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Abstract

In this paper, we examine an argument-based semantics called semi-stable
semantics. Semi-stable semantics is quite close to traditional stable seman-
tics in the sense that every stable extension is also a semi-stable extension.
One of the advantages of semi-stable semantics is that for finite argumen-
tation frameworks there always exists at least one semi-stable extension.
Furthermore, if there also exists at least one stable extension, then the semi-
stable extensions coincide with the stable extensions. Semi-stable semantics
can be seen as a general approach that can be applied to abstract argumen-
tation, as well as to fields like default logic and answer set programming,
yielding properties very similar to those of paraconsistent logic, including
the properties of crash resistancy and backwards compatibility.
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1. Introduction

The stable model semantics, a concept that goes back to [36], has been
applied in fields like formal argumentation [17], default reasoning [32], (nor-
mal) logic programming [21] and answer set programming [22]. During the
last two decades, various different semantics have been stated as alterna-
tives for stable semantics, like regular or preferred semantics [39, 17] or
well-founded or grounded semantics [33, 17]. Although some of those se-
mantics, like grounded and preferred, have become popular in the domain
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of formal argumentation, stable semantics still enjoys a strong support in
fields like (normal) logic programming and answer set programming, where
various interpretations of the stable model semantics exist [26, 25].

The varying levels of support for either stable semantics or its alter-
natives can to some extent be explained by the nature of the application
domain. In the field of formal argumentation the emphasis is often on how
to combine various principles and rules of thumb, to yield an overall coher-
ent outcome. That is, one would like to have the most reasonable outcome
in the presence of possibly imperfect information. In this context stable
semantics, with its fundamental property that relatively small difficulties in
the input-data can cause the total absence of stable extensions, may not
seem an attractive option. This has led most of the argumentation research
to shift its focus on other semantics, of which grounded and preferred are
among the most well-known.

The situation is quite different in, for instance, the field of (normal) logic
programming and answer set programming. Here, the emphasis is often on
computable forms of constraint satisfaction. If one would apply answer set
programming to solve a particular constraint satisfaction problem then one
wants the models of the answer set program to correspond to the solutions
of the original problem. Consequently, if the original problem does not have
any solutions, then one also wants to obtain no anwser sets. Hence, the fact
that stable semantics sometimes yields no extensions could in this respect
even be seen as an advantage instead of a disadvantage.

One of the assumptions underlying the stable model semantics, however,
is that the original problem has been modelled in a way that is fully complete
and correct. For if it is not, then the result can be no outcome instead of a
merely imperfect outcome. In essence, the situation is not that different from
classical logic, where syntactically small imperfections in the consistency of
the input-data can lead to an overall collapse of all entailment.

To deal with the possible collapse of classical logic entailment in the pres-
ence of imperfect information, various forms of paraconsistent logics have
been stated. The idea here is that relatively small problems in the original
specification should no longer lead to a global “collapse” of all entailment.
That is, the formalism should be what we call “crash resistant”. Further-
more, one would like to have the same outcome as classical logic in situations
where the input-specification does not contain any flaws that lead to such
collapses, which is what we call “backwards compatibility”.

In this paper, we explore the notion of paraconsistency in the context of
formalisms that use stable semantics, such as default logic and answer set
programming. We are interested in ways that make them tolerant for flaws
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in their respective input-specifications (“crash resistant”), yet at the same
time yield the same outcome as under stable semantics in cases where sta-
ble extensions do exist (“backwards compatibility”). We provide a general
solution, called semi-stable semantics with which one can obtain these prop-
erties. Not only do we specify the abstract solution, but we also illustrate
how it can be applied in the domains of abstract argumentation, default
reasoning and logic programming. Moreover, we also supply a complexity
analysis for our solution.

This paper is structured as follows. First, in Section 2 we provide a
formal account of what we see as a number of desirable properties regard-
ing logical formalisms. Our treatment builds on [10], where a number of
rationality postulates were given. Our current paper, however, takes a more
general approach and no longer assumes the input specification to be of a
particular form or syntax. Then, in Section 3, we present our approach of
semi-stable semantics and show how it satisfies the requirements outlined
in Section 2. We have chosen to initially specify our approach using the
framework of formal argumentation [17], which is rapidly gaining popular-
ity as a general way of describing various forms of nonmonotonic reasoning.
In Section 4, we describe how the approach of semi-stable semantics can
be implemented in the context of logic programming, and that the result
satisfies the earlier mentioned desirable properties. In Section 5 we do the
same for default logic. Section 6 we give a complexity analysis of various
decision problems related to our new approach. In Section 7 we discuss how
semi-stable semantics relates to other approaches. In section 8 we round off
the discussion with a few concluding issues and remarks.

2. On Logics, Crashes and Contamination

In this section we describe a number of desirable (paraconsistent) prop-
erties that can be defined for any logical formalism. In contrast to [10], we do
not make any assumptions regarding the particular syntax of the logical for-
malism under review. The notion of a logical formalism and its entailment,
as described in Definition 1 below, is therefore kept very general.

Definition 1. A logical formalism is a triple (Atoms,Formulas,Cn) where
Atoms is a countably infinite set of atoms, Formulas is the set of all well-
formed formulas, and Cn : 2Formulas → 22Formulas

is the consequence func-
tion.

Notice that the consequence function takes as input a set of formulas and
has as output a set of sets of formulas. This is to accomodate formalisms
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like default logic (or answer set programming) where a single default theory
(or answer set program) can generate several extensions (or answer sets).
For formalisms that generate only one set of formulas (like for instance
classical logic) we sometimes abuse notation and write Cn(Ψ) = Φ instead
of Cn(Ψ) = {Φ} (where Ψ and Φ are sets of classical formulas).

In the following definitions, we write atoms(F) for the atoms that occur
in a set of formulas F . For instance: atoms({p ∧ q; r ∨ p}) = {p, q, r} and
atoms({p ← q; r ← s, t}) = {p, q, r, s, t}. Furthermore, if A is a set of
atoms and F a set of formulas then we write F|A for those formulas in F
that contain only atoms from A. For instance: {p∧q; q ⊃ r; s∨t; q}|{p,q} =
{p ∧ q; q}. We say that two sets of formulas F1 and F2 are syntactically
disjunct iff atoms(F1) ∩ atoms(F2) = ∅.

The first property to be stated is that of non-interference. Non-interference
roughly means that, for two completely independent knowledge bases F1 and
F2, F1 does not influence the outcome with respect to the language of F2.

Definition 2 (non-interference). We say that a logical formalism (Atoms,
Formulas,Cn) satisfies non-interference iff for every F1,F2 ⊆ Formulas
such that F1 and F2 are syntactically disjunct it holds that Cn(F1)|atoms(F1) =
Cn(F1 ∪ F2)|atoms(F1) and Cn(F2)|atoms(F2) = Cn(F1 ∪ F2)|atoms(F2).

A property closely related to non-interference is that of contamination.
Informally, a set of formulas is said to be contaminating iff it yields the same
outcome when merged with a totally unrelated set of formulas. That is, a
contaminating set of formulas makes all other unrelated sets of formulas
irrelevant when being merged with it.

Definition 3 (contamination). Let (Atoms,Formulas,Cn) be a logical
formalism. A set F1 ⊆ Formulas, with atoms(F1) ( Atoms, is called
contaminating iff for every F2 ⊆ Formulas such that F1 and F2 are syn-
tactically disjunct it holds that Cn(F1) = Cn(F1 ∪ F2).

Based on the concept of contamination, it is then possible to define the
property of crash resistancy.

Definition 4 (crash resistancy). We say that a logical formalism satis-
fies crash resistancy iff there does not exist a set of formulas F that is
contaminating.

The property of crash resistancy is perhaps best understood by making
an analogy. As any experienced computer user knows, it sometimes can
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occur that a program misbehaves. Under some operating systems, however,
the fact that one program misbehaves (like executing illegal instructions)
causes the entire operating system to collapse, which then also has conse-
quences for all other programs that were running, even if they are totally
unrelated to the program that caused the original problem. The main point
here is that one wants to avoid local problems having global effects, and
rendering all other things irrelevant. It is this property that is expressed in
the above definition of crash resistancy.

We say that a logical formalism is sufficiently expressive if, first of all,
the entailment is never fully determined by the atoms alone. That is, it
should be possible for two sets of formulas, with the same atoms, to have
different entailment. This is satisfied by most formalisms we know of. For
instance, in classical logic we have that Cn({a ∧ b}) 6= Cn({a ∨ b}) and in
logic programming we have that Cn({a←}) 6= Cn({a← a}). Furthermore,
for each set of atoms A, there should be a set of formulas whose atoms are
exactly A. Formally, this can be expressed as follows.

Definition 5. We say that a logical formalism (Atoms,Formulas,Cn) is
sufficiently expressive iff for each A ⊆ Atoms such that A 6= ∅ there
exist F1,F2 ⊆ Formulas such that atoms(F1) = atoms(F2) = A and
Cn(F1)|A 6= Cn(F2)|A.

For any sufficiently expressive formalism, non-interference implies crash
resistancy.

Theorem 1. Each sufficiently expressive logical formalism (Atoms, Formulas,
Cn) that satisfies non-interference also satisfies crash resistancy.

Proof: We prove this by modus tollens. Suppose the logical formalism
does not satisfy crash resistancy. Then there exists a set of formulas (say,
F1) that is contaminating. That is, it holds that atoms(F1) ( Atoms and
for every F2 ⊆ Formulas with atoms(F1) ∩ atoms(F2) = ∅ it holds that
Cn(F1) = Cn(F1 ∪ F2). Let A be Atoms\atoms(F1). From the fact that
atoms(F1) ( Atoms it follows that A 6= ∅. The fact that the formalism
is sufficiently expressive implies that there exist F2,F3 ⊆ Formulas such
that atoms(F2) = atoms(F3) = A and Cn(F2)|A 6= Cn(F3)|A. From the
fact that F1 is contaminating, it follows that Cn(F1) = Cn(F1 ∪ F2) and
Cn(F1) = Cn(F1 ∪ F3). It then follows that Cn(F1 ∪ F2)|A = Cn(F1 ∪
F3)|A. This, together with the fact that Cn(F2)|A 6= Cn(F3)|A then implies
that Cn(F2)|A 6= Cn(F1 ∪ F2)|A or Cn(F3)|A 6= Cn(F1 ∪ F3)|A. From the
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fact that atoms(F2) = atoms(F3) = A it then immediately follows that
Cn(F2)|atoms(F2) 6= Cn(F1 ∪ F2)|atoms(F2) or Cn(F3)|atoms(F3) 6= Cn(F1 ∪
F3)|atoms(F3). In either case, non-interference is violated.

The converse of Theorem 1 does not hold. That is, it is not the case
that each sufficiently expressive logical formalism that satisfies crash resis-
tancy also satisfies non-interference. As an example, Pollock’s oscar [29]
satisfies crash resistancy but for reasons explained in [11] does not satisfy
non-interference.

The last property to be discussed is that of backwards compatibility. The
idea is, roughly, that if a formalism (like paraconsistent logic) is to improve
on an existing, possibly non crash resisting formalism (like propositional
logic) it should yield the same outcome for all non-contaminating input in
the latter formalism.

Definition 6 (backwards compatibility). Let (Atoms1,Formulas1, Cn1)
and (Atoms2,Formulas2, Cn2) be two logical formalisms with Atoms1 =
Atoms2 and Formulas1 = Formulas2. We say that (Atoms2,Formulas2, Cn2)
is backward compatible with (Atoms1,Formulas1, Cn1) iff for each set of
formulas F that is not contaminating under Cn1, it holds that Cn2(F) =
Cn1(F).

As an example of how the above postulates can be applied, consider the
case of classical logic. Classical logic does not satisfy non-interference (Def-
inition 2) since an inconsistent set of formulas (say, {p,¬p}) interferes with
any consistent set of formulas (say, {q}). Also, any set of inconsistent formu-
las is contaminating in the sense of Defintion 3. Hence, classical logic is not
crash-resistant (Definition 4). The issue of how to define an alternative form
of entailment that satisfies non-interference and crash-resistancy has been
studied in the field of paraconsistent logic. The first generation of paracon-
sistent logics, such as [14], did satisfy non-interference and crash-resistancy,
but was not backwards compatible to classical logic. That is, even in situa-
tions that were clasically consistent, the new paraconsistent formalism could
yield different outcomes than classical logic. Other formalisms, such as that
of Belnap [6, 5, 1] and of Carnielli et al [12], do satisfy non-interference and
crash-resistancy, while at the same time remaining backward compatible
with classical logic.

One can apply the same postulates to nonmonotonic formalisms like
default logic and answer set programming. These formalisms do not satisfy
non-interference (Definition 2) since a default like true : ¬p/p or a rule
like p ← not p can easily cause the absence of any default extensions or
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answer sets. This default (and rule) is also contaminating in the sense of
Definition 3. Hence, default logic and answer set programming are not
crash-resistant (Definition 4). It can be mentioned that several alternative
semantics for default logic and logic programming have been specified, such
as [33, 39, 7]. However, none of these alternatives is backward compatible
with the original formalisms of default logic and answer set programming.
That is, even in situations where default extensions or answer sets do exist,
the alternative formalisms can yield different outcomes. The interesting
question, therefore, is whether one can find a general principle that can be
used to modify a wide range of formalisms, including abstract argumentation
under stable semantics, default logic and answer set programming, such
that the result satisfies non-interference and crash-resistancy but is at the
same time backward compatible with the original formalism. Such a general
principle will be introduced in Section 3.

3. An Abstract Account of Semi-Stable Semantics

In this section we introduce the notion of semi-stable semantics. We
choose to introduce it using the formalism of abstract argumentation, and
later show how it can be applied to logic programming in Section 4 and to
default logic in Section 5. We first start with some basic definitions regarding
abstract argumentation based on [17]. In line with [3, 4] we restrict ourselves
to argumentation frameworks with a finite set of arguments.

Definition 7 (argumentation framework). An argumentation framework
is a pair (Ar , att) where Ar is a finite set of arguments and att ⊆ Ar ×Ar.

An argumentation framework can be represented as a directed graph in
which the arguments are represented as nodes and the attack relation is
represented as arrows. In several examples throughout this paper, we will
use this graph representation.

The shorthand notation A+ and A− stands for, respectively, the set
of arguments attacked by A and the set of arguments that attack A. If
Args ⊆ Ar then we write (Ar , att)|Args as a shorthand for (Args , {〈A,B〉 |
〈A,B〉 ∈ att and A,B ∈ Args}). In the definition below, F (Args) stands
for the set of arguments that are acceptable in the sense of [17].

Definition 8 (defense / conflict-free).
Let (Ar , att) be an argumentation framework, A ∈ Ar and Args ⊆ Ar.
We define A+ as {B | A att B}
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and Args+ as {B | A att B for some A ∈ Args}.
We define A− as {B | B att A}
and Args− as {B | B att A for some A ∈ Args}.
Args is conflict-free iff Args ∩Args+ = ∅.
Args defends an argument A iff A− ⊆ Args+.
We define the function F : 2Ar → 2Ar as
F (Args) = {A | A is defended by Args}.

In the definition below, definitions of grounded, preferred and stable
semantics are described in terms of complete semantics, which has the ad-
vantage of making the proofs in the remainder of this paper more straight-
forward. These descriptions are not literally the same as the ones provided
by Dung [17], so it will be proved that they are in fact equivalent to Dung’s
original versions of grounded, preferred and stable semantics.

Definition 9 (acceptability semantics). Let (Ar , att) be an argumenta-
tion framework and Args ⊆ Ar be a conflict-free set of arguments.

- Args is admissible iff Args ⊆ F (Args).

- Args is a complete extension iff Args = F (Args).

- Args is a grounded extension iff Args is the minimal (w.r.t. set-
inclusion) complete extension.

- Args is a preferred extension iff Args is a maximal (w.r.t. set-inclusion)
complete extension.

- Args is a stable extension iff Args is a complete extension that attacks
every argument in Ar\Args.

A well-known property of argumentation theory is that for each argumen-
tation framework there exists exactly one grounded extension. It contains
all the arguments which are not attacked, as well as those arguments which
are directly or indirectly defended by non-attacked arguments.

We say that an argument is credulously justified under a particular se-
mantics iff it is in at least one extension under this semantics. We say that
an argument is sceptically justified under a particular semantics iff it is in
each extension under this semantics.

Grounded, preferred and stable semantics can be stated in various equiv-
alent ways. For grounded semantics, for instance, one does not actually need
to explicitly state the requirement of conflict-freeness.
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Proposition 1. Let (Ar , att) be an argumentation framework and let Args ⊆
Ar. The following statements are equivalent:

1. Args is the minimal complete extension (Definition 9)

2. Args is the minimal fixpoint of F [17, Definition 20]

Proof:

from 1 to 2: Let Args be the minimal complete extension. Suppose that
Args is not a minimal fixpoint of F . Then there exists a proper subset
Args ′ ( Args which is a fixpoint of F . As Args is already the smallest
fixpoint of F that is conflict-free, this can only mean that Args ′ is not
conflict-free. But this is impossible as a subset of a conflict-free set is
also conflict-free. Contradiction.

from 2 to 1: Let Args be the minimal fixpoint of F . As the monotonic
increasing function F has a unique minimal fixpoint, the minimal fix-
point of F must be unique. From the previous point of this proof it
then follows that the minimal complete extension is equivalent to this
fixpoint.

As for preferred semantics, our definition is equivalent to that of [17].

Proposition 2. Let (Ar , att) be an argumentation framework and let Args ⊆
Ar. The following statements are equivalent:

1. Args is a maximal complete extension (Definition 9)

2. Args is a maximal admissible set [17, Definition 7]

Proof: This follows from Theorem 25 of [17].
As for stable semantics, there exist at least four equivalent ways of de-

scribing it.

Proposition 3. Let (Ar , att) be an argumentation framework and let Args ⊆
Ar. The following statements are equivalent:

1. Args is a complete extension that attacks every argument in Ar\Args
(Definition 9)

2. Args is a preferred extension that attacks every argument in Ar\Args

3. Args is an admissible set that attacks every argument in Ar\Args

4. Args is a conflict-free set that attacks every argument in Ar\Args [17,
Definition 13]

9



Proof:

from 1 to 2: Let Args be a stable extension. This means that Args is a
complete extension that attacks every argument in Ar\Args . Suppose
that Args is not a preferred extension. That means that there is a
complete extension Args ′ ) Args . But as Args attacks every argu-
ment in Ar\Args , this means that Args ′ would not be conflict-free
and therefore could not be a complete extension. Contradiction.

from 2 to 1: Trivial (every preferred extension is also a complete exten-
sion).

from 2 to 3: From Proposition 2 it follows that a preferred extension is a
(maximal) admissible set.

from 3 to 2: Let Args be an admissible set that attacks all arguments in
Ar\Args . Suppose that Args is not a preferred extension. This means
that there exists an admissible set Args ′ ⊇ Args . But as Args attacks
all arguments in Ar\Args , this would mean that Args ′ is not conflict-
free and therefore could not be an admissible set. Contradiction.

from 3 to 4: This follows directly from the fact that an admissible set is
conflict-free.

from 4 to 3: Let Args be a conflict-free set that attacks all arguments in
Ar\Args . Then, every argument that attacks Args is also attacked by
Args. This means that Args is an admissible set.

The advantage of Proposition 1, 2 and 3 is that they offer a lot of flexi-
bility for choosing the definition of a particular semantics that is best suited
for a particular proof. For most purposes, we will apply the descriptions
of the semantics as defined in Definition 9. It will be explicitly mentioned
where we do otherwise.

The notion of semi-stable semantics, as put forward in the current paper,
is quite similar to that of preferred semantics. The only difference is that
not Args is maximized, but Args ∪ Args+.

Definition 10. Let (Ar , att) be an argumentation framework and Args ⊆
Ar. Args is called a semi-stable extension iff Args is a complete extension
where Args ∪ Args+ is maximal.
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If Args is a set of arguments, then Args ∪Args+ is called its range — a
notion first introduced by Bart Verheij [34].

For every (finite) argumentation framework, there exists at least one
semi-stable extension. This is because there exists at least one complete
extension (the grounded) and the fact that the argumentation framework is
finite implies that there exist at most a finite number of complete extensions.
The semi-stable extensions are then simply those complete extensions in
which some property (its range) is maximal.

Just like preferred semantics can be expressed as a maximal complete
extension or as a maximal admissible set, semi-stable semantics can be ex-
pressed as a complete extension with maximal range or as an admissible set
with maximal range.

Proposition 4. Let (Ar , att) be an argumentation framework and Args ⊆
Ar. The following statements are equivalent:

1. Args is a complete extension such that Args ∪Args+ is maximal (Def-
inition 10)

2. Args is an admissible set such that Args ∪ Args+ is maximal

Proof:

from 2 to 1: A complete extension is a stronger condition than an admis-
sible set, so we only need to prove that an admissible set Args where
Args ∪ Args+ is maximal is also a complete extension. Suppose this
is not the case. Then there must be an argument B 6∈ Args that is
defended by Args . This means that every argument C that attacks
B is attacked by an argument in Args . Therefore, B 6∈ Args+ (other-
wise Args would not be conflict-free). This means that Args ∪ {B} is
conflict-free and self-defending, and thus an admissible set. But this
would mean that Args is not an admissible set for which Args∪Args+

is maximal. Contradiction.

from 1 to 2: An admissible set is a weaker condition than a complete ex-
tension. We therefore only need to prove that maximality still holds
under this weaker condition. Suppose that Args ∪Args+ would not be
maximal. This means there exists an admissible set Args ′ such that
(Args ′∪Args ′+) ) (Args ∪Args+). From the previous point (“from 2
to 1”) it follows that Args ′ would be a complete extension. But then
Args would not have been a complete extension where Args ∪ Args+

is maximal. Contradiction.

11



One of the properties of semi-stable semantics is that every stable ex-
tension is also a semi-stable extension.

Theorem 2. Let Args be a stable extension of an argumentation framework
(Ar , att). Args is also a semi-stable extension of (Ar , att).

Proof: LetArgs be a stable extension of (Ar , att). ThenArgs is a complete
extension that attacks every argument in Ar\Args . This means that Args ∪
Args+ = Ar . Therefore, Args ∪ Args+ is maximal (it cannot be a proper
superset of Ar). Therefore, Args is a semi-stable extension.

It is in general not the case that each semi-stable extension is also a
stable extension. This is illustrated by the following example.

Example 1. Let (Ar , att) be the argumentation framework of which a graph-
ical representation is shown in Figure 1. Here, {B,D} is a semi-stable ex-
tension which is not a stable extension.

DC

A

B

Figure 1: {B, D} is a semi-stable but not a stable extension.

Another property of semi-stable semantics is that every semi-stable ex-
tension is also a preferred extension.

Theorem 3. Let Args be a semi-stable extension of argumentation frame-
work (Ar , att). Then Args is also a preferred extension of (Ar , att).

Proof: Let Args be a semi-stable extension of (Ar , att). Suppose Args is
not a preferred extension of (Ar , att). Then there exists a set Args ′ ) Args
such that Args ′ is a complete extension. From Args ′ ) Args it follows,
however, that Args ′+ ⊇ Args+. Therefore, (Args ′ ∪ Args ′+) ) (Args ∪
Args+). This implies that Args is not a semi-stable extension, since Args ∪
Args+ would not be maximal. Contradiction.

It is in general not the case that every preferred extension is also a
semi-stable extension. This is illustrated by the following example.

12



Example 2. Let (Ar , att) be the argumentation framework of which a graph-
ical representation is shown in figure 2. Here, {A} is a preferred exten-
sion which is not a semi-stable extension. The only semi-stable extension is
{B,D}.

E

A B
C

D

Figure 2: {A} is a preferred but not a semi-stable extension.

The overall position of semi-stable semantics is shown in figure 3. Each
stable extension is a semi-stable extension; each semi-stable extension is a
preferred extension; each preferred extension is a complete extension and
the grounded extension is a complete extension.

preferred

stable

grounded

complete

semi−stable

Figure 3: A brief overview of argument based semantics.

Since each semi-stable extension is also a preferred extension, a straight-
forward way of computing semi-stable semantics would be to compute all
preferred extensions (using for instance the algorithm specified in [16]) and
then to determine which of these are also semi-stable. In many cases, how-
ever, there also exist alternative ways of determining whether an argument
is credulously or sceptically justified under semi-stable semantics.

Theorem 4. Let (Ar , att) be an argumentation framework, and let A ∈ Ar.

1. If A is in the grounded extension, then A is in every semi-stable exten-
sion.
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2. If A is not in an admissible set, then A is not in any semi-stable ex-
tension.

3. If A is in an admissible set and is not attacked by any admissible set
then A is in at least one semi-stable extension.

Proof:

1. This follows from the fact that the grounded extension is a subset of each
complete extension [17], and the fact that each semi-stable extension is
a complete extension.

2. This follows from the fact that each semi-stable extension is an admis-
sible set.

3. The fact that A is not attacked by an admissible set also means that
A is not attacked by a complete extension, and therefore that A is also
not attacked by a semi-stable extension. That is, for any semi-stable
extension Args , it holds that A 6∈ Args+. The fact that A is part of an
admissible set means that there is a preferred extension containing A.
Let Args ′ be a preferred extension that contains A and where (within
the constraint that it contains A) Args ′ ∪ Args ′+ is maximal. As for
any semi-stable extension Args it holds that A 6∈ Args+, it also holds
for any semi-stable extension not containing A that A 6∈ Args ∪Args+.
Thus, Args ′ ∪ Args ′+ cannot be enlarged without losing A. Therefore,
Args ′ is a semi-stable extension.

An example of Theorem 4(3) can be found in Figure 2. Here, argument
D is in an admissible set but is not attacked by an admissible set. This is
because its only attacker (C) is not part of any admissible set. Hence, D is
part of a semi-stable extension.

In situations where Theorem 4 is not applicable, it is possible to apply
an algorithm for computing all semi-stable extensions. This algorithm, de-
scribed in [8, 9], yields all semi-stable extensions, without necessarily having
to compute all preferred extensions.

It turns out that in argumentation frameworks where there exists at least
one stable extension, the semi-stable extensions coincide with the stable
extensions, as is expressed by the following theorem.

Theorem 5. Let (Ar , att) be an argumentation framework that has at least
one stable extension. Let SE = {SE1, . . . , SEn} be the set of stable exten-
sions and let SSE = {SSE1, . . . , SSEm} be the set of semi-stable exten-
sions. It holds that SE = SSE.
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Proof: We need to prove that: (1) SE ⊆ SSE and (2) SSE ⊆ SE.

1. SE ⊆ SSE
This follows directly from Theorem 2.

2. SSE ⊆ SE
Let SEi ∈ SE (such an SEi exists since it is assumed that (Ar , att) has
at least one stable extension). It holds that SEi∪SE

+
i = Ar . Therefore,

every semi-stable extension SSEi will also have to satisfy that SSEi ∪
SSE+

i = Ar (otherwise SSEi ∪ SSE
+
i would not be maximal). This

means that every semi-stable extension is also a stable extension.

The next thing to show is that semi-stable semantics satisfies non-interference,
crash resistancy and backwards compatibility. To do so, we first describe
how abstract argumentation constitutes a logical formalism in the sense of
Definition 1. We assume a universe U containing all possible arguments.
That is, for each argumentation framework (Ar , att) it holds that Ar ⊆ U .
We can then define Formulas as U ∪{〈A1, A2〉 | A1, A2 ∈ U}. An argumen-
tation framework (Ar , att) can then be represented as the set of formulas
Ar ∪ att . If Φ is the set of formulas representing argumentation framework
AF = (Ar , att) then we define:

• Cnadmissible(Φ) to be the set of all admissible sets of AF

• Cncomplete(Φ) to be the set of all complete extensions of AF

• Cngrounded(Φ) to be the set containing the grounded extension of AF
as its single element

• Cnpreferred(Φ) to be the set containing all preferred extensions of AF

• Cnstable(Φ) to be the (possibly empty) set containing all stable exten-
sions of AF

• Cnsemi−stable(Φ) to be the set containing all semi-stable extensions of
AF

As an example, the argumentation framework of Figure 1 can be repre-
sented as a set of formulas Φ = {A,B,C,D,E, 〈A,B〉, 〈B,A〉, 〈B,C〉, 〈C,D〉,
〈D,E〉, 〈E,C〉} and it holds that Cnadmissible(Φ) = {∅, {A}, {B}, {B,D}},
Cncomplete(Φ) = {∅, {A}, {B,D}}, Cngrounded = {∅}, Cnpreferred = {{A},
{B,D}}, and Cnstable = Cnsemi−stable = {{B,D}}. We sometimes abuse

15



notation and write things like Cnsemi−stable(AF ) instead of Cnsemi−stable(Φ)
where Φ is the set of formulas associated with AF .

The first property to be proved is that of backwards compatibility.

Theorem 6. In Abstract argumentation, semi-stable semantics is backwards
compatible with stable semantics.

Proof: Let AF = (Ar , att) be an argumentation framework that is not
contaminating under Cnstable. It then follows that AF has at least one
stable extension. From Theorem 5 it then follows that the set of semi-stable
extensions of AF is equal to the set of stable extensions of AF . That is,
Cnsemi−stable(AF ) = Cnstable(AF ).

Apart from backwards compatibility with stable semantics, semi-stable
semantics also satisfies non-intereference.

Theorem 7. Abstract argumentation under semi-stable semantics satisfies
non-interference.

Proof: Let F1 and F2 be the sets of formulas associated with respectively
argumentation framework AF1 = (Ar1, att1) and AF2 = (Ar2, att2) such
that F1 and F2 are syntactically disjunct. In order to show non-interference,
we have to show that:

• Cnsemi−stable(F1)|atoms(F1) = Cnsemi−stable(F1 ∪ F2)|atoms(F1), and

• Cnsemi−stable(F2)|atoms(F2) = Cnsemi−stable(F1 ∪ F2)|atoms(F2)

It holds that atoms(F1) = Ar1 and atoms(F2) = Ar2. From the fact that
F1 and F2 are syntactically disjunct it then follows that Ar1 ∩ Ar2 = ∅.
Let F2 = F1 ∪ F2. It then holds that F3 is the set of formulas associated
with argumentation framework AF3 = (Ar1 ∪ Ar2, att1 ∪ att2). In essence
AF3 consists of two disjunct graphs (AF1 and AF2) with no connections
between them. That is, an argument originating from AF1 cannot attack
any arguments originating from AF2, and vice versa. In order to prove
non-interference, it then suffices to prove that:

• Cnsemi−stable(AF1)|Ar1
= Cnsemi−stable(AF3)|Ar1

, and

• Cnsemi−stable(AF2)|Ar2
= Cnsemi−stable(AF3)|Ar2

We now prove the first property (the proof of the second property is similar).
“⊆”: Let S1 be a semi-stable extension of AF1. We now have to prove that
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there exists a semi-stable extension S3 of AF3 such that S3 ∩ Ar1 = S1.
Let S2 be a semi-stable extension of AF2, and let S3 = S1 ∪ S2. We now
prove that S3 is a semi-stable extension of AF3. First of all, S3 is conflict-
free. This follows from the fact that S1 and S2 are conflict-free and that no
argument in S1 attacks any argument in S2 and vice versa (this is because
AF1 and AF2 are syntactically disjunct). The next thing to prove is that S3

is a fixpoint of F under AF3.

S3 ⊆ F (S3): Let A ∈ S3. We distinguish two cases.

1. A ∈ Ar1. Then A ∈ S1. From the fact that S1 is a semi-stable
and therefore also complete extension of AF1, it then follows that
A ∈ F (S1). Since F is a monotonic function and S1 ⊆ S3 it
follows that A ∈ F (S3).

2. A ∈ Ar2. Then A ∈ S2. From the fact that S2 is a semi-stable
and therefore also complete extension of AF2, it then follows that
A ∈ F (S2). Since F is a monotonic function and S2 ⊆ S3 it
follows that A ∈ F (S3).

F (S3) ⊆ S3: Let A ∈ F (S3). We distinguish two cases.

1. A ∈ Ar1. Then for every B that attacks A there exists a C ∈ S3

that attacks B. From the fact that AF1 and AF2 are syntactically
disjunct, it follows that B ∈ Ar1 and C ∈ Ar1. The fact that
C ∈ Ar1 and C ∈ S3 imply that C ∈ S1, hence A ∈ F (S1).
From the fact that S1 is a complete extension it then follows that
A ∈ S1, which together with the fact that S1 ⊆ S3 implies that
A ∈ S3.

2. A ∈ Ar2. Then for every B that attacks A there exists a C ∈ S3

that attacks B. From the fact that AF1 and AF2 are syntactically
disjunct, it follows that B ∈ Ar2 and C ∈ Ar2. The fact that
C ∈ Ar2 and C ∈ S3 imply that C ∈ S2, hence A ∈ F (S2).
From the fact that S2 is a complete extension it then follows that
A ∈ S2, which together with the fact that S2 ⊆ S3 implies that
A ∈ S3.

From the fact that S3 is a conflict-free set with S3 ⊆ F (S3) and F (S3) ⊆ S3

it then follows that S3 is a complete extension of AF3. We now prove that
this complete extension also has a maximal range. Suppose there exists a
complete extension S′

3 with a bigger range than S3. That is, S3 ∪ S
+
3 (

S′
3 ∪ S

′+
3 . Let S′

1 = S′
3 ∩ Ar1 and S′

2 = S′
3 ∩ Ar2. We first prove that S′

1 is
a complete extension of AF1 (the proof that S′

2 is a complete extension of
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AF2 is similar and will therefore be omitted). Conflict-freeness of S′
1 follows

from the fact that S′
3 is conflict-free. We now prove that S′

1 is a fixpoint of
F .

S′
1 ⊆ F (S′

1): Let A ∈ S′
1. Then from the fact that S′

1 ⊆ S′
3 it follows that

A ∈ S′
3. From the fact that S′

3 is a complete extension it follows that
A ∈ F (S′

3). That is, for each B that attacks A, there exists a C ∈ S′
3

that attacks B. From the fact that A ∈ S′
1 it also follows that A ∈ Ar1,

and from the fact that AF1 and AF2 are syntactically disjunct it then
follows that B ∈ Ar1 and C ∈ Ar1. From C ∈ Ar1 and C ∈ S′

3 it
follows that C ∈ S′

1, so A ∈ F (S′
1).

F (S′
1) ⊆ S

′
1: Let A ∈ F (A′

1). Then for each B that attacks A there exists a
C ∈ S′

1 that attacks B. From the fact that S′
1 ⊆ S

′
3 and that S′

1 ⊆ Ar1

it follows that C ∈ S′
3 and C ∈ Ar1. From the fact that C ∈ S′

3 it
follows that A ∈ F (S′

3). The fact that S′
3 is a complete extension then

implies that A ∈ S′
3. This, together with the fact that A ∈ Ar1, then

implies that A ∈ S′
1.

From the fact that S′
1 is a conflict-free set with S′

1 ⊆ F (S′
1) and F (S′

1) ⊆ S
′
1

it follows that S′
1 is a complete extension of AF1. For similar reasons it also

holds that S′
2 is a complete extension of AF2. From the facts that S3 =

S1 ∪ S2 and S′
3 = S′

1 ∪ S
′
2, together with the earlier assumed property that

S3∪S
+
3 ( S′

3∪S
′+
3 it follows that (S1∪S2)∪(S1∪S2)

+ ( (S′
1∪S

′
2)∪(S′

1∪S2)
+,

which can be rewritten as S1∪S
+
1 ∪S2∪S

+
2 ( S′

1∪S
′+
1 ∪S

′
2∪S

′+
2 . The fact that

AF1 and AF2 are syntactically disjunct implies that S1 ∪ S
+
1 ( S′

1 ∪ S
′+
1 or

S2∪S
+
2 ( S′

2∪S
′+
2 . But then either S1 would not be a semi-stable extension

of AF1 or S2 would not be a semi-stable extension of AF2. Contradiction.
“⊇”: Let S3 be a semi-stable extension of AF3 and let S1 = S3 ∩ Ar1. We
have to prove that S1 is a semi-stable extension of AF1. The fact that S1 is
conflict-free follows directly from the fact that S3 is conflict-free. We now
prove that S1 is a fixpoint of F .

S1 ⊆ F (S1): Let A ∈ S1. Then from the fact that S1 ⊆ S3 it follows that
A ∈ S3. From the fact that S3 is a complete extension it follows that
A ∈ F (S3). That is, for each B that attacks A, there exists a C ∈ S3

that attacks B. From the fact that A ∈ S1 it also follows that A ∈ Ar1,
and from the fact that AF1 and AF2 are syntactically disjunct it then
follows that B ∈ Ar1 and C ∈ Ar1. From C ∈ Ar1 and C ∈ S3 it
follows that C ∈ S1, so A ∈ F (S1).

F (S1) ⊆ S1: Let A ∈ F (A1). Then for each B that attacks A there exists a
C ∈ S1 that attacks B. From the fact that S1 ⊆ S3 and that S1 ⊆ Ar1
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it follows that C ∈ S3 and C ∈ Ar1. From the fact that C ∈ S3 it
follows that A ∈ F (S3). The fact that S3 is a complete extension then
implies that A ∈ S3. This, together with the fact that A ∈ Ar1, then
implies that A ∈ S1.

From the fact that S1 is a conflict-free set with S1 ⊆ F (S1) and F (S1) ⊆ S1

it follows that S1 is a complete extension of AF1. We now prove that S1

also has a maximal range. Suppose this was not the case. Then there would
exist a complete extension S′

1 of AF1 with a range bigger than S1. That is,
S1 ∪ S

+
1 ( S′

1 ∪ S
′+
1 . Let S′

3 = S′
1 ∪ (S3\Ar1). We now prove that S′

3 is a
complete extension with a bigger range than S3. We first prove that S′

3 is
conflict-free. Suppose there exists arguments A,B ∈ S′

3 such that A attacks
B. We distinguish four possibilities.

1. A ∈ S1 and B ∈ (S3\Ar1). This implies that A ∈ Ar1 and B ∈ Ar2.
But since AF1 and AF2 are syntactically disjunct, it follows that A
cannot attack B under AF3. Contradiction.

2. B ∈ S1 and A ∈ (S3\Ar1). This implies that B ∈ Ar1 and A ∈ Ar2.
But since AF1 and AF2 are syntactically disjunct, it follows that A
cannot attack B under AF3. Contradiction.

3. A,B ∈ S1. Then S1 would not be conflict-free. Contradiction.

4. A,B ∈ (S3\Ar1). Then S3 would not be conflict-free. Contradiction.

Since all possibilities for S′
3 not to be conflict-free result in a contradiction,

it follows that S′
3 is conflict-free. Before continuing to prove that S′

3 is a
complete extension of AF3, we first prove that S′

1 is a complete extension
of AF1 and S3\Ar1 is a complete extension of AF2. The fact that S′

1 is a
complete extension of AF1 follows directly from the fact that it is a semi-
stable extension of AF1. The fact that S3\Ar1 is a complete extension of
AF2 can be seen as follows.

S3\Ar1 ⊆ F (S3\Ar1): Let A ∈ S3\Ar1. Then A ∈ S3. From the fact that
S3 is a complete extension it follows that A ∈ F (S3). So for every B
that attacks A, there exists a C ∈ S3 such that C attacks B. From the
fact that A ∈ S3\Ar1 it follows that A ∈ Ar2. From the fact that AF1

and AF2 are syntactically disjunct it then also follows that B ∈ Ar2

and C ∈ Ar2. Therefore, C ∈ S3\Ar1, so A ∈ F (S3\Ar1).

F (S3\Ar1) ⊆ S3\Ar1: Let A ∈ F (S3\Ar1). Then for each B that attacks
A, there exists a C ∈ S3\Ar1 that attacks B. The fact that C ∈
S3\Ar1 implies that C ∈ Ar2, and from the fact that AF1 and AF2 are
syntactically disjunct it also follows that B ∈ Ar2 and A ∈ Ar2. From

19



the fact that F is a monotonic function and that A ∈ F (S3\Ar1) it
follows that A ∈ F (S3). From the fact that S3 is a complete extension
(as a consequence of being a semi-stable extension) it then follows that
A ∈ S3. From this, together with the facts that A ∈ Ar2 and that
AF1 and AF2 are syntactically disjunct, it follows that A ∈ S3\Ar1.

From the facts that S3\Ar1 is conflict-free (as a direct consequence of S3

being conflict-free), S3\Ar1 ⊆ F (S3\Ar1) and F (S3\Ar1) ⊆ S3\Ar1 it fol-
lows that S3\Ar1 is a complete extension of AF2. The next thing to prove
is that S′

3 is a fixpoint of F under AF3.

S′
3 ⊆ F (S′

3): Let A ∈ S′
3. We distinguish two cases.

1. A ∈ S′
1. Then from the fact that S′

1 is a complete extension of
AF1 it follows that S′

1 = F (S′
1), so A ∈ F (S′

1). And since F is a
monotonic function and S′

1 ⊆ S
′
3 it then follows that A ∈ F (S′

3).

2. A ∈ S3\Ar1. Then, from the earlier observed fact that S3\Ar1 is
a complete extension of AF2 it follows that S3\Ar1 = F (S3\Ar1),
so A ∈ F (S3\Ar1). From the facts that F is a monotonic function
and that S3\Ar1 ⊆ S

′
3 it then follows that A ∈ F (S′

3).

F (S′
3) ⊆ S

′
3: Let A ∈ F (S′

3). Then for each B that attacks A there exists a
C ∈ S′

3 that attacks B. We distinguish two possibilities.

1. C ∈ S3\Ar1. Then C ∈ Ar2, and as a result of AF1 and AF2

being syntactically disjunct, it follows that B ∈ Ar2 and A ∈ Ar2.
It then follows that A ∈ F (S3\Ar1). From the earlier observed
fact that S3\Ar1 is a complete extension it then follows that A ∈
S3\Ar1, and from the fact that S3\Ar1 ⊆ S′

3 it then follows that
A ∈ S′

3.

2. C ∈ S′
1. Then C ∈ Ar1, and as a result of AF1 and AF2 being

syntactically disjunct, it then follows that B ∈ S′
1 and A ∈ S′

1. It
then follows that A ∈ F (S′

1). From the fact that S′
1 is a complete

extension, it then follows that A ∈ S′
1 and from the fact that

S′
1 ⊆ S

′
3 it then follows that A ∈ S′

3.

From the facts that S′
3 is conflict-free, S′

3 ⊆ F (S′
3) and F (S′

3) ⊆ S
′
3 it follows

that S′
3 is a complete extension of AF3. We now prove that S′

3 has a bigger
range than S3. First, it can be observed that S3 = (S3 ∩ Ar1) ∪ (S3\Ar1),
and since S1 = S3 ∩ Ar1 it follows that S3 = S1 ∪ (S3\Ar1). This means
that the range of S3 can be described as S1 ∪ (S3\Ar1)∪ (S1 ∪ (S3\Ar1))

+,
which is equal to

S1 ∪ (S3\Ar1) ∪ S
+
1 ∪ (S3\Ar1)
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From the fact that S′
3 = S′

1 ∪ (S3\Ar1) it follows that the range of S′
3 is

S′
1 ∪ (S3\Ar1) ∪ (S′

1 ∪ (S3\Ar1))
+, which is equal to

S′
1 ∪ (S3\Ar1) ∪ S

′+
1 ∪ (S3\Ar1)

Our assumption that S′
1 has a bigger range than S1 means that S1 ∪ S

+
1 (

S′
1∪S

+
1 , from which it directly follows that S1∪(S3\Ar1)∪S

+
1 ∪(S3\Ar1) (

S′
1 ∪ (S3\Ar1) ∪ S

′+
1 ∪ (S3\Ar1). So S′

3 is a complete extension with a
bigger range than S3. But then S3 would not be a semi-stable extension.
Contradiction.

From the fact that semi-stable semantics satisfies isolation, crash-resistancy
follows directly, since semi-stable semantics for formal argumentation is suf-
ficiently expressive.

Lemma 1. Abstract argumentation under semi-stable semantics is suffi-
ciently expressive.

Proof: Let Ar ⊆ U with Ar 6= ∅. We now have to prove that there exist two
argumentation frameworks AF1 = (Ar , att1) and AF2 = (Ar , att2) such that
Cnsemi−stable(AF1) 6= Cnsemi−stable(AF2). This is obtained with att1 = ∅
and att2 = {(A,A) | A ∈ Ar}. In that case, Cnsemi−stable(AF1) = {Ar} and
Cnsemi−stable(AF2) = {∅}.

Theorem 8. Abstract argumentation under semi-stable semantics satisfies
crash-resistency.

Proof: Lemma 1 states that abstract argumentation under semi-stable se-
mantics is sufficiently expressive. Theorem 7 states that abstract argumenta-
tion under semi-stable semantics satisfies non-interference. Theorem 1 states
that each sufficiently expressive formalism that satisfies non-interference also
satisfies crash-resistancy.

4. Applying Semi-Stable Semantics to Logic Programming

In this section, we apply semi-stable semantics to logic programming.
This is done by describing logic programming in terms of formal argumen-
tation, in line with [17]. We then change the semantics from stable to semi-
stable and show that the resulting formalism satisfies the paraconsistent
properties (non-intereference, crash resistancy and backwards compatibil-
ity).
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Definition 11. A rule is an expression of the form
c← a1, . . . , an, not b1, . . . , not bm (n ≥ 0, m ≥ 0)
where c as well as each ai (1 ≤ i ≤ n) and each bj (1 ≤ j ≤ m) is are atoms.
c is called the head of the rule, a1, . . . , an, not b1, . . . , not bm is called the
body of the rule. A rule is called strict iff m = 0.
A logic program is a set of rules. A logic program is called strict iff each of
its rules is strict. If P is a strict logic program, then Cl(P ) (the closure of
P ) is defined as the smallest set such that for each rule c← a1, . . . , an in P
it holds that if a1, . . . , an ∈ Cl(P ) then c ∈ Cl(P ).
If P is a logic program and S is a set of atoms, then PS (the Gelfond-
Lifschitz reduct) is defined as {c ← a1, . . . , an | c ← a1, . . . , an, not b1, . . . ,
not bm ∈ P and ¬∃ci(1 ≤ i ≤ m) : ci ∈ S}. The stable operator γP (S) is
defined as Cl(PS). S is a stable model of P iff S is a fixpoint of γP .

We now provide an argumentation interpretation of logic programming.
Our approach differs from that in [17] in that we use tree-based arguments.
The advantage of using tree-based arguments is that every rule in the argu-
ment is relevant for the derivation of the main conclusion, which is neces-
sary if applying semi-stable semantics should satisfy the properties of non-
interference and crash resistancy.

Definition 12. Let P be a logic program. An argument A is a tree where
each node is labelled with a rule in P such that if a node is labelled with
c← a1, . . . , an, not b1, . . . , not bm then its of children are labelled with rules
r1, . . . , rn such that head(r1) = a1, . . . , head(rn) = an. If A is an argument
then conc(A) is defined as the head of the rule of the root. If Args is a set
of arguments then concs(Args) is defined as {conc(A) | A ∈ Args}. We
say that an argument A attacks argument B iff B contains a node labelled
with rule c ← a1, . . . , an, not b1, . . . , not bm and conc(A) = bj for some
1 ≤ j ≤ m. We write AFP = (ArP , attP ) for the thus defined argumentation
framework associated with P . We define Cnstable(P ) as {concs(Args) | Args
is a stable extension of AFP } and Cnsemi−stable(P ) as {concs(Args) | Args
is a semi-stable extension of AFP }

We sometimes abuse terminology and talk about a set of atoms “attack-
ing” an argument, a set of arguments, a rule or a set of rules.

Our argumentation interpretation of logic programming under stable
semantics is equivalent to the standard Gelfond-Lifschitz stable model se-
mantics.
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Theorem 9. Let P be a logic program. It holds that S ∈ Cnstable(P ) iff S
is a stable model of P .

Proof:
“⇒”: Let S ∈ Cnstable(P ). This means there exists a stable extension Args
of AFP such that concs(Args) = S. We now show that S is also a stable
model of P . For this, we need to show that:

1. S ⊆ γP (S). Let e ∈ S, so e ∈ concs(Args). Let A ∈ Args be an
argument with conc(A) = e. The fact that A is in the stable extension
Args means that A is not attacked by Args . That is, A is not “attacked”
by S = concs(Args). This means that each rule of A is not “attacked”
by S. So each rule of A is in PS (except for the weakly negated part
of these rules). This then implies that the conclusion of A (c) can still
be derived using the rules in PS . That is, c ∈ Cl(PS), which can be
rewritten as c ∈ γP (S).

2. γP (S) ⊆ S. Let e 6∈ S, so e 6∈ concs(Args). Then there is no argument
A ∈ Args with conc(A) = e. The fact that Args is a stable extension
then implies that each argument A with conc(A) = e is attacked by
Args . So each argument A with conc(A) = e is “attacked” by S. This
implies that there is no derivation for e using the rules in PS . That is,
e 6∈ Cl(PS), so e 6∈ γP (S).

“⇐”: Let S be a stable model of P . That is, S = γP (S). We now need to
show that S ∈ Cnstable(P ). We do this by constructing a stable extension
Args of AFP such that concs(Args) = S. Let Args be the set of arguments
that are not “attacked” by S. We first prove that concs(Args) = S.

• concs(Args) ⊆ S. Let e ∈ concs(Args). Then Args contains an
argument A with coclusion e that is not “attacked” by S. It then
follows that e ∈ Cl(PS), so e ∈ γP (S). From the fact that S is a
fixpoint of γP it then follows that e ∈ S.

• S ⊆ concs(Args). Let e ∈ S. From the fact that S is a fixpoint of γP
it follows that e ∈ γP (S), so e ∈ Cl(PS), meaning that there exists a
derivation for e using the rules in PS . It then also follows that there
is an argument A with conclusion e that is not “attacked” by S, so
A ∈ Args , so e ∈ concs(Args).

Now that it has been proved that concs(Args) = S, the next thing to be
proved is that Args is a stable extension of AFP :
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1. Args is conflict-free. Suppose this is not the case. Then there ex-
ists A,B ∈ Args such that A attacks B, so conc(A) “attacks” B, so
concs(Args) “attacks” B, so S “attacks” B ∈ Args . But Args is the
set of all arguments not “attacked” by S. Contradiction.

2. Args attacks each argument in ArP\Args . Let A ∈ ArP \Args . Then
from the fact that A 6∈ Args it follows that A is “attacked” by S, so A
is “attacked” by concs(Args), so A is attacked by Args .

Theorem 10. For logic programs, Cnsemi−stable is backwards compatible
with the Gelfond-Lifschitz stable model semantics.

Proof: Let P be a logic program that is not contaminating under stable
model semantics. This implies that there exists at least one stable model
S of P . From Theorem 9 it follows that S ∈ Cnstable(P ), so there exists a
stable extension Args of AFP such that concs(Args) = S. From Theorem 5
it follows that Cnstable(AFP ) = Cnsemi−stable(AFP ), so also Cnstable(P ) =
Cnsemi−stable(P ). Since Cnstable(P ) is equivalent to the standard Gelfond-
Lifschitz stable model semantics (Theorem 9) it then follows that (still for
logic programs with at least one stable model) Cnsemi−stable is equivalent
with stable model semantics.

Lemma 2. Let P1 and P2 be two syntactically disjunct programs, and let
P3 = P1 ∪ P2. It holds that ArP3

= ArP1
∪ ArP2

and attP3
= attP1

∪ attP2
.

Proof: We first observe that ArP1
⊆ ArP3

, because every argument that
can be constructed using P1 can also be constructed using P1 ∪ P2 (= P3).
Similarly, it holds that ArP2

⊆ ArP3
, so it follows that ArP1

∪ArP2
⊆ ArP3

.
We now prove that ArP3

⊆ ArP1
∪ArP2

. Let A ∈ ArP3
. We distinguish two

cases:

1. The root of A is labelled with a rule from P1. Then from the fact that
P1 and P2 are syntactically disjunct, it follows that all children of the
root are labelled with rules from P1, and no children are labelled with
rules from P2. It then follows by induction that each node in the tree
is labelled with a rule from P1 and no node is labelled with a rule from
P2. Therefore A ∈ ArP1

so also A ∈ ArP1
∪ ArP2

.
2. The root of A is labelled with a rule from P2. Then from the fact that
P1 and P2 are syntactically disjunct, it follows that all children of the
root are labelled with rules from P2, and no children are labelled with
rules from P1. It then follows by induction that each node in the tree
is labelled with a rule from P2 and no node is labelled with a rule from
P1. Therefore A ∈ ArP2

so also A ∈ ArP1
∪ ArP2

.
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From the thus observed fact that ArP3
⊆ ArP1

∪ ArP2
, together with the

earlier observed fact that ArP1
∪ ArP2

⊆ ArP3
, it follows that ArP3

=
ArP1

∪ ArP2
.

We can also observe that attP1
⊆ attP3

, because if A and B are arguments
based on P1 such that A attacks B, then A and B are also arguments based
on P1 ∪ P2 (= P3) such that A attacks B. For similar reasons, it holds that
attP2

⊆ attP3
, so that it follows that attP1

∪ attP2
⊆ attP3

. We now prove
that attP3

⊆ attP1
∪ attP2

. Let A and B be two arguments based in P3 such
that A attacks B. We distinguish two cases:

1. conc(A) ∈ atoms(P1). Then it follows that the root of A is labelled
with a rule from P1, so each node of A is labelled with a rule from P1,
so A ∈ ArP1

. The fact that A attacks B means that B contains a rule
with a weakly negated literal from atoms(P1). The fact that P1 and P2

are syntactically disjunct then implies that each rule in B comes from
P1, so B ∈ ArP1

. This means that A attacks B under AFP1
.

2. conc(A) ∈ atoms(P2). Then it follows that the root of A is labelled
with a rule from P2, so each node of A is labelled with a rule from P2,
so A ∈ ArP2

. The fact that A attacks B means that B contains a rule
with a weakly negated literal from atoms(P2). The fact that P1 and P2

are syntactically disjunct then implies that each rule in B comes from
P2, so B ∈ ArP2

. This means that A attacks B under AFP2
.

From the thus observed fact that attP3
⊆ attP1

∪ attP2
, together with the

earlier observed fact that attP1
∪attP2

⊆ attP3
it follows that attP3

= attP1
∪

attP2
.

Theorem 11. For logic programs, Cnsemi−stable satisfies non-interference.

Proof: Let P1 and P2 be two logic programs that are syntactically disjunct.
In order to show non-interference, we need to prove that:

• Cnsemi−stable(P1)|atoms(P1) = Cnsemi−stable(P1 ∪ P2)|atoms(P1) and

• Cnsemi−stable(P2)|atoms(P2) = Cnsemi−stable(P1 ∪ P2)|atoms(P2).

We prove only the first property (the proof of the second property is similar).
“⊆”: Let S ∈ Cnsemi−stable(P1)|atoms(P1). Since Cnsemi−stable(P1)|atoms(P1) =
Cnsemi−stable(P1) it immediately follows that S ∈ Cnsemi−stable(P1). This
means there exists a semi-stable extensionArgs ofAFP1

such that concs(Args)
= S. The fact that semi-stable semantics for abstract argumentation sat-
isfies non-interference (Theorem 7) means that (given that AFP1

and AFP2
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are syntactically disjunct):

Cnsemi−stable((ArP1
, attP1

))|ArP1
= Cnsemi−stable((ArP1

∪ArP2
, attP1

∪attP2
))|ArP1

From Lemma 2 it follows that AFP1∪P2
= (ArP1

∪ArP2
, attP1

∪ attP2
), so it

holds that

Cnsemi−stable(AFP1
)ArP1

= Cnsemi−stable(AFP1∪P2
)|ArP1

From the fact that Args is a semi-stable extension of AFP1
, it follows that

Args ∈ Cnsemi−stable(AFP1
)|ArP1

, so Args ∈ Cnsemi−stable(AFP1∪P2
)|ArP1

,

which then implies that there exists a semi-stable extensionArgs ′ of AFP1∪P2

such thatArgs ′∩ArP1
= Args . The fact thatArgs ′ is a semi-stable extension

of (ArP1
∪ArP2

, attP1
∪attP2

) implies that concs(Args ′) ∈ Cnsemi−stable(P1∪
P2), so concs(Args ′)|atoms(P1) ∈ Cnsemi−stable(P1 ∪ P2)|atoms(P1). We now
prove that concs(Args ′)|atoms(P1) = S.

“⊆”: Let e ∈ concs(Args ′)|atoms(P1). Then e ∈ atoms(P1). Let A be an
argument in Args ′ with conc(A) = e. Then A ∈ ArP1

, so A ∈ Args ,
so e ∈ concs(Args), so e ∈ S.

“⊇”: Let e ∈ S. Then e ∈ concs(Args). So there is an A ∈ Args with
conc(A) = e. From the fact that A ∈ Args it follows that A ∈ Args ′,
so e ∈ concs(Args ′). From the fact that A ∈ Args it also follows that
A ∈ ArP1

, so e ∈ atoms(P1), so from the fact that e ∈ concs(Args ′) it
follows that e ∈ concs(Args ′)|atoms(P1).

From the thus proved fact that concs(Args ′)|atoms(P1) = S, together with
the earlier observed fact that concs(Args ′)|atoms(P1) ∈ Cnsemi−stable(P1 ∪
P2)|atoms(P1) it follows that S ∈ Cnsemi−stable(P1 ∪ P2)|atoms(P1).
“⊇”: Let S ∈ Cnsemi−stable(P1 ∪ P2)|atoms(P1). Then there exists a semi-
stable extension Args ′ of AFP1∪P2

with concs(Args ′)∩atoms(P1) = S. Like
was explained before, it holds that:

Cnsemi−stable(AFP1
)|ArP1

= Cnsemi−stable(AFP1∪P2
)|ArP1

Let Args = Args ′ ∩ ArP1
. From the fact that Args ′ is a semi-stable ex-

tension of AFP1∪P2
it follows that Args ∈ Cnsemi−stable(AFP1∪P2

)|ArP1
,

so Args ∈ Cnsemi−stable(AFP1
)|ArP1

, which together with the fact that
Args ⊆ ArP1

implies that Args ∈ Cnsemi−stable(AFP1
), so concs(Args) ∈

Cnsemi−stable(P1). Since concs(Args) ⊆ atoms(P1) it follows that concs(Args)
∈ Cnsemi−stable(P1)|atoms(P1). We now prove that concs(Args) = S.
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“⊆”: Let e ∈ concs(Args). Then there is an A ∈ Args with conc(A) = e.
Then e ∈ atoms(P1) and A ∈ ArP1

. From A ∈ Args it follows that
A ∈ Args ′, so e ∈ concs(Args ′). This, together with e ∈ atoms(P1)
implies that e ∈ concs(Args ′) ∩ atoms(P1), so e ∈ S.

“⊇”: Let e ∈ S. Then e ∈ concs(Args ′) ∩ atoms(P1). So there exists
an argument A ∈ Args ′ with conc(A) = e. Moreover, the fact that
c ∈ atoms(P1) implies that A ∈ ArP1

. It then follows that A ∈
Args ′ ∩ ArP1

, so A ∈ Args , so e ∈ concs(Args).

From the fact that concs(Args) = S, together with the fact that concs(Args) ∈
Cnsemi−stable(P1)|atoms(P1) it follows that S ∈ Cnsemi−stable(P1)|atoms(P1).

Lemma 3. Logic programming under semi-stable semantics is sufficiently
expressive.

Proof: Let S be a non-empty set of atoms. We now have to prove that
there exists two logic programs P1 and P2 with atoms(P1) = atoms(P2) = S,
such that Cnsemi−stable(P1) 6= Cnsemi−stable(P2). This is obtained with P1 =
{e ←| e ∈ S} and P2 = {e ← e | e ∈ S}. In that case, Cnsemi−stable(P1) =
{S} and Cnsemi−stable(P2) = {∅}.

Theorem 12. Logic programming under semi-stable semantics satisfies crash-
resistancy.

Proof: Lemma 3 states that abstract argumentation under semi-stable
semantics is sufficiently expressive. Theorem 11 states that logic program-
ming under semi-stable semantics satisfies isolation. Theorem 1 states that
each sufficiently expressive logical formalism that satisfies non-interference
also satisfies crash-resistancy.

5. Applying Semi-Stable Semantics to Default Logic

In this section, we provide an overview of default logic and provide an
alternative that satisfies non-interference and crash-resistancy, while at the
same time remaining backward compatible with Reiter’s orininal account of
default logic. Our approach will be a based to apply semi-stable semantics
to the argumentation interpretation of default logic. In order to simplify the
discussion we restrict ourselves to the propositional variant of default logic.
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Definition 13. A default d is an expression p : j1, . . . , jn/c (n ≥ 0) where
p (the prerequisite, pre(d)), j1, . . . , jn (the justification, jus(d)) and c (the
consequent, cons(d)) are propositional formulas. A default is called normal
iff n = 1 and j1 = c. A default is called semi-normal iff ji = c for some
1 ≤ i ≤ n. A default theory T is a pair (W,D) where W is a finite set
of propositional formulas and D is a finite set of defaults. A default theory
is called normal iff every default in D is normal. A default theory is called
semi-normal iff every default in D is semi-normal. A default theory is called
consistent iff W is consistent.

In the following definition, Cn(E) stand for the propositional conse-
quences of E. That is: Cn(E) = {p | E � p}.

Definition 14 ([32]). Let T = (W,D) be a default theory and E be a set
of formulas. Let
E0 = W and for i ≥ 0: Ei+1 = Cn(Ei) ∪ {c | (p : j1, . . . , jn/c) ∈ D where
p ∈ Ei and ¬j1, . . . ,¬jn 6∈ E}.
E is a default extension of (W,D) iff E = ∪∞i=0Ei.

We write E for the set of extensions of a given default theory.
There are several possible interpretations of default logic in terms of

formal argumentation. In this section, we treat two of such interpretations.
In the first interpretation, an argument is seen as a sequence of defaults. In
the second interpretation, an argument is seen as a set of trees of defaults.
Both interpretations can be used to model the original version of default
logic, which in essence implements stable semantics. However, it is the tree-
based interpretation that is most suited for changing the semantics of default
logic from stable to semi-stable.

In order to obtain a formalism that satisfies non-interference and crash
resistancy, and that is backwards compatible with standard default logic,
we need to take the tree-based interpretation of default logic, change the
semantics from stable to semi-stable and rule out all inconsistent arguments.
For semi-normal consistent default theories, this approach will then satisfy
all three postulates. For our purposes, the sequence based interpretation of
default logic serves merely as a bridge between Reiter’s original definition
of default logic and our tree-based interpretation.

We first define the sequence-based interpretation of default logic.

Definition 15. A sequence based argument A under default theory (W,D)
is a sequence of defaults [d1, . . . , dn] (n ≥ 0) where di 6= dj whenever i 6= j,
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such that for each di (1 ≤ i ≤ n) it holds thatW∪{cons(d1), . . . , cons(di−1)} �

pre(di). The set of conclusions concs(A) of argument A is defined as Cn(W∪
{cons(d) | d is a default in A}). Let A = [d1, . . . , dn] (n ≥ 0) and A′ =
[d′1, . . . , d

′
m] (m ≥ 1) be two arguments under default theory (W,D). We

say that A attacks A′ iff A′ contains a default d′i (1 ≤ i ≤ m) such that
¬j ∈ concs(A) for some j ∈ jus(d′i).

If Args is a set of sequence based arguments, then we write concs(Args)
for Cn(∪{concs(A) | A ∈ Args}). We write ArseqT for the set of all sequence
based arguments under T = (W,D) and att seqT for the attack relation under
T .

Definition 16. Let T = (W,D) be a default theory. We define the con-
sequences of T under sequence based interpretation using stable semantics
Cnstdlseq

(T ) as {concs(Args) | Args is a stable extension of (ArseqT , att seqT )}.

The following theorem states that the sequence based argumentation
interpretation of default logic under stable semantics is equivalent with Re-
iter’s original notion of default logic. The equivalence between argumenta-
tion and default logic has also been observed in in [17]; however, since our
argument form is slightly different than in [17], we have added a seperate
proof in this paper.

Theorem 13. Let T = (W,D) be a default theory and E be its set of default
extensions. It holds that Cnstdlseq

(T ) = E.

Proof:
“⊆”: Let E ∈ Cnstdlseq

(T ). This means there exists a stable extension Args
of sequence based arguments under T such that concs(Args) = E. We now
show that E is also a default extension in the sense of Definition 13. So we
need to prove that:

1. ∪∞i=0Ei ⊆ E. Let e 6∈ E. Then Args contains no argument with con-
clusion e. The fact that Args is a stable extension then implies that
for each argument A with conclusion e, A is attacked by an argument
in Args . Therefore, the derivation of e will be blocked in ∪∞i=0Ei. So
e 6∈ ∪∞i=0Ei.

2. E ⊆ ∪∞i=0Ei. Let e ∈ E. Then there exists an argument (say A) for e.
That is, e ∈ concs(A). The fact that A ∈ Args implies that A is not
attacked by any argument in Args . Therefore, there will be an i ≥ 0
such that e ∈ Ei, so e ∈ ∪∞i=0Ei.
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“⊇”: Let E ∈ E . This means that E is a default extension of (W,D). We
now prove that there exists a stable extension Args of the argumentation
framework (ArseqT , att seqT ) such that concs(Args) = E. Let Args be the set
of all arguments that are not “attacked” by E. That is, A ∈ ArseqT is in
Args iff A does not contain a default d with e ∈ jus(d) for some ¬e ∈ E.
It holds that the conclusions of Args correspond with ∪∞i=0Ei, so from the
fact that E = ∪∞i=0Ei it follows that concs(Args) = E. We now show
that Args is a stable extension. First of all, Args is conflict-free. Suppose
∃A,B ∈ Args : A attacks B. Since A andB are not “attacked” by E, it holds
that concs(A) 6⊆ E. But this contradicts with concs(Args) = E. Secondly,
Args attacks each argument C that is not in Args . Let C ∈ ArseqT such
that C 6∈ Args . Then C is “attacked” by E. But since concs(Args) = E, it
means that C is also attacked by Args.

We now define the tree-based interpretation of default logic.

Definition 17. A pre-argument A under a default theory (W,D) is a (pos-
sibly empty) tree of defaults such that for each default d it holds that its set of
children {d1, . . . , dn} (n ≥ 0) is a minimal set such that W ∪{cons(d1), . . . ,
cons(dn)} � pre(d).
Let A be a pre-argument. We define concs(A) as Cn(W ∪ {cons(d) | d is
a default in A}). Let S be a set of pre-arguments. We define concs(S) as
Cn(∪{concs(A) | A ∈ S}).
A tree based argument is either of the form {A} where A is a pre-argument,
or a minimal set of pre-arguments {A1, . . . , An} such that concs({A1, . . . , An})
contains ¬j with j ∈ jus(d) for some d ∈ D.
Let A and B be tree based arguments under (W,D). We say that A attacks
B iff ¬j ∈ concs(A) with j ∈ jus(d) for some d occurring in B.

If Args is a set of tree based arguments, the we write concs(Args) for
Cn(∪{concs(A) | A ∈ Args}). We write Ar treeT for the set of all tree based
arguments under T = (W,D) and att treeT for the attack relation under T .

Definition 18. Let T = (W,D) be a default theory. We define the con-
sequences of T under tree based interpretation using stable semantics as
Cnstdltree

(T ) = {concs(Args) | Args is a stable extension of (Ar treeT , att treeT ).

Under stable semantics, it does not matter for the entailment whether
one applies sequence based or tree based arguments, as is stated by the
following theorem.

Theorem 14. Let T = (W,D) be a default theory. It holds that Cnstdlseq
(T ) =

Cnstdltree
(T ).
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Proof:
“⊆”: Let E ∈ Cnstdlseq

(T ). This means that there exists a stable extension
Argsseq of (ArseqT , att seqT ) such that concs(Argsseq) = E. We now prove
that there also exists a stable extension Args tree of (Ar treeT , att treeT ) with
concs(Args tree) = E. Let Args tree be the set of all possible tree based
arguments that can be constructed using the defaults in Argsseq. We now
prove that Args tree is a stable extension.

conflict freeness: Let A,B ∈ Args tree such that A attacks B. Then there
also exists two arguments A′, B′ ∈ ArseqT where A′ contains the same
defaults as A and B′ contains the same defaults as B. These argu-
ments are not attacked by Argsseq (this is because their defaults occur
in Argsseq) so from the fact that Argsseq is a stable extension, it fol-
lows that A′, B′ ∈ Argsseq. However, since concs(A) = concs(A′)
and defaults(B) = defaults(B′) it follows that A′ attacks B′ under
(ArseqT , att seqT ). So Argsseq would not be conflict-free. Contradiction.

attacking any argument not in it: LetB ∈ Ar treeT such thatB 6∈ Argstree.
Let B′ be an argument of ArseqT that contains the same defaults as B.
It holds that B′ 6∈ Argsseq. This can be seen as follows. Suppose
B′ ∈ Argsseq. Then B could be constructed using the defaults in
Argsseq so B ∈ Args tree. Contradiction. So B′ 6∈ Argsseq. From the
fact that Argsseq is a stable extension and B′ 6∈ Argsseq it follows that
Argsseq contains an argument A′ that attacks B′. This implies that A′

has a conclusion ¬j whereas B′ contains a default d with j ∈ jus(d).
From the fact that A′ ∈ Argsseq it follows that one can construct a
tree-based argument A, using the defaults from Argsseq, that has con-
clusion ¬j and therefore attacks B. So Argstree contains an argument
A that attacks B.

Now that we have proved that Args tree is a stable extension, the next thing
to prove is that concs(Args tree) = concs(Argsseq).

“concs(Args tree) ⊆ concs(Argsseq)”: Let c ∈ concs(Args tree). Let A be
the argument in Arseq that contains all defaults of Argstree. This
argument is an element of Argsseq because Argsseq does not “attack”
any of its defaults, and hence Argsseq does not attack A. From the fact
that Argsseq is a stable extension it then follows that A ∈ Argsseq. It
then follows that c ∈ concs(A) and that therefore c ∈ concs(Argsseq).

“concs(Args tree) ⊇ concs(Argsseq)”: For each default occurring in Argsseq

there exists an argument in Args tree that contains this default. This
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means that defaults(Argsseq) ⊆ defaults(Args tree). From this it fol-
lows that concs(Argsseq) ⊆ concs(Args tree).

“⊇”: Let E ∈ Cnstdltree
(T ). This means there exists a stable extension

Args tree under (Ar treeT , att treeT ) such that concs(Args tree) = E. We now
prove that there also exists a stable extension Argsseq of (ArseqT , att seqT ) with
concs(Argsseq) = E. Let Argsseq be the set of all possible sequence based
arguments that can be constructed using the defaults in Args tree. We now
prove that Argsseq is a stable extension.

conflict freeness: Let A,B ∈ Argsseq such that A attacks B. This means
that A has a conclusion ¬j and B contains a default d with j ∈ jus(d).
Let A′ be an argument under ArtreeT with conclusion ¬j (Definition 17
makes sure such an argument exists). Since all defaults in A′ are in
Argstree and Args tree is a stable extension, it follows that Args tree

contains an argument (say B′) that contains d. But then A′ attacks
B′ and Args tree would not be conflict-free. Contradiction.

attacking every argument not in it: Let B ∈ ArseqT be an argument
that is not in Argsseq. Then B contains at least one default d which
does not occur in Args tree. Let B′ be an argument in Ar treeT that
contains only defaults from B, including d. The fact that such an
argument exists follows from the fact that B exists. From the fact
that d does not occur in Args tree it follows that B′ 6∈ Args tree. From
the fact that Args tree is a stable extension, it follows that Args tree

contains an argument (say A′) that attacks B′. So A′ has a conclusion
¬j and B′ contains a default d′ (possibly equal to d) with j ∈ jus(d′).
Let A be an argument in ArseqT that contains the same defaults as A′.
It then follows that A also has a conclusion ¬j. And since B′ only
contains defaults from B, it follows that defaults(B′) ⊆ defaults(B) so
d′ ∈ defaults(B). This means that A attacks B.

Now that we have proved that Argsseq is a stable extension, the next thing
to prove is that concs(Argsseq) = concs(Args tree).

“concs(Argsseq) ⊆ concs(Args tree)”: Let c 6∈ concs(Args tree). Then c is
not a consequence of ∪{concs(A) | A ∈ Args tree}. Therefore c is not
a consequence of W ∪{cons(d) | d occurs in some A ∈ Args tree}. And
since the defaults that occur in Args tree are the same as that occur in
Argsseq it follows that c is not a consequence ofW∪{cons(d) | d occurs
in some A ∈ Argsseq}, so c is not a consequence of W ∪ {concs(A) |
A ∈ Argsseq} so c 6∈ concs(Argsseq).
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“concs(Argsseq) ⊇ concs(Args tree)”: Let A be the argument in ArseqT con-
taining all defaults from Argstree. This argument is an element of
Argsseq because it is simply one of the possible arguments that can be
constructed using the defaults fromArgstree. It holds that concs(Argsseq)
⊇ concs(A). From the fact that concs(A) = concs(Args tree) it then
follows that concs(Argsseq) ⊇ concs(Args tree).

From the fact that Cnstdlseq
is equivalent with Reiter’s original definition

of default logic (Theorem 13) and the fact that the Cnstdltree
is equivalent

with Cnstdlseq
(Theorem 14) it follows that Cnstdltree

is equivalent to Reiter’s
original definition of default logic.

Since Cnstdlseq
is equivalent with Cnstdltree

, we sometimes simply write
Cnstdl without explicitly mentioning whether we refer to tree based or se-
quence based argumentation.

The following definition aims at filtering out the inconsistent arguments
from the argumentation framework associated with a default theory.

Definition 19. Let (W,D) be a default theory and (Ar treeT , att treeT ) be its
associated argumentation framework. We define ArctreeT as {A | A ∈ Ar treeT

and ⊥ 6∈ concs(A)} and att ctreeT as att treeT ∩ (Ar ctreeT × ArctreeT ).

The first thing to be proved is that for semi-normal default theories
under stable semantics, the entailment does not change when inconsistent
arguments are ruled out.

Definition 20. A tree-based structure is a set of pre-arguments {A1, . . . , An}
(n ≥ 1). If S1 and S2 are tree-based structures, then we say that S1 is a
sub-structure of S2, notated as S1 ⊑ S2 iff for each A ∈ S1 there exists an
A′ ∈ S2 such that A is a sub-tree of A′. S1 is a strict substructure of S2,
notated as S1 ⊏ S2, iff S1 ⊑ S2 and S1 6= S2.

Theorem 15. Let (W,D) be a consistent semi-normal default theory. It
holds that Args is a stable extension of (Ar treeT , att treeT ) iff Args is a stable
extension of (Ar ctreeT , att ctreeT ).

Proof:
“=⇒”: Let Args be a stable extension of (Ar treeT , att treeT ). Then Args ⊆
Ar treeT , Args is conflict-free and Args attacks each argument in Ar treeT \Args .
We observe that any inconsistent argument A ∈ Ar treeT has to contain at
least one default (it cannot be empty) because W is consistent. Therefore
any inconsistent argument is also self-attacking. From the fact that Args is
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conflict-free, it then follows that Args does not contain any inconsistent ar-
guments (which would be self-attacking). Therefore, Args ⊆ ArctreeT . From
the fact that Args attacks each argument in Ar treeT \Args and that Ar ctreeT ⊆
Ar treeT it follows that Args attacks each argument in ArctreeT \Args . Fur-
thermore, the facts that Args is conflict-free under (Ar treeT , att treeT ) and that
att ctreeT ⊆ att treeT imply that Args is also conflict-free under (Ar ctreeT , att ctreeT ).
Therefore, Args is a stable extension of (ArctreeT , att ctreeT ).
“⇐=”: Let Args be a stable extension of (Ar ctreeT , att ctreeT ). Then Args ⊆
Ar ctreeT , Args is conflict-free andArgs attacks each argument in ArctreeT \Args .
From the fact that Args ⊆ ArctreeT and that ArctreeT ⊆ Ar treeT it follows that
Args ⊆ Ar treeT . From the fact thatArgs is conflict-free under (ArctreeT , att ctreeT )
it follows that Args is still conflict-free under (Ar treeT , att treeT ). We now prove
that Args attacks each argument in Ar treeT \Args . Let A ∈ Ar treeT \Args . We
distinguish two cases:

1. A is a consistent argument (⊥ 6∈ concs(A)). Then A ∈ ArctreeT . Since
Args attacks each argument in ArctreeT \Args it follows that S attacks
A.

2. A is an inconsistent argument (⊥ ∈ Concs(A)). This implies that
W ∪ {cons(d) | d is in A} � ⊥. From the fact that W is consis-
tent, it follows that A contains at least one default. Let A′ be a
maximal substructure of A that is still consistent. That is: A′ ⊑ A
and ∀A′′ : (A′ ⊏ A′′ ⊑ A → ⊥ ∈ concs(A′′)). Let A′′ be such
that A′ ⊏ A′′ ⊑ A where A′′ contains exactly one additional de-
fault not contained in A′ It then holds that A′′ is inconsistent. Let
d1, . . . , dn be the defaults of A′. Let dn+1 be the additional default in
A′′. It then holds that W ∪ {cons(d1), . . . , cons(dn)} is consistent, but
W∪{cons(d1), . . . , cons(dn), cons(dn+1)} is inconsistent. It then follows
that W ∪ {cons(d1), . . . , cons(dn)} � ¬cons(dn+1). Since T is a semi-
normal default theory, it holds that the consequent of dn+1 is also con-
tained in the justification of dn+1. That is, there exists a j ∈ jus(dn+1)
such that W ∪{cons(d1), . . . , cons(dn)} � ¬j. From the fact that A′′ is
a substructure of A it follows that A also contains default dn+1. There-
fore, A′ attacks A. Since A′ is consistent (and that it attacks A), it
holds that A′ ∈ ArctreeT . From the fact that Args is a stable extension
of (ArctreeT , att ctreeT ) it then follows that either A′ ∈ Args or Args at-
tacks A′. In the first case (A′ ∈ Args) it holds that Args attacks A
(since A′ attacks A). In the second case (Args attacks A′) it holds that
Args attacks A (since A′ is a subargument of A). In both cases, Args
attacks A.
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For consistent semi-normal default theories, semi-stable semantics under
tree based argumentation remains backward compatible with the original
formalism of default logic, even if inconsistent arguments are deleted.

Theorem 16. Let T = (W,D) be a default theory and let Cnssdl(W,D) be
defined as {concs(Args) | Args is a semi-stable extension of (ArctreeT , att ctreeT ).
For consistent semi-normal default theories Cnssdl is backward compatible
with Cnstdl.

Proof: Let T = (W,D) be a consistent semi-normal default theory that
is not contaminating. The fact that it is not contaminating implies that it
has at least one default extension. Theorems 13 and 14 then imply that its
associated argumentation framework (Ar treeT , att treeT ) has at least one stable
extension. Since, by Theorem 15, the stable extensions are unchanged when
inconsistent arguments are removed, it holds that (Ar ctreeT , att ctreeT ) also has
at least one stable extension. From Theorem 5 it then follows that the stable
extensions of (ArctreeT , att ctreeT ) are the same as its semi-stable extensions.
This, together with the fact that the conclusions of the stable extensions
of (ArctreeT , att ctreeT ) are the same as the conclusions of the stable extensions
of (Ar treeT , att treeT ) (Theorem 15) implies that the conclusions of the stable
extensions of (Ar treeT , att treeT ) are the same as the conclusions of the semi-
stable extensions of (Ar ctreeT , att ctreeT ), so we have that Cnstdl = Cnssdl.

For consistent semi-normal default theories, not only is Cnssdl back-
ward compatible with Cnstdl; it also satisfies crash-resistancy and non-
interference. For this, we first need a lemma (Lemma 4) that allows us to
apply to default logic the results for non-interference for abstract argumen-
tation. It should be mentioned that Lemma 4 only holds for the tree-based
interpretation of default logic, in which inconsistent arguments have been
ruled out.

Lemma 4. Let T1 = (W1,D1) and T2 = (W2,D2) be syntactically disjunct
consistent semi-normal default theories and let T3 = (W1 ∪W2,D1 ∪D2). It
holds that Ar ctreeT3

= ArctreeT1
∪Ar ctreeT2

and att ctreeT3
= attctreeT1

∪ attctreeT2
.

Proof: Naturally, each argument that can be constructed under T1 can
also be constructed under T3, and every argument that can be constructed
under T2 can also be constructed under T3. Therefore, it holds that Ar ctreeT1

⊆
Ar ctreeT3

and ArctreeT2
⊆ ArctreeT3

, so ArctreeT1
∪ ArctreeT2

⊆ ArctreeT3
. We now prove

that ArctreeT3
⊆ ArctreeT1

∪ ArctreeT2
. Let A ∈ ArctreeT3

. We distinguish three
cases.
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1. defaults(A) ⊆ D1. In that case, A ∈ ArctreeT1
, so A ∈ ArctreeT1

∪ ArctreeT2
.

2. defaults(A) ⊆ D2. In that case, A ∈ ArctreeT2
, so A ∈ ArctreeT1

∪ ArctreeT2
.

3. defaults(A) 6⊆ D1 and defaults(A) 6⊆ D2. In that case, A contains at
least one default from D1 and at least one default from D2. We will
now show that this cannot be the case. First of all, we observe that A
cannot have any pre-argument that contains a default from D1 and a
default from D2. Suppose A contains a pre-argument A′ with d1 ∈ D1

as one of the children of d2 ∈ D2 (or vice versa). Then, the fact that
T1 and T2 are syntactically disjunct and the fact that A′ is consistent
(since A is consistent) imply that the consequent of d1 does not play
any role in the derivation of the prerequisite of d2. Therefore, d1 is
an unneccesary child of d2, so the set of children of d2 is not minimal,
which conflicts with the definition of tree-based arguments (Definition
17). So each pre-argument of A consists either entirely of defaults from
D1 or entirely of defaults from D2. The next thing to prove is that
either all pre-arguments of A contain only defaults from D1 or all pre-
arguments of A contain only defaults from D2. Suppose this is not the
case. Then A contains a pre-argument A1 consisting of only defaults
from D1 and a pre-argument A2 consisting of only defaults from D2.
The fact that A consists of more than one pre-argument means that
there must exist a default d in D1 ∪ D2 whose justification is attached
by A; that is ¬j ∈ concs(A) for some j ∈ jus(d). Assume without loss
of generality that d ∈ D1 (the case of d ∈ D2 goes similar). Since T1

and T2 are syntactically disjunct and A is consistent, then then implies
that A2 does not play any role in attacking default d (in deriving ¬j).
But then A would have a redundant pre-argument which conflicts with
the minimality requirement in Definition 17.

From the earlier observed fact that Ar ctreeT1
∪ArctreeT2

⊆ ArctreeT3
and from the

newly observed fact that ArctreeT3
⊆ Ar ctreeT1

∪ArctreeT2
it follows that Ar ctreeT3

=
Ar ctreeT1

∪ Ar ctreeT2
.

The next thing to prove is that att ctreeT3
= attctreeT1

∪ att ctreeT2
. First of all, we

observe that if A attacks B under (Ar ctreeT1
, att ctreeT1

) then A also attacks B
under (ArctreeT3

, att ctreeT3
). Similarly, if A attacks B under (Ar ctreeT2

, att ctreeT2
)

then A also attacks B under (Ar ctreeT3
, att ctreeT3

). So it holds that attctreeT1
∪

att ctreeT2
⊆ att ctreeT3

. We now prove that it also holds that att ctreeT3
⊆ att ctreeT1

∪
att ctreeT2

. Suppose A attacks B under (ArctreeT3
, att ctreeT3

). We distinguish two
possibilities.

1. A ∈ ArctreeT1
. Since A is consistent and T1 and T2 are syntactically

disjunct, A can only attack B on a default d ∈ D1. Therefore, B ∈
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Ar ctreeT1
, so A attacks B under (Ar ctreeT1

, att ctreeT1
).

2. A ∈ ArctreeT2
. Since A is consistent and T1 and T2 are syntactically

disjunct, A can only attack B on a default d ∈ D2. Therefore, B ∈
Ar ctreeT2

, so A attacks B under (Ar ctreeT2
, att ctreeT2

).

From the thus observed property that att ctreeT3
⊆ attctreeT1

∪ att ctreeT2
, together

with the earlier observed fact that attctreeT1
∪att ctreeT2

⊆ att ctreeT3
, it follows that

att ctreeT3
= att ctreeT1

∪ att ctreeT2
.

Theorem 17. For consistent semi-normal default theories, Cnssdl satisfies
non-interference.

Proof:
Let T1 = (W1,D1) and T2 = (W2,D2) be two syntactically disjunct default
theories and let T3 = (W1∪W2,D1∪D2). In order to prove non-interference,
we need to prove that:

• Cnssdl(T1)|atoms(T1) = Cnssdl(T3)|atoms(T1) and

• Cnssdl(T2)|atoms(T2) = Cnssdl(T3)|atoms(T2)

We only prove the first property (the proof of the second property is similar).
“⊆”: Let S ∈ Cnssdl(T1)|atoms(T1). This means there exists a semi-stable
extension Args of AF ctreeT1

such that concs(Args)|atoms(T1) = S. The fact that
semi-stable semantics for abstract argumentation satisfies non-interference
(Theorem 7) means that (given that AF ctreeT1

and AF ctreeT2
are syntactically

disjunct):

Cnsemi−stable(ArctreeT1
, att ctreeT1

)|Arctree
T1

= Cnsemi−stable(Ar ctreeT1
∪ArctreeT2

, att ctreeT1
∪attctreeT2

)|Arctree
T1

From Lemma 4 it then follows AFT3
= (ArT1

∪ArT2
, attT1

∪attT2
) so it holds

that:

Cnsemi−stable(AF
ctree
T1

)|Arctree
T1

= Cnsemi−stable(AF
ctree
T3

)|Arctree
T1

From the fact that Args is a semi-stable extension of AF ctreeT1
it follows that

Args ∈ Cnsemi−stable(AF
ctree
T1

)|Arctree
T1

so Args ∈ Cnsemi−stable(AF
ctree
T3

)|ArT1
,

which then implies that there exists a semi-stable extension Args ′ of AF ctreeT3

such that Args ′∩ArctreeT1
= Args. The fact that Args ′ is a semi-stable exten-

sion ofAF ctreeT3
implies that concs(Args ′) = Cnssdl(T3), so concs(Args ′)|atoms(T1) ∈

Cnssdl(T3)|atoms(T1). We now prove that concs(Args ′)|atoms(T1) = S.
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“⊆”: Let e ∈ concs(Args ′)|atoms(T1). Then e ∈ atoms(T1). Let A be an
argument in Args ′ with e ∈ concs(A). Then A ∈ ArctreeT1

, so A
inArgs, so e ∈ concs(Args), so e ∈ S.

“⊇”: Let e ∈ S. Then e ∈ concs(Args). So there exists an A ∈ Args with
e ∈ concs(A). From the fact that A ∈ Args it follows that A ∈ Args ′,
so e ∈ concs(Args ′). From the fact that e ∈ S it also follows that
e ∈ atoms(T1), so from the fact that e ∈ concs(Args ′) it follows that
e ∈ concs(Args ′)|atoms(T1).

From the thus proved fact that concs(Args ′)|atoms(T1) = S, together with
the earlier observed fact that concs(Args ′)|atoms(T1) ∈ Cnssdl(T3)|atoms(T1) it
follows that S ∈ Cnssdl(T3)|atoms(T1).
“⊇”: Let S ∈ Cnssdl(T3)|atoms(T1). Then there exists a semi-stable extension
Args ′ of AF ctreeT3

with concs(Args ′)|atoms(T1) = S. Like was explained before,
it holds that:

Cnsemi−stable(AF
ctree
T1

)|Arctree
T1

= Cnsemi−stable(AF
ctree
T3

)|Arctree
T1

Let Args = Args ′ ∩ ArctreeT1
. From the fact that Args ′ is a semi-stable

extension of AF ctreeT3
it follows that Args ∈ Cnsemi−stable(AF

ctree
T3

)|atoms(T1),
so Args ∈ Cnsemi−stable(AF

ctree
T1

)|atoms(T1), which together with the fact that
Args ⊆ Ar ctreeT1

implies thatArgs ∈ Cnsemi−stable(AF
ctree
T1

), so concs(Args) ∈
Cnssdl(T1), so concs(Args)|atoms(T1) ∈ Cnssdl(T1)|atoms(T1). We now prove
that concs(Args)|atoms(T1) = S.

“⊆”: Let e ∈ concs(Args)|atoms(T1). Then there is an A ∈ Args with e ∈
concs(A), so A ∈ ArctreeT1

. From A ∈ Args it follows that A ∈ Args ′,
so e ∈ concs(Args ′). This, together with the fact that all atoms of e
are from atoms(T1), implies that e ∈ concs(Args ′)|atoms(T1), so e ∈ S.

“⊇”: Let e ∈ S. Then e ∈ concs(Args ′)|atoms(T1), so there exists an ar-
gument A ∈ Args ′ with e ∈ concs(A). Moreover, the fact that e is
composed of atoms only from atoms(T1) implies that A ∈ ArctreeT1

. It
then follows that A ∈ Args ′∩ArctreeT1

, so A ∈ Args , so e ∈ concs(Args).
From the fact that e is composed of atoms only from atoms(T1) it then
follows that e ∈ concs(Args)|atoms(T1).

From the fact that concs(Args) = S, together with the fact that concs(Args) ∈
Cnssdl(T1)|atoms(T1) it follows that S ∈ Cnssdl(T1)|atoms(T1).

Lemma 5.
Default logic under semi-stable semantics is sufficiently expressive.
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Proof: Let S be a non-empty set of atoms. We now have to prove that
there exists two default theories T1 = (W1,D1) and T2 = (W2,D2) with
atoms(T1) = atoms(T2) = S, such that Cnssdl(T1) 6= Cnssdl(T2). This is
obtained with W1 = S, W2 = {¬e | e ∈ S} and D1 = D2 = ∅. In that case
it holds that Cnssdl(T1) = {Cn(W1)} and Cnssdl(T1) = {Cn(W2)}.

Theorem 18.
Default logic under semi-stable semantics satisfies crash-resistancy.

Proof: Lemma 5 states that default logic under semi-stable semantics is
sufficiently expressive. Theorem 17 states that default logic under semi-
stable semantics satisfies isolation. Theorem 1 states that each sufficiently
expressive logical formalism that satisfies non-interference also satisfies crash-
resistancy.

6. Computational Complexity

We assume the reader is familiar with the standard complexity classes p,
np, conp together with classes in the so-called Polynomial Hierarchy (ph), in
particular Σp

2 and Πp
2. We further assume some familiarity with the concept

of polynomial-time many-one reducibility between decision problems. An
accessible introduction to these may be found in Papadimitriou’s text [27].

The class d
p is formed by decision problems L, whose positive instances

are characterised as those belonging to L1 ∩ L2 where L1 ∈ np and L2 ∈
conp. The problem sat-unsat whose instances are pairs of 3-cnf formulae
〈ϕ1, ϕ2〉 accepted if ϕ1 is satisfiable and ϕ2 is unsatisfiable has been shown
to be complete for this class [27, p. 413]. We may interpret d

p as those
decision problems solvable by a (deterministic) polynomial time algorithm
allowed to make at most two calls upon an np oracle. More generally,
the complexity class p

np consists of decision problems that can be solved
by a (deterministic) polynomial time algorithm provided with access to an
np oracle (calls upon which take a single step so that only polynomially
many invocations are allowed). An important (presumed) subset of p

np

is defined by distinguishing whether oracle calls are adaptive – i.e. the
exact formulation of the next oracle query may be dependent on the answers
received to previous questions – or whether such queries are non-adaptive,
i.e. the form of the questions to be put to the oracle is predetermined
allowing all of these to be performed in parallel. The latter class has been
denoted p

np
|| and considered in Wagner [37, 38], Jenner and Toran [24].
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Under the standard complexity-theoretic assumptions, it is conjectured
that,

p ⊂

{

np

conp

}

⊂ d
p ⊂ p

np
|| ⊂ p

np ⊂

{

Σp
2

Πp
2

}

Given an argumentation framework H = (Ar , att), and a particular ex-
tension based semantics E , e.g. E could be any of se (stable), pe (preferred),
or sse (semi-stable), Table 1 describes a number of general decision problems
relative to E . A number of natural problems concern the behaviour of frame-
works regarding distinct extension semantics. In particular given extension
semantics E and F the decision problem Coincident (coinE,F ) accepts an
argumentation framework H = (Ar , att) if and only if E(H) = F(H).

Table 1: Decision Problems in afs

Problem Name Instance Question

Verification H = (Ar , att); Is S ∈ E(H)?
(verE) S ⊆ Ar

Credulous Acceptance H = (Ar , att); Is there any S ∈ E(H)
(caE) x ∈ Ar for which x ∈ S?

Sceptical Acceptance H = (Ar , att); Is x a member of
(saE) x ∈ Ar every T ∈ E(H)?

Non-emptiness H = (Ar , att) Is there any S ∈ E(H)

(exists
¬∅
E ) for which S 6= ∅?

The results proved in this section are summarised in Table 2.

Table 2: Computational Complexity w.r.t. Semi-stable extensions

Problem Lower Bound Upper Bound

versse conp-hard conp Theorem 19

exists
¬∅
sse np-hard np Corollary 1

coinpe,sse Πp
2-hard Πp

2 Theorem 20

casse p
np
|| -hard Σp

2 Theorem 21

sasse p
np
|| -hard Πp

2 Theorem 22

The results described in the first three lines of Table 2 are straightforward
developments of constructions originally presented in [15] and [20]. The
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hardness results regarding credulous and sceptical acceptance under semi-
stable semantics exploit a technical characterisation of complete problems
within p

np
|| due to Chang and Kadin [13]. This introduces the concepts of a

language having the properties op2 and opω where op is one of the Boolean
operators {and, or}.

Definition 21. ([13, pp. 175–76]) Let L be a language, i.e. a set of finite
words over an alphabet. The languages, andk(L) and ork(L) (k ≥ 1) are

andk(L) =def {〈w1, w2, . . . , wk〉 : ∀ 1 ≤ i ≤ k wi ∈ L}
ork(L) =def {〈w1, w2, . . . , wk〉 : ∃ 1 ≤ i ≤ k wi ∈ L}

The languages andω(L) and orω(L) are,

andω(L) =def

⋃

k≥1

andk(L) ; orω(L) =def

⋃

k≥1

ork(L)

A language, L, is said to have property opk (resp. opω) if opk(L) ≤pm L
(resp. opω(L) ≤pm L).

The reason why these language operations are of interest is the following
result.

Fact 1. ([13, Thm. 9, p. 182])
A language L is p

np
|| –complete (via ≤pm reducibility) if and only if all of the

following hold.

F1. L ∈ p
np
|| .

F2. L is np–hard and L is conp–hard.

F3. L has property and2.

F4. L has property orω.

Theorem 19. versse is conp–complete.

Proof: Given H = (Ar , att) and S ⊆ Ar , S defines a semi-stable extension
of H if and only if, S is admissible and

∀ T ⊆ Ar T ∈ adm(H) ⇒ ¬ (S ∪ S+ ⊂ T ∪ T+)

a test which is easily accomplished by a conp algorithm.
For conp-hardness it suffices to consider the special case S = ∅, i.e.

the problem versse(H, ∅), which is the complement of exists
¬∅
sse. Given
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an instance of unsatisfiability – without loss of generality a 3-cnf formula
ϕ(Zn) = ∧mj=1 Cj – with each Cj a disjunction of literals from {z1, . . . , zn,
¬z1, . . . ,¬zn}, the argumentation framework, Hϕ = (Ar , att) has

Ar = {ϕ,C1, . . . , Cm} ∪ {zi, ¬zi : 1 ≤ i ≤ n}
att = {〈Cj , ϕ〉 : 1 ≤ j ≤ m} ∪ {〈zi,¬zi〉, 〈¬zi, zi〉 : 1 ≤ i ≤ n} ∪

{〈zi, Cj〉 : zi occurs in Cj} ∪ {〈¬zi, Cj〉 : ¬zi occurs in Cj}

As shown by [15], there is an admissible set containing the argument ϕ
if and and only if ϕ(Zn) is satisfiable, i.e. ¬caadm(Hϕ, ϕ) if and only
if ϕ(Zn) is unsatisfiable. Modify Hϕ to the argumentation framework Kϕ
as follows: add a single new argument ψ to Ar together with 2n + 1 new
attacks {〈ψ, zi〉 : 1 ≤ i ≤ n}, {〈ψ,¬zi〉 : 1 ≤ i ≤ n}, and 〈ϕ,ψ〉. The
argumentation framework Kϕ has a non-empty preferred extension if and
only if the cnf, ϕ is satisfiable. Hence, versse(Kϕ, ∅) holds if and only if
ϕ(Zn) is unsatisfiable.

Corollary 1. exists
¬∅
sse is np-complete.

Proof: For membership in np it suffices to test if exists
¬∅
adm(H). The

np-hardness lower bound is immediate from the the proof of Thm. 19.

Theorem 20. coinpe,sse is Πp
2–complete.

Proof: Given H = (Ar , att) every preferred extension of H is also a semi-
stable extension if and only if,

∀ S ⊆ Ar S 6∈ pe(H) ∨ S ∈ sse(H)

This may be re-written as, ∀ S, T ∃ U f(S, T, U) where f(S, T, U) is the
(polynomial time decidable) predicate

(S 6∈ adm(H))
∨

(U ∈ adm(H))∧(S ⊂ U))
∨

( (S∪S+ ⊂ T∪T+)⇒ (T 6∈ adm(H)) )

That is, “for every subset (S), either S does not define a preferred extension
of H (by reason of inadmissibility or containment in a larger admissible set,
U) or (should S be a preferred extension), there is no (admissible) set (T )
for which S ∪ S+ is strictly contained in T ∪ T+”.

The test described can be accomplished in Πp
2.

To establish Πp
2–hardness we reduce to the complementary problem – i.e.

that of deciding if a given H has a preferred extension which fails to be semi-
stable, using the Σp

2–complete problem, qsat
Σ
2 instances of which comprise a
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cnf formula, ϕ(Yn, Zn) over disjoint sets of propositional variables, that are
accepted if there is some instantiation (αY ) of Yn for which every instantia-
tion, (βZ) of Zn fails to satisfy ϕ(Yn, Zn), i.e. ∃ αY ∀ βZ ¬ϕ(αY , βZ). Given
an instance, ϕ(Yn, Zn), consider the argumentation framework Gϕ(Ar ′, att ′)
formed from the argumentation framework Hϕ = (Ar , att) of Thm. 19, i.e.
Ar ⊂ Ar ′ and att ⊂ att ′, so that

Ar ′ = {ϕ,C1, . . . , Cm} ∪ {yi,¬yi, zi,¬zi : 1 ≤ i ≤ n} ∪ {b1, b2, b3}
att ′ = {〈Cj , ϕ〉 : 1 ≤ j ≤ m} ∪

{〈yi,¬yi〉, 〈¬yi, yi〉, 〈zi,¬zi〉, 〈¬zi, zi〉 : 1 ≤ i ≤ n} ∪
{〈yi, Cj〉 : yi occurs in Cj} ∪ {〈¬yi, Cj〉 : ¬yi occurs in Cj} ∪
{〈zi, Cj〉 : zi occurs in Cj} ∪ {〈¬zi, Cj〉 : ¬zi occurs in Cj} ∪
{〈ϕ, b1〉, 〈ϕ, b2〉, 〈ϕ, b3〉, 〈b1, b2〉, 〈b2, b3〉, 〈b3, b1〉} ∪
{〈b1, zi〉, 〈b1,¬zi〉 : 1 ≤ i ≤ n}

From [20] this framework has a non-stable preferred extension if and only if
ϕ(Yn, Zn) is accepted as an instance of qsat

Σ
2 .1 In particular, every satis-

fying instantiation of ϕ(Yn, Zn) induces a corresponding stable extension of
Gϕ. Now, noting that ϕ(Yn, Zn) is accepted as instance of qsat

Σ
2 if and only

if the cnf, ψ(Yn ∪ {u}, Zn) in which each clause of ϕ has a new variable u
added to it, is also so accepted we claim that the argumentation framework
Gψ has a preferred (but not semi-stable) extension if and only if there is
an instantiation, α of Yn ∪ {u} under which ψ(α,Zn) is unsatisfiable. First
suppose sse(Gψ) ⊂ pe(Gψ). Since, u = ⊤ satisfies ψ, from the properties of
Gψ it follows that this has at least one stable extension, hence

se(Gψ) = sse(Gψ) ⊂ pe(Gψ)

and so Gψ must contain a preferred extension which is not stable. From the
analysis given in [20] we can construct an instantiation αY of Yn which has
ψ(αY , u = ⊥, Zn) unsatisfiable.

A similar analysis to that of [20] identifies a (non-stable) preferred ex-
tension for any instantation of α of Yn ∪{u} under which ψ(α,Zn) is unsat-
isfiable, i.e. if ψ is accepted as an instance of qsat

Σ
2 then the set of preferred

extensions of Gψ does not coincide with its set of semi-stable extensions.
As a consequence of Fact 1, the lower bounds on casse and sasse are
derived using the following four part constructions.

1Each witnessing non-stable but preferred extension is formed by a subset of
{yi,¬yi 1 ≤ i ≤ n} for which the instantiation, αY of the corresponding literals in Yn to
⊤ results in ϕ(αY , Zn) being unsatisfiable.
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S1. Prove that casse (resp. sasse) is np–hard.

S2. Prove that casse (resp. sasse) is conp–hard.

S3. Prove that casse (resp. sasse) has property and2 (in fact we will show
both to have property andω).

S4. Prove that casse (resp. sasse) has property orω.

Theorem 21.

a. casse is in Σp
2.

b. casse is p
np
|| –hard.

Proof: We omit the relatively easy upper bound stated in (a) and con-
centrate on the second part of the theorem statement. Using the character-
isation of p

np
|| –complete languages described in Fact 1 the theorem follows

given arguments that (S1)–(S4) all hold.

S1 casse is np–hard.
Given an instance, ϕ(Zn) of sat form an instance 〈Hϕ, ϕ〉 of casse in
which Hϕ is the af described in the proof of Thm. 19. The argument ϕ
is in a stable (hence semi-stable) extension of Hϕ if and only if ϕ(Zn)
is satisfiable. We deduce that casse is np–hard as a result.

S2 casse is conp–hard.
Given an instance ϕ(Zn) of unsat, first form the af, Hϕ as described
in S1. Modify Hϕ to a system Kψ which has a new argument ψ added
together with attacks 〈ϕ, zi〉 and 〈ϕ,¬zi〉 for each 1 ≤ i ≤ n and
{〈ϕ,ψ〉 〈ψ,ϕ〉}. The instance is completed by choosing ψ as the ar-
gument of interest. The instance 〈Kψ, ψ〉 is accepted if there is a semi-
stable extension containing ψ. If, however, there is a preferred extension
containing ϕ, then this extension is also a stable extension which would
preclude membership of ψ in a semi-stable set. Such a preferred exten-
sion exists if and only if ϕ(Zn) is satisfiable, so that 〈Kψ , ψ〉 is accepted
as an instance of casse if and only if ϕ(Zn) is unsatisfiable.

S3. casse has property andω.
Let 〈〈H1, x1〉, 〈H2, x2〉, . . . , 〈Hk, xk〉〉 define an instance of andk(casse).
Form an instance 〈H, z〉 of casse in which the k frameworks, Hi are
extended by adding a set of k arguments {y1, . . . , yk}, an argument z,
and attacks {〈yi, z〉, 〈xi, yi〉} for each 1 ≤ i ≤ k. We claim that 〈H, z〉
is accepted as an instance of casse if and only if each 〈Hi, xi〉 is ac-
cepted as such an instance. Suppose the latter is true and that Si is a
semi-stable extension in Hi that contains xi. Then S = ∪ki=1 Si∪{z} is
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certainly admissible since each attack 〈yi, z〉 is countered by the attack
〈xi, z〉. Furthermore S is a semi-stable extension as

S ∪ S+ =

k
⋃

i=1

Si ∪ S+
i ∪ {y1, y2, . . . , yk, z}

so that all of the new arguments {y1, . . . , yk, z} occur within S ∪ S+.
In total from semi-stable extensions Si containing xi we construct a
semi-stable extension S containing z.
Conversely suppose S is a semi-stable extension of H and that z ∈ S.
It is certainly the case that {x1, . . . , xk} ⊂ S since this is required in
order to defend the attacks 〈yi, z〉. Consider the set Si = S ∩Ar i where
Ar i is the set of arguments in Hi. Noting that xi ∈ Si we claim that
Si is a semi-stable extension in Hi. Suppose this were not the case
so that some admissible subset, T of Ar i satisfies Si ∪ S

+
i ⊂ Ti ∪ T

+
i .

Without loss of generality we may assume xi 6∈ T so that xi ∈ T+.
Now consider the set R = S \ (Si ∪ {z}) ∪ Ti ∪ {yi}. Observe that R is
admissible: yi being defended by the argument attacking xi in Ti. In
addition, however,

S ∪ S+ = ∪kj=1 Sj ∪ S+
j ∪ {y1, . . . , yk, z}

⊂ ∪kj 6=i Sj ∪ S
+
j Ti ∪ T

+
i ∪ {y1, . . . , yk, z}

= R ∪R+

with R admissible and z 6∈ R: this contradicts the premise that S is
semi-stable.

S4. casse has property orω.
Let 〈〈H1, x1〉, 〈H2, x2〉, . . . , 〈Hk, xk〉〉 define an instance of ork(casse).
Form an instance 〈H, z〉 of casse in which the k frameworks, Hi are
extended by adding arguments {y, z} and attacks {〈xi, y〉 : 1 ≤ i ≤ k}
and 〈y, z〉. First suppose, without loss of generality the x1 ∈ S1 a semi-
stable extension of H1. Let 〈S2, . . . , Sk〉 be semi-stable extensions of
Hi for 2 ≤ i ≤ k. Then it easily follows that S = {z} ∪ ∪ki=1 Si is not
only admissible but a semi-stable of H containing z. On the other hand
suppose S with x ∈ S is a semi-stable extension of H. There must be
at least one Hi for which xi ∈ S in order to defend the attack by y on
z. Now considering the set S ∩ Si gives a semi-stable extension in Hi
containing xi by a similar argument to that used in S3.

Theorem 22.
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a. sasse is in Πp
2.

b. sasse is p
np
|| –hard.

Proof: We again omit the easy upper bound proof, concentrating on (b).
As before we obtain the result in 4 stages.

T1 sasse is np–hard.
Given an instance ϕ(Zn) of satisfiability, form the framework Kϕ de-
scribed in Thm 19. The instance of sasse is given by 〈Kϕ, ϕ〉. If ϕ(Zn)
is satisfiable then the subset 〈a1, a2, . . . , an〉 of {zi, ¬zi : 1 ≤ i ≤ n}
indicated by any satisfying assignment together with ϕ is a stable ex-
tension and hence also semi-stable. Hence ϕ(Zn) satisfiable implies
sasse(Kϕ, ϕ) holds. On the other hand if ϕ(Zn) is unsatisfiable then
(as argued in the proof of Thm. 19) Kϕ has only the empty set as a
semi-stable extension. We deduce that sasse is np–hard.

T2 sasse is conp–hard.
Given an instance, ϕ(Zn) of unsatisfiability, construct the framework
Kϕ described above but without the attacks 〈ψ, zi〉 and 〈ψ,¬zi〉. The
instance of sasse is 〈Kϕ, ψ〉. If ϕ(Zn) is satisfiable then ψ cannot
belong to the semi-stable extension induced by a satisfying instantiation
(since this contains the argument ϕ). On the other hand, if ϕ(Zn) is
unsatisfiable then every stable extension of Kϕ has the form: exactly
one of each of the pairs {zi,¬zi}, the subset of clause arguments which
are unattacked; and the argument ψ. Hence ψ is a member of every
semi-stable extension if and only if ϕ(Zn) is unsatisfiable.

T3. sasse has property andω. Similar to (S3).

T4. sasse has property orω. Similar to (S4).

We observe that the lower bound on casse shows that this decision problem
is at least as hard as the analogous problem in the ideal semantics of [18]
as shown in [19], while the upper bound for sasse matches that of sceptical
reasoning w.r.t. to preferred semantics [20]. Finally our exact bounds for
the verification problem, showing this to be conp–complete, are identical to
those already demonstrated for preferred semantics [15] and recognition of
ideal sets [19].

7. Related Work

Semi-stable semantics is not an entirely new approach. It is to some
extent similar to the admissible stage extension approach formulated by Bart
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Verheij [34]. Before treating Verheij’s work, however, it can be worthwhile to
sketch some context. Like was discussed before, every semi-stable extension
is a preferred extension, every preferred extension is a complete extension,
every complete extension is an admissible set, and every admissible set is a
conflict-free set. This yields the picture at the left hand side of Figure 4.

semi−stable extension

preferred extension

complete extension

admissible set

conflict−free set

that defeats everything not in it

that defeats everything not in it

that defeats everything not in it

that defeats everything not in it

that defeats everything not in it
conflict−free set

admissible set

complete extension

preferred extension

semi−stable extension
is a

is a

is a

is a

(5)

(4)

(2)

(1)

(3)

Figure 4: Hierarchy of argumentation related sets (left) and hierarchy of definitions of
stable semantics (right)

Similarly, there also exist various equivalent ways of defining stable se-
mantics. These are shown at the right hand side of figure 4. Their equiv-
alence has for most part already been stated and proved at Proposition 3.
The only thing that is still to be done is a proof that level (5) is equivalent
to level (4), which is expressed in Proposition 5 below.

Proposition 5. Let (Ar , att) be an argumentation framework and let Args ⊆
Ar. The following statements are equivalent.

(5) Args is a semi-stable extension that attacks every argument in Ar\Args.

(4) Args is a preferred extension that attacks every argument in Ar\Args.

Proof:

from 5 to 4: Trivial, since each semi-stable extension is also a preferred
extension (Proposition 2).
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from 4 to 5: Let Args be a preferred extension that attacks every argu-
ment in Ar\Args . From Proposition 3 it follows that Args is a stable
extension. The fact that there exists a stable extension means, by
Theorem 5, means that the set of stable extensions is equal to the set
of semi-stable extensions. This means that Args is also a semi-stable
extension.

To some scholars, including Verheij, stable extensions appear as a some-
times unreachable ideal.2 If a condition is too strong to be fulfilled, then
perhaps it makes sense to weaken it. In the case of stable semantics, the
most obvious way of weakening would be to drop the condition that a stable
extension attacks every argument not in it. The result, however, depends on
the particular definition of stable semantics one starts with. For instance,
if one weakens the level 4 definition (Figure 4) like this, then one ends up
with the notion of preferred semantics. Likewise, if one applies this to the
level 3 definition, then one ends up with the notion of complete semantics.
The higher one goes, the stronger the resulting semantics becomes. With
semi-stable semantics, one tries to obtain an alternative for stable semantics
that is still as stong as possible. A different approach would be not to go
up, but to go down as much as possible. This would result in a definition
that merely requires conflict-freeness, which forms the basis of the work of
Verheij [34].

A canonical stage (cstage) is essentially a set Args that is conflict-free.3

Every cstage Args has a range, which is defined as Args ∪Args+. A cstage
with maximal range is called a stage extension.

It is interesting to compare stage extensions with semi-stable extensions.
Both semi-stable extensions and stage extensions have a maximal range. The
difference is that a semi-stable extension has to be a complete extension,
while a stage extension only has to satisfy the much weaker condition of
being conflict-free.

As an example of how cstages and stage extensions work, consider the
example of an odd loop consisting of three arguments A, B and C where A
attacks B, B attacks C, and C attacks A. Here, there exist four cstages: ∅,

2private communication
3In Verheij’s treatment [34] a stage is a pair (Args ,Args ′) where Args is a conflict-free

set of arguments and Args ′ ⊆ Args+. A canonical stage (cstage) is a stage (Args ,Args ′)
where Args ′ = Args+. As cstages are in fact characterized by their first element, we
simply write Args instead of (Args ,Args+). In the current treatment we focus on cstages,
as these can serve as a basis for more advanced notions like Verheij’s stage extensions and
admissible stage extensions.
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{A}, {B} and {C}, of which {A}, {B} and {C} are stage extensions.
Verheij also studies what he calls admissible stage extensions. These are

admissible sets Args with maximal range (Args ∪Args+). As was stated by
Proposition 4, these correspond to semi-stable extensions. Verheij also stud-
ied the relation between stable, semi-stable and preferred semantics, but has
chosen to do so in terms of his stages approach [34] and dialectical negation
approach [35], both of which unfortunately received little following. Much
of Verheij’s work, however, is related to stage extensions [34, 35], where the
requirement of admissibility is replaced by the much simpler requirement of
conflict-freeness.

The approach of stage extensions is an interesting one. Nevertheless, two
remarks should be made. First of all, if one regards a stable extension as a
(sometimes unreachable) ideal, then it makes sense to move up the hierarchy
of Figure 4 to a definition that is still as strong as possible. In situations
where stable extensions do not exist, semi-stable semantics would be the
most obvious candidate. In this way, as much as possible of the essential
nature of stable semantics is preserved. Conflict freeness, even with maximal
ranges, is actually a quite weak condition.

The second remark is more subtle and has to do with how one actually
applies argumentation for inferring defeasible conclusions. Argumentation
formalisms like [28, 31, 23, 2] assume the presence of a set of strict and de-
feasible rules (or reasons) which are used to construct arguments. As each
argument has one (in some formalisms possibly more than one) conclusion,
one can determine the conclusions associated to an extension, as well as
the overall justified conclusions — usually based on the sceptical approach:
an conclusion is overall justified iff it is entailed by every extension. Let
us consider an argumentation formalism like [2] or the argument-theoretic
interpretation of oscar [29, 30]. Suppose the following nondefeasible in-
formation is present: {a, b,¬(c ∧ d)}. Also suppose there are two defeasible
rules: a ⇒ c and b ⇒ d. One can now construct at least the following five
arguments.
A: (a)⇒ c
B: (b)⇒ d
C: ((a)⇒ c),¬(c ∧ d)→ ¬d
D: ((b)⇒ d),¬(c ∧ d)→ ¬c
E: ¬(c ∧ d)
In the argument-theoretic version of oscar, as well as in [2], an argument
can attack another argument by having a conclusion that is the opposite
of the consequent of a defeasible rule in the other argument. Thus, in our
example D attacks A and C, and C attacks B and D. The argument E
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does not have any attackers. The set {A,B,E} is conflict-free but is not
admissible, since it does not defend itself against C and D. Worse yet, the
set {A,B,E}, even though it is conflict-free, has inconsistent conclusions
(c, d and ¬(c ∧ d)). This illustrates that conflict-freeness does not imply
consistency.

It is interesting to see what happens if one replaces the requirement of
conflict-freeness by the requirement of admissibility. Is there still a prob-
lem with consistency for admissible sets of arguments? It turns out the
answer is no. This can be seen as follows. Suppose an admissible set
Args yields inconsistent conclusions. Then Args contains some minimal
subset {A1, . . . , An} such that {Conc(A1), . . . , Conc(An)} is inconsistent.4

Under the assumption that the nondefeasible information is consistent, this
means that at least one of these arguments (say: Ai) contains at least
one defeasible rule. As {A1, . . . , An} is a minimal set of arguments yield-
ing inconsistent conclusions, this means that {A1, . . . , Ai−1, Ai+1, . . . , An}
yields conclusions that are not only consistent, but from which also the
negation of the conclusion of Ai follows under classical logic. That is:
{Conc(A1), . . . , Conc(Ai−1), Conc(Ai+1), . . . , Conc(An)} � ¬Conc(Ai). As in
oscar, as well as in other approaches, strict rules coincide with classical
entailment, there exists a strict rule of the form Conc(A1), . . . , Conc(Ai−1),
Conc(Ai+1), . . . , Conc(An)} → ¬Conc(Ai). This rule can then be used in
an argument (say A′) of the form A1, . . . , Ai−1, Ai+1, . . . , An → ¬Conc(Ai).
This argument can then serve as a basis for constructing an argument (say
A′′) that attacks Ai, possibly by using parts of Ai itself. As Args is ad-
missible, it should defend itself against A′′. Therefore, it should contain
an argument (say B) against the consequent of some defeasible rule in A′′.
But as every defeasible rule in A′′ also occurs in some argument in Args ,
this means that B attacks some argument in Args. Therefore, Args is not
conflict-free, which means it also cannot be an admissible set. Contradiction.

The key point here is that although weakening the requirement of admis-
sibility to the requirement of merely conflict-freeness might seem reasonable
when one takes into account a purely abstract view of argumentation in
which arguments do not have an internal structure or even conclusions (like
is done in [34]), it can lead to serious problems when one actually tries
to apply this principle in a full blown argumentation formalism in which
the emphasis is on defeasible entailment. For this, conflict-freeness is not
enough; admissibility is really needed.

4We write Conc(Ai) for the conclusion of argument Ai.
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As an aside, one may argue that Verheij’s approach of stage extensions is
based not so much on conflict-free sets as such, but on conflict-free sets with
a maximal range. Recall that a stage extension is a conflict-free set Args of
which Args ∪ Args+ is maximal. In the above example, the set {A,B,E}
is not a stage extension since its range is {A,B,E} and there exists a stage
(for instance {A,C,E}) with a bigger range (in this case {A,B,C,D,E}).
Although the approach of stage extensions thus properly deals with the
above example, there exist other examples where this approach fails. Con-
sider adding two new arguments F and G, where F is self-attacking and is
attacked by A, and G is self-attacking and is attacked by B. Such argu-
ments could for instance be created by the approach of using undercutters,
as is done in [11]. In that case, the set {A,B,E} is a stage extension.
This is because its range ({A,B,E, F,G}) cannot be made larger. Thus,
stage extensions do not necessarily produce consistent conclusions either.
For Verheij’s dialectical negation approach, where the concept of classical
consistency does not exist in the first place, stage extensions work fine. For
other approaches, it can cause some real problems.5

8. Discussion

In this paper we have stated three postulates (non-interference, crash-
resistancy and backward compatibility) that aim to capture necessary prop-
erties for the notion of paraconsistency. That is, our aim is to describe
what it means for a formalism to be a paraconsistent version of another for-
malism. This makes it possible to meaningfully apply paraconsistency to a
whole range of formalisms that are fundamentally different to classical logic,
which has traditionally been the main focus of paraconsistency. To illustrate
the applicability of these postulates outside of the domain of classical logic,
we show how they can be satisfied with respect to three non-classical for-
malisms: abstract argumentation, logic programming and default logic.

It should be mentioned that obtaining the properties of non-interference
and crash resistancy is not just a matter of applying a particular seman-
tics (such as semi-stable). Equally important is the issue of how arguments
are constructed. This is in line with [10] in which a number of postulates
is provided whose satisfaction depends on the argumentation semantics as
well as on how the arguments are constructed. As an example, when ap-
plying semi-stable semantics to default logic (Section 5) one explicitly needs

5This also raises some tricky questions for other semantics that are not admissibilty
based, such as CF2 [3].
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to rule out inconsistent arguments in order for non-interference to hold.
This phenomenon is not necessarily related to semi-stable semantics. Pol-
lock’s oscar [29], for instance, implements preferred semantics [30] but, as
is explained in [11], violates non-interference because it does not block the
construction of inconsistent arguments. Our current work thus confirms the
findings of [10] that argumentation semantics and argument construction
cannot be studied purely in isolation. One needs to have a suitable combi-
nation of semantics and argument construction in order to obtain the kind
of results that can be regarded as desirable.
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