetS = SuU
{s(X)lse S,XC S, X # &}.
LetP; = (Sy, S‘l), R;) be defined as follows, see Figure 51:

1. Let XRa if XRa holds.
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by bn

Figure 53: figlA

2. If XRY holds then let X (Y — {y})Ryy hold for every ¢ Y.
3. Let sRS(X) hold forevery = S, X C S, X # @
4. If XRY holds lety(X)ly € Y}Ryy hold of each ¢ Y.

Lemma 3.5 For anya : S — {0, 1, ?} we have thatfl is proper labelling onP iff 1 is
proper onP;.

Proof. One can give a direct proof of this theorem by working dinecofi Figure 51,
converting it to the analog of Figure 50. However a simplertiie to use Lemma 3.2
for the case of disjunctive attacks involving only two elerse All we need to do is to
convert a disjunctive attack an> 3 elements, as in Figure 53 to a disjunctive attack
onn-1 elements as in Figure 54. We use auxiliary points as inglitat

We can therefore assume that we are dealing only with disjnattacks on two
points, since all other disjunctive attacks can be reduoenivbd points by repeated
applications of the above procedure.

The case of disjunctive attacks of two points was dealt withFigure 50 and
Lemma 3.2.

[

Definition 3.6 (Eliminating joint attacks) Let P = (S,S°R) be a joint attack net-
work. Define an ordinary networR* = (S*,R"), with S € S* and S, R* as follows.
We add to S the following additional groups of points.

GroupG;
For every se S a new nods
GroupG;
For every Xc S, X finite with two points or more add the nod@<g
LetS" =SuUGLUG:,.
Define R on S* as follows.

Assumgay, ..., an)Rb; hold forn> 2,j = 1,...,k, where B, ..., by are all the
nodes jointly attacked byay, . . ., a,}. Figure 55 shows the situation.
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e
by ... bna
Figure 54: fig1B
al L an
by bm

{ag,...,anJRby, ..., {ag,...,a )Ry

Figure 55: fig33
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{al,~-~,an}R{bl7-~-,bm}

Figure 56: fig33a

Note that we cannot represent this situation by writing g6 because that

would be a disjunctive attack.
We define Raccording to Figure 57. Thus Figure 55 with R becomes Figute 5

with R*.
We have that the following hold in‘R

1. sRsforany se S.

2. tR's wheneveft}Rs

3. If{ay,...,an}Rb;, holds with n> 2, and j= 1,...,m then legR'&(ay, . .., an)
holdfori=1,...,nandlet éa,...,a,)R*b; hold, for j=1,...,m.

Lemma 3.7 LetP andP* be as in Definition 3.6. Observe the following

1. Since s is the only attacker fwe have for any Caminada labelling that

A9 =1if (=0
A(X) =?ifF A =2

2. In Figure 57
Ale(as,....an) = Liff
Aag) =Aa) =...=Aa@n) =1
3. IfA(a) =1fori=1,...,n,thend(b;) =0,j=1,...,m.
4. If for some ji(a) = 0thenA(e(ay, . . .,a,)) = 0and then there is no attack from
e@s,...,aponanyh, j=1,...,m.

5. Any Caminada—Gabbay labelling function #hon S* induces a labellingl =
A 1TSonS.
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Figure 57: fig34

To explain the relationship betwe@wandP* we need some general concepts.

Definition 3.8 LetP = (S, R) be ordinary Dung argumentation networks. LetdES
be a set of nodes. We say that E ieréiical set inP iff the following holds:

(*) For any two Caminada labelling; and 2, on P, if 2; and A, agree on E then
A1 =2

Lemma 3.9 In Definition 3.6, S is critical inS*, R¥).
Proof. Follows from Lemma 3.7. [ |

Remark 3.10 (Labelling of higher order networks) To show the existence of labelling
for higher order network® = (S, S° R), we reduce the network to an ordinary network
P* = (S*, R") by eliminating first the disjunctive attacks and then thefaittacks.

From our sequence of Lemmas we know that $* is critical in P*. Therefore
any labellinga* on S* induces a labellingl = 2* ' S on S which is acceptable ih
Furthermore 2* can be uniquely retrieved frorhand thus anyl on S can be expanded
to a uniquetl* on S'.

Example 3.11 Figure 58 displays the following network frdr].

S={ab,cde f}
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Figure 58: fig35

R is defined as follows

The grounded extension{ig}. The preferred extensions &j& b, e} and{a, c, d}.

We now construct our reduct ordinary network. We add pomtsc, d, ef and
e(a, b, d), e(a, b), ec, e) and €b, f) and get Figure 59.
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&a c,d)

e@a c)

Figure 59: fig36

We have the following attacks:

a—a
b—b
c—oC
dod
e—e
fof
a— e(acd)
c— ¢e(ac,d)
d— e(a c,d)
e@ac,d)—b
a—e@hb)
b — e(a,b)
e@ab) - c
b—d

c— €(c,e)
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unnamed junction

Figure 60: fig37

e— €(c,e)
e, e) »d
d—oe
b — e(b, f)
f - b, f)
eb, f) > e
a—f
d- f

Graphically it is very easy to convert any joint network to@udinary network as
follows.

1. First replace any node x by » X and let any arrows emanating from x to
emanate now from. Any arrows targeting x remain as is.

2. Any joint attack from g...,a, on b have arrows emanating from eagh(aow
emanating frong) to an unnamed junction where they all meet and then a single
arrow go to b as in Figure 60.

Name the junction(@y, ..., a,) and let the arrows be now attacking arrows of
an ordinary network. We get Figure 61.

4 Comparison and discussion

4.1 Comparison with Nielsen and Parsons

We compare this work with the paper of Nielsen and Par¢fs11. Nielsen and
Parsons put forward a system where joint attacks are pesdibky introduce attacks
of the formXRywhereX is a non-empty set of arguments anig an argument.
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e@, ..., an)
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Figure 61: fig38

The attackXRY, whereY is a set of arguments is reduced to
XRYift XRyfor somey € Y.

This is the same as our approach for the case in which the riecfwe are dealing
with have no arrows in them and in which there are no disjuaditacks. The point
of view of Nielsen and Parsons arises from a qualitative ment in favour of joint
attacks. They argue their case convincingly and proceeduseldp the theory beauti-
fully in their first papef10]. In the second papét 1] they continue with an algorithm
for computing extensions.

We arrived at these attacks from dfdrent point of view. We are substituting
one network in another. We thus get a network attacking amatatwork. Since the
networks may have points in common they can internally imft@eone another.

To obtain the Nielsen and Parsons case our networks shouddrtwainternal ar-
rows, and no disjunctive attacks. So we interpret an attackmetwork as in Figure 46
reading (r2). Another dierence between the two approaches is the reduction we make
of the joint attack networks to ordinary Dung networks. Thigioal network becomes
a critical subset in an ordinary Dung network and so we canpedethe extensions of
our original network by computing the extensions of the eéargetwork.

We would like to quote and criticise a statement of Nielsewséns in their paper
[10] they say:

We claim that it is never necessary to specify a non-singleton set of

arguments as attacked, as in {Aq,...,An} > {B1,...,Bn}: If collective
defeat is taken to heart, the attack can be reformulates as a series of
attacks

{A,...,An}» B

{A1,...,An}» B
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It is easily seen that the above attacks would imply the attack, which is
intended, as the validity of the A-arguments would ensure that none of
the B-arguments are valid.

If instead indeterministic defeat is required, the attack an be reformu-
lated as
{Alv"'vanZ7"'7B,}>Blv

which ensures that in case the A arguments are valid, then B; cannot
be a valid argument if the remaining B-arguments are also true, thus
preventing the entire set of B-arguments from being valid at once, if the
A-arguments are true.

Nielsen and Parsons use reading (r3) of Figure 46 (to useeouiriology), namely
they use Figure 48. Their notion of ‘collective defeat’ reqa reading (r2) and (r3) as
Nielsen and Parsons claim.

4.2 Flow argumentation networks

This subsection deals with Figure 41. To explain Figure 4 need a consistent point
of view to explain the case of disjunctive attacks as in Fégd. For Figure 46 we
know that we require that

(*) x=inimpliesa = outor c = out
The questions relevant to our understanding of Figure 41haréllowing

Question 1
Doesx attack each od andc and expects at least one of them to succeed (reading (r2)
of Figure 41 in Section 31.) or doesattack only the sefa, c} and expect (*) above to
hold? (Reading (rl1) of Figure 41 in Section 3.1).

Obviously to be able to give Figure 41 any meaning we must tthe@pview thatx
attacks each ad andc (reading (r2)).

We now ask our second question.

Question 2

When the attack ok on one of{a, ¢} succeeds, e.@ = out, is x still attackingc? In
other wordsx is still attacking even thougk does not care ik attack succeeds? If the
answer is no, and there is no attackapthen this means that in Figure 41, the labelling

1. x=in,b=in,a=outc=in

is acceptable, because the success of the attagk(an= out) entails that there is
no attack fromx ontoc and hence the joint attack withon c fails becausex is not
attacking and hence= in.? If the answer is yes, and indeed there is a attack thren
(1) is not acceptable and (2) is acceptable.

2. X=1in,b =1in, a=outandc = out

2In this casea = outmakesx attack (withb) on ¢ a voluntary attack. We investigate voluntary attacks in
[12].
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Of course, both views will accept (3) below.
3. x=in,b=in,a=inandc = out

We adopt the view that sends attacks in the direction @findc and expects one
of them to succeed (this is the (r2) reading of Figure 46 irtiSe&.1).

Notice the words we use. We talk aboxtending attacks in the directiongf We
speak of ‘joint attacks’ and ‘disjunctive attacks’. We ndedformalise our intuitive
model. We found that the best way to represent what is goirig omterms of ‘flow’,
the attacks flow along the edges of the network. So we caléttlesv argumentation
networks’.

Itwould help if we consider an example. Consider Figure @3clvis an expansion
of Figure 41, with a new twist to it. The arguments of Figurea@{x, a, b, c, d, e} and
we also gave names to the flow (flow of attacks) junctiong, y, §}. These are not
arguments, just nodes in the graph, to help us follow thelkdtdows.

d X b

Figure 62: figh6

In Figure 62 d sends a disjunctive attack through junctienThe attack splits into
an attack ore and an attack in the direction efandc. x at the same time sends a
disjunctive attack through junctionwhich splits one in the direction @& and one in
the direction oft. Thex attack going tac joins forces with the attack omemanating
from b. At junction¢ they join and become a joint attack on

The attack ofx in the direction ofa meets the attack af in the direction ofa and
c at junctiong and decide to mount a joint attack emanating fi@mn a andc. The
flow fromy to § is an attack ok intended fora, atg it joined the flowd — @ — 8 and
became a joint attack from on a and onc. We can say did not mind forming this
coalition withd and adding: to the attack becauseis attackingc anyway through the
directionx -y - 6 — c.

The above description is in literary prose, giving intentido the arrows in terms
of flows. How do we do this formally? And how do we calculatedéibg?

Suppose we labal = out, a = in, e = in. Is this OK withd = x = b =in? Or
maybe we need als®= outnote = in?
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We need a formal model which follows the flow usiags, y, §.
To achieve that we need a slightlyfidirent point of view.

To be continued ...
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