Normative Multi Agent Systems
“Sanction based obligations in a qualitative decision theory”

Guido Boella
Università di Torino
Leendert van der Torre
Vrije Universiteit

Obligations in MAS

- Obligations play an important role in the “programming” of multi agent systems. They stabilize the behavior of a multiagent system, and thus play the same role as intentions do for single agent systems …
Explicit representation of norms or implicit?

“An obligation holds when there is an agent A, the *normative* agent, who has a goal that another (or more than one) agent B, the *bearer* agent, satisfy a goal G and who, in case he knows that the agent B has not adopted the goal G, can decide to perform an action Act which (negatively) affects some aspect of the world which (presumably) interests B. Both agents know these facts”

[Boella and Lesmo, 2002]

Violations…

• The agent cannot do anything for the norm.
• The plans to achieve it achieves a low utility.
• A plan not fulfilling the obligation but inducing the *normative* agent to believe otherwise.
• A plan not fulfilling the obligation but which makes the sanction impossible to be applied
• The *bearer* bribes (or menaces) him
• …
Carmo and Jones 2002

- *Normative systems* are “sets of agents (human or artificial) whose interactions can fruitfully be regarded as norm-governed; the norms prescribe how the agents ideally should and should not behave [...] Importantly, the norms allow for the possibility that actual behaviour may at times deviate from the ideal, i.e. that violations of obligations, or of agents rights, may occur”

Normative “agents”

- We attribute mental states to normative systems such as legal or moral systems, a proposal which may be seen as an instance of Dennett’s *intentional stance* [Dennett, 1987]:
- Agent-style characteristics: autonomy, proactivity, social awareness and reactivity - mental attitudes: such as beliefs, desires and intentions
Social order

• [Castelfranchi, 2001] *multiagent* systems as “*dynamic social orders*”: patterns of interactions among interfering agents “*such that it allows the satisfaction of the interests of some agent*”.

• “a shared goal, a value that is good for everybody or for most of the members”

• Social order requires *social control*, “*an incessant local (micro) activity* of its units, able to restore or reproduce the regularities prescribed by norms”

Obligations

1) The content of the obligation is a desire and goal of N and N wants that A adopts this goal.

2) N has the desire and the goal that, if the obligation is not respected by A, a prosecution process is started to recognized if the situation ‘counts as’ a violation and that, if a violation is recognized, A is sanctioned.

3) Both A and N do not desire the sanction: for A the sanction is an incentive to respect the obligation, while N has no immediate advantage from sanctioning.
Recursive modeling

Decisions

- Let $A=\{a1,a2, \ldots\}$, $N=\{n1,n2, \ldots\}$ and $P=\{p1,p2, \ldots\}$ be three disjunct sets of propositional variables, i.e. $A \cap N = \emptyset$, $A \cap P = \emptyset$, and $N \cap P = \emptyset$. A literal is a variable or its negation.
- A decision set is a tuple $\langle dA,dN \rangle$ where dA is a set of literals of A (the decision of agent A) and dN is a set of literals of N (the decision of agent N).
Epistemic states

- Let P^0, P^1, and P^2 be the sets of propositional variables defined by $P^i = \{ p^i | p \in P \}$.
- L_A, LAP^1, ... the propositional languages built up from A, $A \cup P^1$, ...
- The epistemic state is a tuple
 $$\langle s^A_0, s^A_1, s^N_0, s^N_1, s^N_2 \rangle$$
 where s^A_0 and s^N_0 are sets of literals of LP^0, s^A_1 and s^N_1 are sets of literals of LAP_1, and s^A_2 and s^N_2 of LP^2.

Rules

- Two sets of belief rules are used to calculate the expected consequences of decisions and two sets of desire and goal rules are used to evaluate the consequences of decisions.
- A rule is an ordered pair of sentences
- $l_1 \land \ldots \land l_n \rightarrow l$, where l_1, \ldots, l_n, l are literals of this language.
Mental state

• The mental state is a tuple $\langle B^A_1, B^A_2, B^N_1, B^N_2, D^A, G^A, D^N, G^N \rangle$
• B^A_1 and B^N_1 are sets of rules of LAP$^0P^1$,
• B^A_2 and B^N_2 are sets of rules of LANP$^0P^1P^2$,
• D^A, G^A, D^N and G^N are sets of rules of LANP$^0P^1P^2$.

• The set of observable propositions Obs is a subset of $A \cup P^I$. The expected observation of N in state s^A_i is
 \[Obs_N = \{ p \mid p \in Obs \text{ and } p \in s^A_i \} \cup \{ \neg p \mid p \in Obs \text{ and } \neg p \in s^A_i \}. \]
Recursive modeling

Observations

- The set of observable propositions Obs is a subset of $A \cup P^1$. The expected observation of N in state s^A_1 is

$$Obs_N = \{ p \mid p \in Obs \text{ and } p \in s^A_1 \} \cup \{ \neg p \mid p \in Obs \text{ and } \neg p \in s^A_1 \}.$$
Consequences

• For rational agents, the epistemic state is a consequence of applying belief rules to the previous state, together with persistence of the previous state.

Respecting mental states

For s a state, f a set of literals of $LANP^l$ and R a set of rules, let $max(s,f,R)$ be the set of states:

1. $\left\{\{l_1,...,l_n\}\cup f\mid l_{i,1}\land...\land l_{i,m_i}\rightarrow l_i \in R \text{ for } i=1...n\right\}$
 and $l_{i,j} \in s \cup f$ for $j = 1...m_i$ and
 $\{l_1,...,l_n\}\cup f$ consistent

2. $S' = \{s \in S \mid \exists s' \in S \text{ such that } s \subseteq s'\}$

3. $max(s,f,R) = \{s'\cup s'' \mid s' \in S' \text{ and } s'' = \{l_i \in s \mid l_i \in P^i \text{ and } \neg l_{i+1} \in s'\}\}$
Respecting

\(\langle s^A_0, s^A_1, s^A_2, s^N_0, s^N_1, s^N_2 \rangle \) respects \((dA,dN) \),
\(\text{Obs}_N \) and \((B^A_1, B^A_2, B^N_1, B^N_2, D^A, G^A, D^N, G^N) \)

if

\(s^A_1 \in \text{max}(s^A_0, dA, B^A_1) \),
\(s^A_2 \in \text{max}(s^A_0 \cup s^A_1, dN, B^A_2) \),
\(s^N_1 \in \text{max}(s^N_0, \text{Obs}_N, B^N_1) \)
\(s^N_2 \in \text{max}(s^N_0 \cup s^N_1, dN, B^N_2) \).

Unfulfilled mental states

\[U(R,s) = \{ l_1 \land \ldots \land l_n \rightarrow l \in R \mid \]
\[\{ l_1, ..., l_n \} \subseteq s \text{ and } l \notin s \} \]

The unfulfilled mental state description of A
is the tuple \(\langle U^A_{DA}, U^A_{GA}, U^A_{DN}, U^A_{GN}, U^A_N \rangle \)
where \(U^A_{DA} = U(D^A, s^A) \), \(U^A_{GA} = U(G^A, s^A) \),
\(U^A_{DN} = U(D^N, s^A) \), \(U^A_{GN} = U(G^N, s^A) \), and \(U^A_N = \langle U^A_{DN}, U^A_{GN} \rangle \)
is the unfulfilled mental state
of N: \(U^N_{DA} = U(D^N, s^N) \), \(U^N_{GN} = U(G^N, s^N) \).
Agent characteristics

\langle \geq^A_B, \geq_A, \geq^N_B, \geq^N \rangle \text{ where } \geq^A_B \text{ is a transitive and reflexive relation on the powerset of } B^A,
\geq_A \text{ is a transitive and reflexive relation on the powerset of } D^A \cup G^A \cup D^N \cup G^N, \geq^N \text{ is a transitive and reflexive relation on the powerset of } B^N, \text{ and } \geq^N_B \text{ is a transitive and reflexive relation on the powerset of } D^N \cup G^N.

Respecting mental states and beliefs

- For s a state, f a set of literals in LANP^I, R a set of rules, and a transitive and reflexive relation on R containing at least the superset relation, let \text{max}(s,f,R, \geq) \ldots
Agent types (from BOID)

1. if \(AT = stable\) then \(U^A_N \geq U'^A_N\) iff \(U^{GA}_A \geq U'^{GA}_A\) and \(U'^{GA}_A \geq U^{GA}_A\) then \(U^{DA}_A \geq U'^{DA}_A\)

2. if \(AT = unstable\) then \(U^A_N \geq U'^A_N\) iff \(U^{DA}_A \geq U'^{DA}_A\) and \(U'^{DA}_A \geq U^{DA}_A\) then \(U^{GA}_A \geq U'^{GA}_A\)

3. if \(AT = OGNonly\) then \(U^A_N \geq U'^A_N\) iff \(Obl(U^{GN}_A) \geq Obl(U'^{GN}_A)\) where \(Obl(U^{GN}_A)\) is the set of obligations of \(A\) (the rules \(l_1 \land \ldots \land n \rightarrow l \in G^N\) such that \(l \in A\)).

Optimal decisions

\(\langle dA, dN \rangle\) minimal for \(N\) if for every other decision set \(\langle dA, dN' \rangle\) with unfulfilled mental state \(U'N = UN\) then \(dN \subseteq dN'\).

\(\langle dA, dN \rangle\) is optimal for \(N\) if it is minimal for \(N\) and for every expected state description \(s'N\) of a \(N\) minimal decision set \(\langle dA, dN' \rangle\) there is an expected state description \(sN\) of \(\langle dA, dN \rangle\) such that \(sN \geq s'N\).

A decision specification is conflict free if the optimal decision set for \(A\) is unique.
Anderson’s reduction of modal logic

- $O(p) = \text{NEC} (\neg p \rightarrow V)$: if p is obliged, then it is necessarily the case that the negation of p implies the violation constant V.
- However many violations are not sanctioned.
- He later interpreted it as ‘something bad has happened’.
- We read it as ‘the absence of p counts as a violation’ (as in Searle’s construction of social reality)

Obligations: $O(A,N,a)$

Agent A believes to be obliged to decide to do a ($a \in A$ an ought-to-do obligation) iff A believes that:

1. $\neg a \in D^N \cap G^N$: Agent N desires and has as a goal that a and wants A to adopt a as a goal.
2. $\exists v \in N \neg a \rightarrow v \in D^N \cap G^N$: If $\neg a$ then N has the goal and the desire to recognize it as a violation v.
3. $\rightarrow v \in D^N$: N desires that there are no violations.
4. $\rightarrow v \succ^N \neg a \rightarrow v$
Obligations with sanction $O(A,N,a,s)$

Agent A believes to be *obliged* to decide to do a with sanction s (a decision variable in N) iff:

1. Agent A believes to be obliged to decide to do a, as defined above.
2. $v \rightarrow s \in D^N \cap G^N$: A believes that if v then agent N desires and has as a goal that it sanctions A.
3. $\rightarrow \neg s \in D^N$: agent A believes that agent N desires not to sanction $\neg s$.
4. $\exists n \in N \ n \rightarrow \neg s \in B^N$: Agent A has the desire for $\neg s$, which expresses that it does not like to be sanctioned.

Sanction as parameters

Agent A believes to be *obliged* to decide to do a with sanction s (a parameter in P^2 to be achieved by agent N) iff:

1. Agent A is obliged to decide to do a with sanction s as defined above, but now with s a parameter in P^2.
2. $\exists n \in N \ n \rightarrow s \in B^N$: agent A believes that agent N has a way to apply the sanction.
Example: O(A,N,a,s)

$s^A_0 = \emptyset, B^A = \emptyset, G^A = \emptyset,$
$D^A = \{ \rightarrow \neg a, \rightarrow \neg s \},$
$\geq^A = \{ \rightarrow \neg a \} > \{ \rightarrow \neg s \}$

$s^N_0 = \emptyset, \text{Obs}_N = A \cup P^I, B^N = \emptyset,$
$G^N = \{ \rightarrow a, \neg a \rightarrow v, v \rightarrow s \},$
$D^N = \{ \neg a, \neg a \rightarrow v, v \rightarrow s, \rightarrow v, \rightarrow \neg s \},$
$\geq^N = \{ \rightarrow \neg v \} > \{ \neg a \rightarrow v \}, \{ \rightarrow \neg s \} > \{ v \rightarrow s \}$

Recursive modeling

\[S_A^0 \xrightarrow{B_A^0} S_A^1 \xrightarrow{B_N^0} S_N^0 \xleftarrow{d_A} S_A^1 \xrightarrow{B_A^1} S_A^2 \]

A's decision

Observations

Persistency of parameters

\[S_N^0 \xrightarrow{B_N^0} S_N^1 \xrightarrow{B_A^1} S_N^2 \]

\[\text{N's decision} \]

\[\text{Obs}_N \]
decision set: $< dA = \{ \neg \alpha \}, dN = \emptyset >$

$s^A_1 = \{ \neg \alpha \}, s^N_1 = \{ \neg \alpha \}, s^A_2 = \emptyset, s^N_2 = \emptyset$

Unfulfilled mental states

$U^A = \emptyset$

$U^N = \{ \neg \alpha \rightarrow v \}$

decision set: $< dA = \{ \neg \alpha \}, dN = \{ v, s \}>$

$s^A_1 = \{ \neg \alpha \}, s^N_1 = \{ \neg \alpha \}, s^A_2 = \{ v, s \}, s^N_2 = \{ v, s \}$

Unfulfilled mental states

$U^A = \{ \rightarrow \neg s \}$

$U^N = \{ \rightarrow \neg v, \rightarrow \neg s \}$
decision set: $<dA = \{a\}, dN = \emptyset>$

$s^A_1 = \{a\}, s^N_1 = \{a\}, s^A_2 = \emptyset, s^N_2 = \emptyset$

Unfulfilled mental states

$U^A = \{ \rightarrow \neg a \}$

$U^N = \emptyset$